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Abstract. We present a particle swarm optimization (PSO) based system for markerless full body
motion tracking. The fitness function is smoothed in an annealing scheme and then quantized. In this
manner we extract a pool of candidate best particles. The swarm of particles selects a global best
from such a pool of the particles to force the PSO jump out of stagnation. Experiments on 4-camera
datasets demonstrate accuracy of our method on image sequences with walking persons. The system was
evaluated using ground-truth data from marker-based motion capture system by Vicon. We compared
the joint motions and the distances between ankles, which were extracted by both systems. Thanks to
high precision of the markerless motion estimation the curves illustrating the distances between ankles

overlap considerably in almost all frames of the image sequences.
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1. Introduction

In 1995, Dyer et al. in Motion Capture White Paper that was released by SGI stated that
”motion capture is one of the hottest topics in computer graphics today”. According to
paper mentioned above [3], motion capture involves measuring an object’s position and
orientation in physical space, then recording that information in a computer-usable form.
Today there is a great interest in motion capture and the number of papers related to this
research area grows exponentially. In the last years many commercial motion capture
(also known as MoCap) systems [13][16] have been developed for gaming and animation
[19], rehabilitation and medical treatment [12][18], sport [17], and military applications.
There are several methods of motion capture, including optical, electromagnetic and
mechanical ones. Mechanical systems require performers to wear exoskeletons. Magnetic
systems detect the positions and orientation using a magnetic field and they are sensitive
to the presence of metallic objects in the environment. In optical MoCap systems either
passive reflective markers or active markers are attached to a performer, and a system
of fixed cameras records the position of these markers. In a passive system each camera
has a ring of LEDs around the lens that emit light towards the subject. The light
then bounces off the reflective markers. Afterwards, the information captured from the
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2 Markerless Articulated Human Body Tracking

reflective markers is triangulated.

There are intrinsic problems in using markers, mainly the inconvenience of attach-
ing them to the body, failures in tracking them, and the requirement for special lighting
conditions. In consequence, such a technology can only be used in highly controlled labo-
ratory conditions. During capturing of the motion the surface markers can move relative
to underlying bone, resulting in soft-tissue artifacts. Thus, many researchers believe
that the ultimate solution to human MoCap is markerless tracking [14]. The research in
markerless tracking is motivated mainly by unreliable anatomical landmark identifica-
tion and the usability of such a technology in controlled laboratory environments only.
Markerless systems utilize computer vision techniques to estimate motion parameters
directly from video footage without the use of special markers. These approaches are
less accurate than optical systems but they are more affordable and portable.

The experiments with moving light displays [1] demonstrated that people can rec-
ognize human activities on the basis of motion of a small set of points attached to the
human body. The experimental results stimulated discussion whether the recognition
takes place on the basis of 2D motion patterns, or rather it is achieved through 3D recon-
structions from the motion of patterns. In [5] the authors argue that in activity analysis,
motion cues are more important than spatio-temporal representations. In general, artic-
ulated models in action analysis make easier the occlusion handling. The model-based
approaches are view independent and less dependent on the training data.

Human gait is a very complex activity to analyze because it is a complex set of
coordinated sub-activities [15]. The lengths of limbs, body mass and muscularity, stride
length, and several other factors have influence on how a person walks. Walking is a
periodical activity and thus frequency analysis of spatio-temporal signals characterizing
the walking style can be a very attractive approach [11][24]. Current approaches to
determining the identity of individuals in image sequences by the way they walk can be
classified into two broad categories, namely appearance-based ones that deal directly with
image statistics and model-based ones that analyze the variation of the model parameters
that has been fitted in advance to the image data. The majority of the approaches
proposed for gait recognition are based on analyzing image sequences acquired by a
single camera. The major drawback of such approaches is that they are typically designed
only for a specific viewpoint, usually fronto-parallel. Furthermore, achieving resistance
against illumination variations and clothing changes is not straightforward. To cope
with difficulties mentioned above much effort was expanded to this end, for example
by using image-based reconstruction to achieve view-independent motion classification
[20]. However, the inability to take into account the self-intersection constraints as
well as to encode joint angle limits makes 2D models unsuitable for tracking of real
human movements. As it was previously mentioned, the methods that are based on
holistic space-time features or space-time shapes depend more on the training data in
comparison to the model-based approaches.
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For natural scenarios, a system that operates in unconstrained environment where,
maybe, there are varying illumination conditions, and where a subject moves freely is
needed. In real-world environments, 2D analysis based gait recognition can lead to
poor identification performance due to varying viewpoints, occlusion and appearance
variations, clothing and illumination changes, and in consequence it cannot provide
sufficiently accurate results. In conventional gait analysis, the trajectories of points on
the human body that correspond to anatomical landmarks are employed [8]. Urtasun
and Fua [10] proposed an approach that relies on matching 3D motion models to images,
and then tracking and restoring the motion parameters. The tests were performed on
datasets with four people, i.e. 2 men and 2 women walking at 9 different speeds ranging
from 3 to 7 km/h by increments of 0.5 km/h. A Vicon motion capture system was used to
build motion models. In [22] Sigal et al. demonstrated that on the basis of 3D articulated
pose estimates it is possible to infer subtle physical attributes of human, like gender and
weight, and even some aspects of mental state, e.g., happiness or sadness. In this context
it is worth noting that authors of the work mentioned above point that with 3D-model
based methods the inferring attributes of unfamiliar people does not presuppose that test
subjects exist in the training data. Moreover, by the use of 3D articulated tracking we
do not need view-based models. One of the benefits of model-based trackers is that they
permit a comprehensive exploration of the space of possible poses. In [21] a markerless
system for motion tracking in surveillance videos has been proposed. In this work it is
demonstrated that recovering of the human pose is possible at a distance even in case of
temporal occlusions, imperfect camera calibration and synchronization.

In this paper, video sequences captured by four synchronized cameras are used as
input. The motion of walking person is inferred with the help of a 3D human model.
The 3D human pose is reconstructed through matching the projection of the human
body with the image observations. The human silhouette is extracted via background
subtraction and then the edges are located within the extracted silhouette. The objec-
tive function takes into account the normalized distance between the model’s projected
edges and the closest edges in the image. Estimating poses from frame to frame is done
assuming temporal coherence over time and it is achieved through a global search around
the pose estimated in the previous frame. In the search for the best match we employ
particle swarm optimization [4]. We demonstrate that a modified particle swarm opti-
mization algorithm [23] allows us to obtain far better tracking accuracy in comparison to
ordinary particle swarm optimization as well as the particle filter [6][7]. The investigated
searching schemes were compared by analyses carried out both through qualitative vi-
sual evaluations as well as quantitatively using data captured by Vicon system as ground
truth. We demonstrate visually the velocities of the ankles that were determined by our
markerless system and marker-based system from Vicon. To show the potential of our
approach for gait analysis and recognition we show the plots with distances between
ankles for both motion capture systems.
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2. Searching Schemes for Human Motion Tracking

The Particle Swarm Optimization algorithm (PSO) is a population-based stochastic
search algorithm to the complex non-linear optimization problems. The PSO algorithm
was first introduced by Kennedy and Eberhart in 1995 [4] and its central idea was inspired
by imitating of the social behavior of animals such as bird flocking, fish schooling, etc. Its
searching power stems from the communication mechanisms among individuals to share
both individual and global knowledge when a population of birds or insects search food
or migrate in a searching space, although not all the individuals know where the best
position is. In particular, if any population member can find out a promising position
or a promising path, the rest of the swarm will follow such an individual quickly. More
specifically, PSO does not use the gradient of fitness function of the problem being
optimized, which means that PSO does not require the optimization function to be
differentiable as is required by classic optimization methods such as gradient descent.
PSO can therefore be utilized to solve optimization problems that are non-linear, multi-
modal, noisy, change over time and so on.

In the PSO algorithm each particle represents a potential solution to the optimization
problem. Much of the success of PSO algorithms comes from the fact that individual
particles have tendency to diverge from the best known position in any given iteration,
enabling them to ignore local optima, while the swarm as a whole gravitates towards
the global extremum. Starting with randomly initialized locations and moving in ran-
domly chosen directions, each particle flies through the multidimensional search space
with a certain velocity and remembers its best previous positions. Each swarm mem-
ber communicates good positions to each other as well as dynamically adjusts its own
position and velocity derived from the best positions of all particles. All particles are
subsequently scored by a fitness function f : R™ — R. In consequence, all particles tend
to fly towards better and better positions over the searching process until the swarm as
a whole does not converge to the position with the best fitness value.

Since the object tracking is a kind of dynamic optimization, the tracking can be
attained through incorporating the temporal continuity information into the ordinary
PSO. Consequently, the tracking can be obtained by a sequence of static PSO-based
optimizations, followed by re-diversification of the particles to cover the potential poses
that can arise in the next time step. The re-diversification of the particle i can be
achieved on the basis of normal distribution, which is concentrated around the state
estimate #; 1 in time ¢ — 1: @¢ « N(#;_1,%), where ¥ denotes the covariance matrix
of the Gaussian distribution, whose diagonal elements are proportional to the predicted
velocity vy = &4_1 — Ty_o.

The original PSO is not guaranteed to converge on a local extremum. Clerc and
Kennedy [9], in their study on stability and convergence of particle swarm optimization
have demonstrated that the utilization of a constriction factor may be necessary to ensure
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the convergence of the algorithm. Their work indicated that the inclusion of properly
defined constriction factor leads to better convergence. Moreover, such a coefficient can
prevent explosion and induce particles to converge on local optima. In the discussed
study, they introduced a constriction factor w and the following form of the formula
expressing the ¢-th particle’s velocity:

PRt — w[vivk + e (pt — xlk) + cara(g — :L‘”“)] (1)

where constants ¢; and ¢y are responsible for balancing the individual’s self-knowledge
and group’s social knowledge, respectively, 1 and 7o denote uniformly distributed ran-
dom numbers, ! stands for position of the i-th particle, p’ is the local best position of
particle, g is the global best position, whereas w is a function of ¢; and ¢y, which is given
by the following equation:

= 2)
w =
2—¢— /& — 49|

where k = 2, ¢ = ¢1+¢2, and ¢ > 4 to guarantee computational stability. As ¢ increases,
the constriction factor w decreases and diversification is reduced. Typically, ¢ is set to
4.1 (i.e. ¢1,c9 = 2.05) and the w is equal to 0.729.

Building on the successful applications of PSO with constriction factor we employ a
linearly decreasing constriction factor, instead of a constant one. In our approach the
value of w depends on annealing factor « in the following manner:

W = Wmin + (wma:c - wmzn)(ll - a) (3)

where wWmin = 0.52, Wnee = 1.32, « = 0.1 + KLH, k=0,1,..., K, and K is the number
of iterations. The values of wnin and wpe. were determined experimentally, whereas
the maximal velocity was limited to the dynamic range of the state variable in each
dimension.

The annealing factor « is also employed to smooth the objective function. The larger
the iteration number is, the smaller is the smoothing. In consequence, in the last iteration
the algorithm utilizes the non-smoothed function. The algorithm termed as annealed
PSO (APSO) [23] can be expressed as follows:

1. For each particle ¢

2. initialize v;”

3. 2}% ~ N(gi-1,%0)

4. pé = ‘T?O’ tZ = f(xi’o)

5. up=ff, Uy = (up)*

6.4* = argmin; 4}, g, =pl , w, = ul
7.For k=0,1,...,. K

8. update w, on the basis of (3)
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9. G = argmin; round(num_bins - %)
10. For each particle %

11.  Select a particle from {G U g;} and assign it to g

12. vé’kH = Wy [v;k + e (P — x;k) + cara(gl — :cik)]

13, 2p*t =gk ot
; i k41
4. fi=flz") }
15, if fi < u! then pi = 2™ i = fi @l = (ul)™

16. if fi < w; then g, = 2P*™, w, = fi

The smoothed objective functions are quantized, see 9th line in the pseudo-code.
Owing to this the similar function values are clustered into the same range of values.
In each iteration the algorithm determines the set G of the particles, which after the
quantization of the smoothed fitness function from the previous iteration, assumed the
smallest values (best fitness scores). For each particle i the algorithm selects the global
best particle gi from {G'Ug,}, where g; determines the current global best particle of the
swarm. By means of this operation the swarm selects the global best location from a pool
of candidate best locations to force the PSO jump out of stagnation. We found that this
operation contributes considerably toward better tracking, particularly in case of noisy
observations. It is worth noting that in the literature devoted to dynamic optimization
the problem of optimization of noisy objective functions is considered very rarely.

The fitness score for i-th camera’s view is calculated on the basis of following expres-
sion: fi(z) = 1—((fi(z))* - (fi(z))*2), where w denotes weighting coefficients that were
determined experimentally. The function fi(x) reflects the degree of overlap between
the extracted body and the projected 3D model into 2D image corresponding to camera
i. The function fi(z) reflects the edge distance-based fitness [23] in the image from the
camera i. The objective function for all cameras is determined according to the following
expression: f(z) =1 S0 fi(a).

3. Experiments

The markerless motion tracking algorithm was evaluated on three image sequences ac-
quired by four synchronized and calibrated cameras. Each pair of the cameras is ap-
proximately perpendicular to the other camera pair. The cameras acquire color images
of size 1920 x 1080 with 25 frames per second. The experiments were done on images
subsampled by factor of 2 both horizontally and vertically. Ground truth data were ob-
tained by a commercial motion capture system from Vicon Nexus. The system employs
reflective markers and sixteen cameras to recover the 3D location of such markers at rate
of 100 Hz. The motion capture system is capable of differentiating overlapping markers
from each camera’s view. The synchronization between the MoCap and multi-camera
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system was done using hardware from Vicon Giganet Lab. The location of the cameras
and our laboratory layout is depicted in Fig. 1.

Fig. 1. Layout of the laboratory for human motion tracking. The images illustrate the
initial model configuration, overlaid on the image in first frame and seen in view 1
and 2 (upper row), and in view 3 and 4 (bottom row).

The accuracy of our algorithm for human motion tracking was evaluated experimen-
tally in scenarios with a walking person. Although our focus was on tracking of torso
and legs, we also estimated the head’s pose as well as the pose of both arms. The hu-
man body model consists of eleven rigid body parts, including pelvis, upper torso, two
upper arms, two lower arms, two thighs, two lower legs and a head, each of which was
represented by a truncated cone. The body configuration is parameterized by position
and orientation of the pelvis in the global coordinate system as well as relative angles
between the connected limbs. Although the hands and feet appear in Fig. 1, we do not
consider them in the model parameterization. Figure 2 depicts some tracking results,
which were obtained in a sequence #1 with a person following a line joining two non-

Fig. 2. Articulated 3D human body tracking in four camera setup. Shown are results
in frames #0, 20, 40, 60, 80, 100, 120. The left sub-images are seen from view 1,
whereas the right ones are seen from view 2.

consecutive laboratory corners. The overlap of the projected 3D model on the subject
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undergoing tracking can be utilized to illustrate the tracking accuracy.

In Fig. 3 are shown some tracking results that were obtained in a sequence #2.
The results were obtained using frontal (back) and side views. As one can observe, the
projected model matches the person silhouette reasonably well.

Fig. 3. Articulated 3D human body tracking in four camera setup using frontal (back)
and side views. Shown are results in frames #20, 40, 60, 80, 100, 120, 140. The left
sub-images are seen from view 1, whereas the right ones are seen from view 2.

The plots shown in Fig. 4 illustrate the accuracy of motion estimation for some joints,
which were obtained by APSO algorithm. As we can observe the tracking error of both
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Fig. 4. Tracking errors [mm] versus frame number for APSO.

forearms is somewhat larger in comparison to the remaining limbs. The average error of
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both knees is about 50 mm, whereas the maximal errors do not exceed 80 mm for the
left knee and 70 mm for the right one. Gait is mainly a motion of lower limbs, although
motion of upper limbs can also be considered in gait analysis. Therefore, a bit larger
errors of both limbs do not have crucial influence on the performance of gait analysis.
The discussed results were obtained by APSO in 20 iterations and using 300 particles.

In order to compare our APSO-based motion tracker with trackers built on ordinary
PSO and particle filter (PF) we conducted experiments in sequences of images with a
walking actor. The experimental results depicted in Fig. 5 demonstrate that APSO al-
gorithm outperforms both PSO and PF in terms of tracking accuracy. The experimental
results with APSO and PSO were obtained in 20 iterations and using 300 particles,
whereas in experiments with PF we employed 6000 particles. As we can see, the track-
ing accuracy of PF-based algorithm is much worse in comparison to algorithms built on
particle swarm optimization.

350 100 100
—PF [—pso| —APSO

80- 80

60

error [mm]
error [mm]

40

50 100 200 5b 100 20O 50 160
frame number frame number frame number

Fig. 5. Tracking errors of PF, PSO and APSO (from left to right).

We evaluated the tracking accuracy of APSO, PSO and PF algorithms for motion
tracking on three image sequences with a walking person. Some images from sequence
#1 are depicted in Fig. 2, whereas some images from sequence #2 are shown in Fig. 3.
In Tab. 1 are depicted some quantitative results, which are averages over ten runs of the
motion tracker with unlike initializations. In the PF we employed the classical likelihood
function L(z|z) e—%ﬂ)i where z stands for the observation, x denotes state, and o
determines how fast the likelihood will decrease when the fitness function is large (bad
particles).

The discussed results for the full body tracking were obtained for M = 39 mark-
ers. From the above set of markers, 4 markers were placed on the head, 7 markers on
each arm, 12 on the legs, 5 on the torso and 4 markers were attached to the pelvis.
Given such a placement of the markers on the human body and the estimated human
pose, which has been calculated by our algorithm, the corresponding positions of virtual
markers were determined and then utilized in calculating the average Euclidean distance
between corresponding markers. The average Euclidean distance d; for each marker %
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Tab. 1. Average errors for M = 39 markers in three image sequences. The images from
Seq. 1 are shown on Fig. 2, whereas the images from Seq. 2 are depicted on Fig. 3.

Seq. 1 Seq. 2 Seq. 3
#particles it. error [mm] error [mm] | error [mm]
1000 230.2£121.9 | 241.74£135.5 | 158.84+96.7
PF 2000 190.4+£106.6 | 195.1£112.0 | 142.1£88.0
3000 187.6£110.5 | 173.2£100.9 | 137.8+86.8
6000 163.3+96.1 163.1+£99.4 | 121.6£76.8
15000 147.9484.4 | 143.6+89.8 | 112.94+71.3
100 10 59.54+28.9 60.14+27.1 69.4434.8
PSO 100 20 53.6+£23.3 57.0£26.2 61.1£30.1
300 10 52.4423.0 54.54+24.9 61.0£30.4
300 20 49.14+21.6 53.3£22.8 59.0+28.0
100 10 55.34+24.8 56.1+24.7 62.9£30.6
APSO 100 20 50.4£22.1 50.24+22.1 53.7£23.7
300 10 48.3£19.8 51.0£22.7 55.0+25.8
300 20 46.0£18.0 48.6£20.8 54.5+26.4

was calculated using real world locations m; € R? on the basis of the following equation:

&= 7 2 Imife) = miteo) @

where m; () stands for marker’s position that was calculated using the estimated pose,
m;(x) denotes the position, which has been determined using ground-truth information,
whereas T stands for the number of frames. The errors reported in columns 4-6 of Tab. 1
indicate the distance errors, which are averages for M = 39 markers. For each marker ¢
the standard deviation o; was calculated as follows:

%Z(Hmi(it)*mi(xt)||78i)2 )

t=1

g; =

The standard deviation & shown in Tab. 1 is the average over all markers. As we can

observe, the APSO algorithm outperforms both PSO and PF based motion trackers.
Figure 6 depicts the plots of the velocities of the ankles over time for both our

markerless motion capture system and Vicon MoCap system. The cone is calculated
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Fig. 6. Temporal velocities of the ankles in a single step estimated by APSO (left) and
Vicon MoCap (right) and the person’s poses, acquired by the camera C1 and C2 in
frames #52, 64, 72, 80 and 88. The bigger the height of the cone is, the larger is the
ankle velocity.

for every second frame. Below the plots, some corresponding images are shown. The
location of the cone reflects the location of the ankle on xy plane in particular frame,
see also frame numbers near the cones. The bigger the height of the cone is, the larger is
the ankle velocity. For the visualization purposes the sizes of the cones were downscaled
by factor 36. As one can observe, the average velocity of the performer is about 1 m/s,
whereas the maximal temporal velocity of the right ankle is in frames 68-70 and takes
the value about 3 m/s. For walking there exists a phase where both feet are in contact
with the ground. Such a phase can be detected easily from the depicted plots. Moreover,
as we can observe, the difference between the velocities estimated by our system and the
velocities obtained by marker-based system is not too large.

In Fig. 7 are shown plots illustrating the distance between the ankles of the walking
performer. The distances were estimated using data from our markerless algorithm and
marker-based system from Vicon. As one can observe, the curves that were determined
by two different motion capture systems considerably overlap in almost all frames of the
considered sequences. High overlap between both curves formulates a rationale for the
usage of the markerless motion tracking to achieve view-independent gait recognition.
Therefore, the distances between ankles together with the joint angles were employed
in experiments consisting in identification of the person on the basis of the well known
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Fig. 7. Distance between ankles for markerless APSO-based system and marker-based
system from Vicon. Sequences Seq. 1, Seq. 2 and Seq. 3 (from left to right).

Dynamic Time Warping (DTW). The DTW algorithm [2] calculates the distance between
each possible pair of points of two sequences (e.g. time series). It uses these distances to
calculate a cumulative distance matrix and finds the least expensive path through this
matrix. Such a path represents the best warp for which the feature distances between
their synchronized points are minimized. In consequence, similarities in motion patterns
are detected, even if in one video the individual is walking slowly and if in another one
he or she is walking more quickly, or even if accelerations and decelerations during the
walking take place. We used DTW to calculate the distance between a test sequence and
a reference sequences. The experiments were carried out on ten sequences with walking
performers. Overall, our initial results indicate that we could achieve a classification
accuracy of over 95%.

4. Conclusions

We have presented a vision system for markerless articulated human body tracking. The
tracking is done using a modified particle swarm optimization algorithm. The objective
function is smoothed in an annealing scheme and then quantized. This allows us to
extract a pool of candidate best particles. The algorithm selects a global best from
such a pool to force the PSO jump out of stagnation. Experiments on 4-camera datasets
demonstrate accuracy of our approach. The joint velocities and distances between ankles
were compared with the features extracted by marker-based commercial MoCap system
from Vicon.
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