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Abstract. We investigate swarm intelligence based searching schemes
for effective articulated human body tracking. The fitness function is
smoothed in an annealing scheme and then quantized. This allows us to
extract a pool of candidate best particles. The algorithm selects a global
best from such a pool. We propose a global-local annealed particle swarm
optimization to alleviate the inconsistencies between the observed human
pose and the estimated configuration of the 3D model. At the beginning
of each optimization cycle, estimation of the pose of the whole body takes
place and then the limb poses are refined locally using smaller number of
particles. The investigated searching schemes were compared by analyses
carried out both through qualitative visual evaluations as well as quan-
titatively through the use of the motion capture data as ground truth.
The experimental results show that our algorithm outperforms the other
swarm intelligence searching schemes. The images were captured using
multi-camera system consisting of calibrated and synchronized cameras.

1 Introduction

Vision-based tracking of human bodies is a significant problem due to various
potential applications like user friendly interfaces, virtual reality, surveillance,
clinical analysis and sport. The aim of articulated body tracking is to estimate
the joint angles of the human body at any time. It is one of the most challeng-
ing problems in computer vision due to body self-occlusions, high dimensional
and nonlinear state space and large variability in human appearance. To allevi-
ate some of the difficulties, much previous work has investigated the use of 3D
human body models of various complexity to recover the position, orientation
and joint angles from 2D image sequences [3][4][11][13][15]. An articulated hu-
man body can be considered as a kinematic chain consisting of at least eleven
parts, corresponding naturally to body parts. This means that around twenty
six parameters might be needed to describe the full body pose. The state vectors
describing the human pose are computed by fitting the articulated body model
to the observed person’s silhouette. Thus, the 3D model-based approaches rely
on seeking the pose space to find the geometrical configuration of 3D model that
matches best the current image observations [12]. In order to cope with practical
difficulties arising due to occlusions and depth ambiguities, multiple cameras and
simplified background are typically used by the research community [13][15].



2 Searching schemes for articulated human body tracking

In articulated 3D human body tracking the techniques based in particle filter-
ing are widely used. Particle filters [5] are recursive Bayesian filters that are
based on Monte Carlo simulations. They approximate a posterior distribution
for the configuration of a human body given a series of observations. The high
dimensionality of articulated body motion requires huge number of particles to
represent well the posterior probability of the states. In such spaces, sample
impoverishment may prevent particle filters from maintaining multimodal dis-
tribution for long periods of time. Therefore, many efforts have been spent in
developing methods for confining the search space to promising regions with true
body pose. Deutscher and Reid [3] proposed an annealed particle filter, which
adopts an annealing scheme with the stochastic sampling to concentrate the
particle spread near the global maximum. In the discussed approach the fitness
function is smoothed using annealing factors 0 = a3 < ag,...,< a, = 1, and
the particles migrate towards the global maximum without getting stuck in local
minima. Additionally, a crossover operation is utilized in order to maintain the
diversity of the particles.

The configuration space can also be constrained using a hierarchical search.
In such an approach, a part of the articulated model is localized independently in
advance, and then its location is used to constrain the search for the remaining
limbs. In [6], an approach called search space decomposition is proposed, where
on the basis of color cues the torso is localized first and then it is used to confine
the search for the limbs. However, in realistic scenarios, among others due to
occlusions, it is not easy to localize the torso and to extract reliably such a good
starting guess for the search.

Compared with the ordinary particle filter, the annealed particle filter greatly
improves the tracking performance. However, it still requires a considerable num-
ber of particles. Since the particles do not exchange information and do not com-
municate with each other, they have reduced capability of focusing the search
on some regions of interest in dependency on the previous visited values. In
contrast, the particle swarm optimization (PSO) [7], which is population-based
searching technique, has high search efficiency by combining local search (by
self experience) and global one (by neighboring experience). In particular, a few
simple rules result in high effectiveness of exploration of the search space.

The PSO is initialized with a group of random particles (hypothetical solu-
tions) and then it searches hyperspace (i.e. R™) of a problem for optima. Particles
move through the solution space, and undergo evaluation according to some fit-
ness function f(). Much of the success of PSO algorithms comes from the fact
that individual particles have tendency to diverge from the best known position
in any given iteration, enabling them to ignore local optima, while the swarm
as a whole gravitates towards the global extremum. If the optimization prob-
lem is dynamic, the aim is no more to seek the extrema, but to follow their
progression through the space as closely as possible. Since the object tracking
process is a dynamic optimization problem, the tracking can be achieved through
incorporating the temporal continuity information into the traditional PSO al-



gorithm. This means, that the tracking can be accomplished by a sequence of
static PSO-based optimizations to determine the best person’s pose, followed by
re-diversification of the particles to cover the possible states in the next time
step. In the simplest case, the re-diversification of the particle ¢ can be realized
as follows:

2 — N (31, %) (1)

where %;_1 is the estimate of the state in time ¢ — 1.

In order to improve the convergence speed, Clerc and Kennedy [2] proposed
to use the constriction factor w in the following form of the equation for the
calculation of the i-th particle’s velocity:

VPR = W[ubE 4oy (pF — 29F) + cara(g — )] (2)

where constants ¢; and ¢y are used to balance the influence of the individual’s
knowledge and that of the group, respectively, r; and ro are uniformly distributed
random numbers, z° is position of the i-th particle, p’ is the local best position
of particle, whereas g stands for the global best position.

In our approach the value of w depends on annealing factor « in the following
manner:

w=-08a+14 (3)

where a = 0.1 + KLH, k = 0,1,...,K, and K is the number of iterations.
The annealing factor is also used to smooth the objective function. The larger
the iteration number is, the smaller is the smoothing. In consequence, in the last
iteration the algorithm utilizes the non-smoothed function. The algorithm, which
we term as annealed particle swarm optimization (APSO) can be expressed in
the following pseudo-code:

1. For each particle ¢
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The smoothed objective functions undergo quantization, which constrains
the real numbers to relatively small discrete set of bin values (integers), see 9th
line in the pseudo-code. Thanks to such an operation the similar function values
are clustered into the same bins. In each iteration the algorithm determines
the set G of the particles, which after the quantization of the smoothed fitness
function from the previous iteration, assumed the smallest values (the best fitness
scores), see 9th line in the pseudo-code. For each particle ¢ the algorithm selects
the global best particle g¢ from {G U g}, where g; determines the current global
best particle of the swarm. That means that the whole swarm selects the global
best location from a set of candidate best locations. Figure 1 depicts the number
of particles in each bin, which has been determined in one of the experiments,
where 200 particles, 10 iterations and a quantization into 30 bins were employed
in estimating the human pose.

number of part.

Fig.1: Number of the particles in each bin in iterations 1,..,10.

In [15], an annealed PSO based particle filter has been proposed and evalu-
ated in tracking articulated 3D human body. Our approach is different from the
discussed algorithm, in particular, it relies on annealing scheme that is based
on the smoothing and the quantization of the fitness function. Additionally, the
constriction factor that controls the convergence rate depends on the annealing
factor.

In the global-local particle swarm optimization (GLPSO) algorithm [9], at
the beginning of each frame we estimate the pose of the whole body using PSO.
Given the pose of the whole body, we construct state vectors consisting of the
estimated state variables for pelvis and torso/head, the arms and the legs. At
this stage the state variables describing the pose of the legs are perturbed by nor-
mally distributed motion. Afterwards, we execute particle swarm optimization
in order to calculate the refined estimate of the legs pose. Such refined state vari-
ables are then placed in the state vector of the whole body. The state variables
describing the hands are refined analogously. Our global-local annealed particle
swarm optimization algorithm (GLAPSO) operates analogously, but instead of
the ordinary PSO algorithm we employ APSO optimizations.



3 Tracking framework

The skeleton of the human body is modeled as a kinematic tree. The articulated
3D model consists of eleven segments with limbs represented by the truncated
cones, which model the pelvis, torso/head, upper and lower arm and legs. The
configuration of the model is defined by 26 DOF. It is parameterized by the
position and the orientation of the pelvis in the global coordinate system and
the relative angles between the connected limbs. In order to obtain the 3D hu-
man pose each truncated cone is projected into 2D image plane via perspective
projection. In such a way we obtain an image with the rendered model in a given
configuration. Such image features are then matched to the person extracted by
image analysis.

In most of the approaches to articulated 3D human body tracking, the cam-
eras are static and background subtraction algorithms are utilized to extract the
object of interest [14]. In addition, image cues like edges, ridges, color are used
frequently to get better delineation of the person [11]. In [10], face detection,
head-shoulders contour matching and elliptical skin-blob detection techniques
were used in estimating the 3D human poses in static images. In our approach,
the background subtraction algorithm [1] is used to extract the binary image of
the person, see Fig. 2b). It is then used to calculate a silhouette-overlap term.

e)

Fig. 2: Person segmentation. Input image a), foreground b), gradient magnitude
¢), edge distance map d), skin color patches e), extracted body segments f).

Image edges complement silhouette features and contribute toward precise
aligning the body limbs. The most common type of edge detection process uses
a gradient operator. Gradient features share many properties with optical flow.
In particular, they do not depend on background subtraction. Gradient angle is
invariant to global changes of image intensities. In contrast to optical flow, gra-
dients features are discriminative for both moving and non-moving body parts.
In our approach, the gradient magnitude, see Fig. 2¢), is masked with the closed
image of the foreground and then used to generate the edge distance map, see
also Fig. 2d). It assigns each pixel a value that is the distance between that pixel
and the nearest nonzero edge pixel. In our implementation we employ chessboard
distance and limit the number of iterations on the chain propagation to three.
Additionally, in the GLPSO and GLAPSO algorithms we perform the segmen-
tation of the person’s shape into individual body parts. To accomplish this we
model the distribution of skin color using 16 x 16 histogram in rg color space.



The histogram back-projection is employed to identify the skin patches and to
extract the skin binary masks, see Fig. 2e. Such masks are then used to delineate
the skin segments in the person binary images. Taking into account the height
of the extracted person we perform rough segmentation of the legs and feet, see
Fig. 2f).

The fitness score is calculated on the basis of following expression: f(z) =
1= (fi(z)®r - fo(x)*2), where w denotes weighting coeflicients that were deter-
mined experimentally. The function fi(x) reflects the degree of overlap between
the segmented body parts and the projected model’s parts into 2D image. The
overlap degree is calculated through checking the overlap from the binary im-
age to the considered rasterized image of the model and vice versa. The larger
the degree of overlap is, the larger is the fitness value. In GLPSO and GLAPSO
algorithms the silhouette-overlap term is calculated with consideration of the dis-
tinguished body parts. The second function reflects the degree of overlap between
model edges and image edges. At this stage the above mentioned edge-proximity
term is utilized.

4 Experimental results

The algorithms were compared by analyses carried out both through qualitative
visual evaluations as well as quantitatively through the use of the motion capture
data as ground truth. The images were captured using multi-camera system
consisting of four calibrated and synchronized cameras. The system acquires
color images of size 1920 x 1080 with rate 24 fps. Each pair of the cameras
is approximately perpendicular to the other two. The placement of the video
cameras in our laboratory is shown in Fig. 3. A commercial motion capture

Fig. 3: Layout of the laboratory and camera setup. The images illustrate human
motion tracking in frame #20 seen in view 1 and 2 (upper row), and in view 3
and 4 (bottom row).



(MoCap) system from Vicon Nexus provides ground truth motion of the body
at rate of 100 Hz. It utilizes reflective markers and sixteen cameras to recover
the 3D location of such markers. The cameras are all digital and are capable to
differentiate overlapping markers from each camera’s view. The synchronization
between the MoCap and multi-camera system is done through hardware from
Vicon Giganet Lab.

Figure 4 demonstrates some tracking results that were obtained using particle
swarm optimization (PSO), see images in the first row, global-local PSO, see
images in the second row, annealed PSO, see images in the third row, and global-
local annealed PSO, see images in the last row. Each image consists of two sub-
images, where the left sub-image contains the model overlaid on the images from
the view 1, whereas the second one illustrates the model overlaid on the images
from the view 4. In the experiments presented below we focused on analyses of
motion of walking people with bared and freely swinging arms. The analysis of
the human way of walking, termed gait, can be utilized in several applications
ranging from medical applications to surveillance. This topic is now a very active
research area in the vision community.

Fig.4: Articulated 3D human body tracking. Shown are results in frames #20,
40, 60, 80, 100, 120, 140, obtained by PSO (1st row), GLPSO (2nd row), APSO
(3rd row), GLAPSO (4th row), respectively. The left sub-images are seen from
view 1, whereas the right ones are seen from view 4.

For fairness, in all experiments we use the identical particle configurations.
For the global-local PSO and global-local annealed PSO the sum of particles
responsible for tracking the whole body, arms and legs corresponds to the number



of the particles in the PSO and APSO. For instance, the use of 300 particles in
PSO or APSO is equivalent to the use of 200 particles for tracking the full
body, 50 particles for tracking the arms and 50 particles for tracking both legs
in GLPSO or GLAPSO. The use of 200 in PSO and APSO corresponds to
the exploitation of 150, 25 and 25 particles, respectively, whereas the use of 100
particles equals to utilization 80 particles for tracking the global configuration of
the body, along with 10 and 10 particles for tracking hands and legs, respectively.
In Tab. 1 we can see some quantitative results that were obtained using two
image sequences. For each sequence the results were averaged over ten runs with
unlike initializations. They were achieved using image sequences consisting of 150
and 180 frames. In the quantization the number of bins was set to 30. Figure 4
demonstrates the images from the sequence two.

Table 1: Average errors for M = 39 markers in two image sequences.

Seq. 1 Seq. 2
#particles| it. |error [mm]|std. dev. [mm]|error [mm]|std. dev. [mm]

100 10 86.17 50.58 73.89 35.98

PSO 100 20 77.71 39.36 67.58 32.15
300 10 75.31 41.50 65.56 30.26

300 20 75.11 38.42 63.43 28.63

100 10 80.95 42.69 68.50 32.00

GLPSO 100 20 67.66 27.15 67.17 30.08
300 10 68.58 30.98 64.40 28.01

300 20 67.96 30.03 62.87 26.00

100 10 71.56 36.26 65.04 29.74

APSO 100 20 68.81 31.87 61.29 26.86
300 10 66.51 29.63 61.78 26.69

300 20 64.63 28.91 59.70 24.98

100 10 69.44 31.21 63.37 30.74

GLAPSO 100 20 63.71 28.79 60.42 26.72
300 10 60.07 21.07 60.71 24.41

300 20 58.96 19.43 57.62 22.49

The pose error in each frame was calculated using M = 39 markers m;(x),
i=1,...,M, where m; € R® represents the location of the 4-th marker in the
world coordinates. It was expressed as the average Euclidean distance:

B(@,3) = 17 llmi(e) — mi(@)] (@

where m;(z) stands for marker’s position that was calculated using the estimated
pose, whereas m;(Z) denotes the position, which has been determined using data



from our motion capture system. From the above set of markers, four markers
were placed on the head, seven markers on each arm, 6 on the legs, 5 on the
torso and 4 markers were attached to the pelvis. For the discussed placement of
the markers on the human body the corresponding marker’s assignment on the
3D model was established. Given the estimated human pose the corresponding
3D positions of virtual markers were determined. On the basis of data stored
in ¢3d files the ground truth was extracted and then utilized in calculating the
average Euclidean distance given by (4).

The errors that are shown in Tab. 1 were calculated on the basis of the
following equation:

L M

1 N
7 20D llma(w) — mia)| 5)

k=11i=1

Err(z,z) =

where L denotes the number of frames in the utilized test sequences. As Tab. 1
shows, the particle swarm optimization algorithm allows us to obtain quite good
results. The GLPSO outperforms the PSO algorithm. However, such consider-
ably better results can only be obtained if skin and legs segmentation is used in
GLPSO. Due to global-local searching strategy the GLPSO algorithm is superior
in utilizing the information about the location of the hands and the legs. The
APSO algorithm tracks better in comparison to GLPSO and PSO. Moreover,
it requires no segmentation of skin patches or body parts. The GLAPSO takes
advantages of both algorithms and achieves the best results.

The plots shown in Fig. 5 illustrate the pose error versus frame number that
was obtained by each algorithm. We can see that the PSO-based algorithm is able
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Fig. 5: Pose error [mm] versus frame number.



to provide estimates with errors that are sporadically larger than 100 mm. The
average error of the GLAPSO is far below 60 mm. In the GLPSO algorithm, at
the beginning of each PSO cycle, the estimation of the pose of the whole body
takes place and then the poses of the limbs are refined locally using smaller
number of particles. In the algorithms based on the annealing the particles are
beforehand weighted by smoothed versions of the weighting function, where the
influence of the local minima is weakened first but increases gradually. This leads
to consistent tracking of the 3D articulated body motion. In consequence, the
errors in our algorithm, which takes the advantages the two different strategies
for exploration of the search space are far smaller. The discussed algorithm
is capable of achieving better results because of its ability to thinking globally
and acting locally. As a result, the GLAPSO algorithm outperforms GLPSO and
APSO algorithms both in terms of the tracking accuracy as well as consistency in
tracking of the human motion. In particular, the standard deviation is far smaller
in comparison to the standard deviation of the other investigated algorithms.

Figure 6 presents the pose estimation errors for particular body parts. The
results were obtained in 20 iterations using the GLAPSO algorithm with 200
particles for the whole body tracking and 2 x 50 particles for tracking the arms
and legs. As we can observe, our algorithm can track body limbs with lower
errors and it is robust to ambiguous configurations such as self occlusion. In
more detail, from the discussed plot, we can see that for all body parts except
the left forearm the maximal error does not exceed 100 mm.
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Fig. 6: Tracking errors [mm] versus frame number.



The complete human motion capture system was written in C/C++. The
system runs on Windows and Linux in both 32 bit and 64 bit modes. It operates
on color images with spatial resolution of 960 x 540. The entire tracking process
takes approximately 2.1 sec. per frame on Intel Core i5 2.8 GHz using a config-
uration with 100 particles 10 iterations. If Open Multi-Processing (OpenMP) is
employed the tracking is completed in 1.12 sec. The image processing and anal-
ysis takes about 0.45 sec. One of the future research directions of the presented
approach is to explore the CUDA/GPU in order to speed-up the computations

[8]-

5 Conclusions

We have presented a vision system that effectively utilizes swarm intelligence
searching schemes to achieve better articulated 3D human body tracking. By
combining two searching strategies, namely, annealed and global-local, the pro-
posed method can tackle the inconsistency between the observed body pose and
the estimated model configurations. Due to better capability of exploring the
search space, the combination of above-mentioned searching strategies leads to
superior tracking the articulated 3D human motion. Our global-local annealed
(GLAPSO) algorithm is able to track the articulated 3D human motion reliably
in multi-camera image sequences. In particular, the resulting algorithm is robust
to ambiguous body configurations such as self occlusion. Moreover, it performs
satisfactory even when small number of particles is employed, say 100 particles
and 10 iterations. The fitness function is smoothed in an annealing scheme and
then quantized. This allows us to maintain a pool of candidate best particles.
Furthermore, the constriction factor that controls the convergence rate depends
on the annealing factor. To show the advantages of our algorithm, we have con-
ducted several experiments on walking sequences and investigated global-local
and annealed searching strategies. The algorithms were compared by analyses
carried out both through qualitative visual evaluations as well as quantitatively
through the use of the motion capture data as ground truth.
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