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Summary. We present an approach for tracking the articulated motion of humans
using image sequences obtained from multiple calibrated cameras. A 3D human
body model composed of eleven segments that allows both rotation at joints and
translation is utilized to estimate the pose. We assume that the initial pose estimate
is available. A modified swarm intelligence based searching scheme is utilized to
perform motion tracking. At the beginning of each optimization cycle, we estimate
the pose of the whole body and then we refine locally the limb poses using smaller
number of particles. The results that were achieved in our experiments are compared
with those produced by other state-of-the-art methods, with analyses carried out
both through qualitative visual evaluations as well as quantitatively by the use of the
motion capture data as ground truth. They indicate that our method outperforms
the algorithm based on the ordinary particle swarm optimization.

1 Introduction

Vision-based tracking of human bodies is an important problem due to various
potential applications like recognition and understanding human activities,
user friendly interfaces, surveillance, clinical analysis and sport (biomechan-
ics). The goal of body tracking is to estimate the joint angles of the human
body at any time. This is one of the most challenging problems in computer
vision and pattern recognition because of self-occlusions, high dimensional
search space and high variability in human appearance. An articulated hu-
man body can be thought of as a kinematic chain with at least 11 body parts.
This may involve around 26 parameters to describe the full body articula-
tion. By building a mapping from configuration space to observation space,
3D model-based approaches rely on searching the pose space to find the body
configuration that best-matches the current observations [1]. Matching such
complex and self-occluding model to human silhouette might be especially dif-
ficult in cluttered scenes. The major problems with 3D body tracking arise by
reason of occlusions and depth ambiguities. Multiple cameras and simplified
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backgrounds are often employed to ameliorate some of such practical difficul-
ties. However, the use of multiple cameras is connected with difficulties such
as camera calibration and synchronization, as well as correspondence.

The particle filtering is widely used in human motion tracking [2] owing
to ability of dealing with high-dimensional probability distributions. Given
the number of parameters needed to describe an articulated model, the num-
ber of particles of that is required to adequately approximate the underlying
probability distribution in the pose space might be huge. Recent work demon-
strates that particle swarm optimization (PSO) can produce similar or even
superior results over particle filtering due to capability exploration of the high
dimensional search space [3].

Markerless human motion capture has been studied since more than twenty
years and is still a very active research area in computer vision and recognition.
The advantage of markerless technique is that it eliminates the need for the
specialized equipment as well as time needed to attach the markers. Complete
survey of markerless human motion capture can be found in [4]. Despite huge
research efforts in this area, there have only been a few successful attempts
to simultaneously capture video and 3D motion data serving as ground truth
for markerless motion tracking [2].

In this paper we present motion tracing results, which were obtained by a
modified particle swarm optimization algorithm, together with analyses car-
ried out both through qualitative visual evaluations as well as quantitatively
by the use of the motion capture data as ground truth. The human body
motion is modeled by a kinematic chain describing the movement of the
torso/head, and both the arms as well as legs/feet. The tracking is done by
particle swarm optimization with an objective function, which is built not only
on cues like shape and edges but also on the segmented body parts. A global-
local particle swarm optimization algorithm permits improved exploration of
the search space and leads to better tracking, particularly regarding undesir-
able inconsistency in tracking legs and arms, resulting in swaps of such body
parts, for instance, matching the right leg of the model to the left person’s
leg.

2 The algorithm

2.1 Tracking framework

The articulated model of the human body is built on kinematic chain with
11 segments. Such a 3D model consists of cuboids that model the pelvis,
torso/head, upper and lower arm and legs. Its configuration is defined by
26 DOF and it is determined by position and orientation of the pelvis in the
global coordinate system and the relative angles between the connected limbs.
Each cuboid can be projected into 2D image plane via perspective projection.
In this way we attain the image of the 3D model in a given configuration,
which can then be matched to the person extracted through image analysis.
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2.2 Person segmentation

In most of the approaches to articulated object tracking, background sub-
traction algorithms are employed to extract a person undergoing tracking [5].
Additionally, image cues such as edges, ridges, color are often employed to
improve the extraction of the person [6]. In this work we additionally per-
form the segmentation of the person’s shape into individual body parts. In
our approach, the background subtraction algorithm [7] is used to extract the
person and to store it in a binary image. We model the skin color using 16 x 16
histogram in rg color space. The patches of skin color are determined through
histogram back-projection. The skin areas are then refined using the binary
image as mask. Given the height of the extracted person we perform a rough
segmentation of the legs and feet.

2.3 PSO-based motion tracking

Particle swarm optimization [8] is a global optimization, population-based
evolutionary algorithm for dealing with problems in which a best solution
can be represented as a point in n-dimensional space. The PSO is initialized
with a group of random particles (hypothetical solutions) and then it searches
hyperspace (i.e. R™) of a problem for optima. Particles move through the solu-
tion space, and undergo evaluation according to some fitness function. Much
of the success of PSO algorithms comes from the fact that individual par-
ticles have tendency to diverge from the best known position in any given
iteration, enabling them to ignore local optima while the swarm as a whole
gravitates towards the global extremum. If the optimization problem is dy-
namic, the aim is no more to seek the extrema, but to follow their progression
through the space as closely as possible. Since the object tracking process
is a dynamic optimization problem, the tracking can be achieved through
incorporating the temporal continuity information into the traditional PSO
algorithm. This means, that the tracking can be accomplished by a sequence
of static PSO-based optimizations to calculate the best object location, fol-
lowed by re-diversification of the particles to cover the possible object state in
the next time step. In the simplest case, the re-diversification of the particle
1 can be realized as follows:

2V — N(&-1, %) (1)

In the algorithm that we call global-local particle swarm optimization
(GLPSO), at the beginning of each frame the estimation of the whole body
pose takes place, see stage b) in Fig. 1. In the mentioned figure, the rectangular
blocks represent state vectors with distinguished state variables of torso/head,
arms, and legs/feet. To calculate such an estimate we initialize the particles
using the estimated state ;1 in time ¢ — 1, see stage a) in Fig. 1. In this
stage the half of the particles is perturbed according to (1). In the remaining
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part of the swarm, the state variables describing the location of the pelvis are
initialized using the linear motion, perturbed by normally distributed random
motion with zero mean, whereas the remaining state variables are initialized
using only normally distributed random motion with the mean equal to the
estimated state. Given the pose of the whole body, we construct state vectors
consisting of the estimated state variables for torso/head and arms and state
variables of the legs, which are constructed on the basis of the estimates of
the corresponding state variables in time ¢t — 1, see Fig. 1 and the arrow con-
necting the state variables in time ¢ — 1 and time ¢. At this stage the discussed
state variables are perturbed by normally distributed motion. Afterwards we
execute particle swarm optimization in order to calculate the refined legs es-
timate, see stage d) as well as the right image in Fig. 1. Such refined state
variables are then placed in the state vector, see stage e) in Fig. 1. The state
variables describing the hands are refined analogously.
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Fig. 1. Global-local particle swarm optimization for motion tracking (left), refine-
ment of the legs configuration (right)

The fitness function of the PSO is determined on the basis of the following
expression: f(z) = wy f1(x)+wa fo(x)+ws f3(x), where w; stands for weighting
coefficients that were determined experimentally. The function fi(z) reflects
the degree of overlap between the segmented body parts and the projected
segments of the model into 2D image. It is expressed as the sum of two com-
ponents. The first component is the overlap between the binary image with
distinguished body parts and the considered rasterized image of the model.
The second component is the overlap between the rasterized image and the
binary one. The larger the degree of overlap is, the larger is the fitness value.
The function fo(z) reflects the degree of overlap of the edges. The last term,
which reflects the overlap between arms and skin areas is not taken into ac-
count in the refinement of the pose of the legs.
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3 Experiments

The algorithm has been tested in a multi-camera system consisting of four
synchronized and calibrated cameras. The placement of the video cameras
in our laboratory can be seen in Fig. 2. The cameras acquire images of size
1920 x 1080 with rate 24 fps. Ground truth motion of the body is provided
by a commercial motion capture (MoCap) system from Vicon Nexus at rate
100 Hz. The system uses reflective markers and ten cameras to recover the
3D position of such markers. The synchronization between the MoCap and
multi-camera system is done through hardware from Vicon Giganet Lab.

The tracking performance of our motion tracking algorithm was evaluated
experimentally in a scenario with a walking person, see Fig. 2. Although we
focused on tracking of torso and legs, we also estimated the pose of both arms
as well as of the head. The body pose is described by position and orientation
of the pelvis in the global coordinate system as well as relative angles between
the connected limbs. Figure 2 depicts the projected model and overlaid on the
input images from four cameras. It is worth noting that the analysis of the
human way of walking (gait) can be employed in various applications ranging
from medical applications to surveillance. Gait analysis is currently an active
research topic.

Fig. 2. Human motion tracking. Frame #20 in view 1 and 2 (upper row), in view
3 and 4 (bottom row)

Figure 3 illustrates some tracking results, which were obtained in one of
the experiments. They were obtained using the global-local particle swarm
optimization. The tracking of the whole body was done using 300 particles.
In the pose refinement stage, the whole body is tracked using 200 particles,
whereas 2 x 50 particles were used for tracking the legs as well as the arms.
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The tracking was achieved using 20 iterations in each stage mentioned above.
The number of frames in the discussed sequence is equal to 180.

Fig. 3. Tracking results in a sequence 1. Frames #20, 40, 60, 80, 100, 120, 140 in
view 1 (1st row) and in view 4 (2nd row)

Figure 4 depicts some experimental results, which were achieved in another
test sequence. The results were obtained by global-local PSO algorithm using
the same number of the particles and iterations. The tracking was done on
150 images.

Fig. 4. Tracking results in a sequence 2. Frames #20, 40, 60, 80, 100, 120, 140 in
view 1 (1st row) and in view 4 (2nd row)

The average Euclidean distance d; for each marker i was calculated using
real world locations m; € R3. It was calculated on the basis of the following
expression:

- 1 Z
di = > lmal@e) — ma(zy)| (2)
=1

where m; (&) stands for marker’s position that was calculated using the es-
timated pose, m;(z) denotes the position, which has been determined using
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data from our motion capture system, whereas T stands for the number of
frames. In Tab. 1 are shown the average distance errors d for M = 39 markers.
For each marker i the standard deviation o; was calculated on the basis of
the following equation:

1 < -

7=\ 77 2 (Imi(e0) — mi(e)l - d;)” (3)
The standard deviation & shown in Tab. 1 is the average over all markers.
From the above set of markers, four markers were placed on the head, seven
markers on each arm, 6 on the legs, 5 on the torso and 4 markers were attached
to the pelvis. Given the estimated human pose and such a placement of the
markers on the human body, the corresponding positions of virtual markers
were calculated and then utilized in calculating the average Euclidean distance
given by (2). The errors that are shown in Tab. 1 were obtained using frame
sequences, which are depicted in Fig. 3 and Fig. 4. As we can observe, our
GLPSO algorithm outperforms significantly the tracker that is based on the
ordinary PSO.

Table 1. Average errors and standard deviations of the whole body tracking

Seq. 1 Seq. 2
#particles| #it. |error d [mm]|& [mm]|error d [mm]|F [mm]
100 10 79.41 50.19 82.25 53.48
200 10 78.97 50.20 77.97 48.82
PSO 300 10 74.54 46.24 77.84 50.31
100 20 78.46 50.10 80.33 47.99
200 20 72.32 44.28 77.29 49.17
300 20 70.28 41.69 73.86 45.58
100 10 71.19 33.88 73.88 35.58
200 10 67.17 27.83 66.36 25.58
GLPSO 300 10 64.14 25.74 64.52 23.86
100 20 68.03 28.31 67.01 27.72
200 20 66.45 28.35 64.02 23.19
300 20 62.46 23.77 62.59 22.45

For fairness, in all experiments we use the identical particle configurations.
For the global-local PSO the sum of particles responsible for tracking the
whole body, arms and legs corresponds to the number of the particles in the
PSO. For instance, the use of 300 particles in PSO is equivalent to the use of
200 particles for tracking the full body, 50 particles for tracking the arms and
50 particles for tracking both legs in GLPSO. The use of 200 particles in the
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PSO corresponds to the exploitation of 100, 50 and 50 particles, respectively,
whereas the use of 100 particles equals to utilization 60 particles for tracking
the global configuration of the body, along with 20 and 20 particles for tracking
hands and legs, respectively.

Table 2 shows the average errors and standard deviations of some markers,
which are located on lower body limbs, i.e. the right knee and the right tibia.
The discussed results were obtained on images from the sequence 1. As we can
see, the difference between errors obtained by GLPSO and PSO algorithms is
more significant in comparison to the results shown in Tab. 1. The difference
is larger because in experiments, whose results are illustrated in Tab. 1 we
considered several markers on torso as well as pelvis, which typically produce
small errors, see also Fig. 5, and in consequence contribute towards more
smoothed results.

Table 2. Average errors and standard deviations of lower body tracking

PSO GLPSO

#particles| #it. |error d [mm]|& [mm]|error d [mm]|& [mm]

. 100 20 68.08 59.88 50.13 33.18
right knee

300 20 63.01 56.87 44.84 27.17

. _ 100 20 95.57 84.72 70.40 44.12
right tibia

300 20 93.25 77.91 72.39 36.44

In Fig. 5 we can observe a plot of the distance error over time for some
body limbs. As we can observe, in some frames the PSO based algorithm
produces considerably larger errors. The algorithm based on global-local PSO
allows us to achieve superior results thanks to the decomposition of the search
space.

In the last few years, there have only been a few successful attempts to
simultaneously capture video and 3D motion data from the MoCap [2]. Hence,
there are only few papers, which show the motion tracking accuracy by both
qualitative visual analyses as well as quantitatively by the use of the mo-
tion capture data as ground truth. To our knowledge, the tracking accuracy
presented above is as good as the accuracy presented in [2] and in other state-
of-the-art systems. However, instead of the annealed particle filter we utilize
global-local particle swarm optimization. Moreover, our algorithm performs
the segmentation of the person’s shape into individual body parts. The global-
local particle swarm optimization algorithm allows better exploration of the
search space as well as allows us obtaining better tracking, particularly re-
garding undesirable swaps of legs and arms. The segmentation of the body
into individual body parts contributes towards improved tracking, mainly due
to better matching the individual parts of the model to corresponding body
parts, extracted on the image.
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Fig. 5. The errors [mm)] versus frame number

The complete human motion tracking system was written in C/C++. Cur-
rently, it requires an initial estimate of the body pose. The system operates
on color images with spatial resolution of 960 x 540 pixels. The entire tracking
process can be realized in approximately 1.1 sec. on a Intel Core i5 2.8 GHz
using Open Multi-Processing (OpenMP), see Tab. 3. The image processing
and analysis takes about 1 sec.

Table 3. Computation time on Intel Core i5 2.8 GHz

time [sec.]
#particles| #it. | 1 core 4 cores
100 10 1.9 1.1
200 10 3.6 2.3
300 10 5.7 3.1
100 20 3.6 2.1
200 20 7.0 4.5
300 20 11.0 6.0
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4 Conclusions

In this paper we presented an algorithm for tracking human pose using multi-
ple calibrated cameras. The tracing is achieved by particle swarm optimization
using both motion and shape cues. At the beginning the algorithm extracts
person’s silhouette and afterwards it segments the shape into individual body
parts. A particle swarm optimization employs an objective function built on
edges and such segmented body parts. We evaluated the algorithm through
both qualitative visual analyses and quantitatively by the use of the mo-
tion capture data as ground truth. Experimental results show that algorithm
achieves the tracking accuracy that is comparable to the accuracy produced
by other state-of-art methods.
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