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Abstract. This paper demonstrates how latency tolerant parallel parti-
cle swarm optimization can be used to achieve real-time full-body motion
tracking. The tracking is realized using multi-view images and articulated
3D model with a truncated cones-based representation of the body. Each
CPU core computes fitness score for a single camera. On each node the
algorithm uses the current temporary best fitness value without waiting
for the global best one from cooperating sub-swarms. The algorithm runs
at 10 Hz on eight PC nodes connected by 1 GigE.

1 Introduction

Markerless 3D human motion tracking is an important problem in computer
vision due to many potential applications, including, but not limited to, visual
surveillance, recognizing human activities, clinical analysis and sport (biome-
chanics) [10]. Commercial systems for human motion capture are typically based
on optical or magnetic markers and usually require laboratory environment and
the attachment of markers on the body segment being analyzed. Thus, a tech-
nique for articulated human motion tracking that does not need markers at-
tached to body would greatly extend the applicability of the motion capture.
Tracking articulated motion is difficult task because of generally unpre-
dictable nature of human movements, high variability of human appearance,
self-occlusions and depth ambiguities. The high-dimensional non-linear search
space and the exponentially increasing computational overload are the main
challenges in full articulated body tracking on the basis of markerless tech-
niques. Three dimensional model based methods are generally more accurate
in comparison to methods relying on learned mapping between pose exemplars
and a set of image features. An articulated human body can be perceived as a
kinematic chain consisting of at least eleven parts corresponding to body parts.
Typically such a 3D human model consists of very simple geometric primitives
like cylinders or truncated cones. On the basis of such geometrical primitives a
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lot of hypothetical body poses are generated and after projecting to the image
space are compared with real images through a likelihood function.

Particle filtering is one of the most important and common tracking algo-
rithms in non-intrusive human motion capture. In a particle filter each sample
represents some hypothesized body pose. For a 3D model consisting of eleven
geometric primitives we need around 26 parameters to describe the full body
articulation. That means that tracking full articulated body is very computa-
tionally demanding task. For instance, in [2] processing for 5 seconds long video
took about one hour using a particle filter with 200 samples and 10 annealing
layers. In more recent work [6], the processing time of Lee walk sequence from
Brown University is larger than one hour. Several attempts were proposed to
mitigate the inherent limitations of particle filtering such as degeneracy, loss of
diversity and course of dimensionality. Recently, Particle Swarm Optimization
(PSO) was proposed as an alternative of particle filtering for full-body articu-
lated motion tracking [5][8][13]. Some work has also been done in order to achieve
real-time articulated body tracking [12][8].

In this work we propose a communication latency tolerant parallel algorithm
for PSO based articulated motion tracking. The algorithm consists of multiple
swarms that are executed in parallel on multiple computers connected via a
peer-to-peer network. The computers exchange information about the location
of the best particle and its corresponding fitness function of a sub-swarm. Next
to each optimization iteration, information about the global particle location
and the corresponding fitness score is sent asynchronously without blocking the
sending thread. The message contains also data about the frame number and the
iteration number. The computers receive the data in a separate thread. On the
basis of arriving data the receiving threads are responsible for determining the
best particles for each frame and each iteration. The best values are stored in a
mutually exclusive memory. After each iteration, the processing thread checks if
its global particle is better than the particle sent via other computers. If yes, it
updates its own best particle and continues the optimization.

The contribution of our work is a parallel particle swarm optimization algo-
rithm for real-time object tracking. The novelty of our work lies in the asyn-
chronous exchange mechanism for the best particle location and its fitness score
during the multiple calls of particle swarm optimization, which take place during
object tracking. This results in a communication latency tolerant parallel algo-
rithm for object tracking. The algorithm is fast and affective because it strongly
relies on the stochastic nature of Particle Swarm Optimization algorithm. In
particular, a sub-swarm, which as a first one finished tracking of the object in
a given frame, it carries out the rediversification of the particles using its cur-
rent global best particle, without waiting for the best locations of the remaining
sub-swarms. In such circumstances the algorithm takes the best locations of the
cooperating sub-swarms from the previous iterations, which were determined
for the considered frame. The algorithm has been evaluated in multi-view based
markerless full-body tracking. The tracking can be done at real-time frame rates
using ordinary network of peers consisting of multi-core PCs.
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2 Relevant Work

PSO was applied in a number of areas as a technique to solve large, non-linear
optimization problems [11]. The applications of PSO in computer vision and
graphics are still rather limited. The main applications of PSO in computer vision
are connected with non-articulated object tracking. For example, [14] shows that
in tasks consisting in tracking human face a variant of PSO, called sequential
PSO behaves better than a particle filter in terms of tracking accuracy.

Existing algorithms for articulated motion tracking can be roughly divided
into two categories, namely, discriminative and generative [9]. Discriminative
approaches attempt to learn a direct mapping between image descriptors, such
as edges or shapes to the 2D human pose. A major limitation is that their per-
formance is considerably lower in circumstances in which is difficult to obtain
reliable features, for instance in the cluttered scenes. Generative approaches gen-
erate a number of plausible pose hypotheses, which are then evaluated against
the current image for evidence. The pose hypotheses are generated on the basis
of a 3D model of the human body. Such a model is projected onto an image
plane and an error function is calculated to indicate the quality of the match.
The mentioned approaches are based on a rather coarse 3D models of the human
body. In methods introduced in [3][4], realistic human body models were devel-
oped to accomplish tracking through analysis-by-synthesis. In such an approach
the texture mapping is used to obtain a precise textured model of the person.

Very recently, PSO has been successfully applied to full-body articulated
motion tracking [5][8][13]. In [5], the articulated pose is estimated through a
hierarchical search. The articulated human body model is represented as a 3-D
kinematic tree consisting of 13 nodes. The experiments were performed on Lee
walk sequence, which was downsampled at frame rate of 30 Hz. On images of size
640 x 480 the average error distance between estimated pose and ground-truth
pose is larger than 50 mm, whereas the processing time of the sequence with
75 images is larger than one hour. The above mentioned sequence has also been
used in [13]. The average error on 15 virtual markers is about 40 mm. Our work
differs from theirs in a number of ways, of which the most crucial is the focus
on full body motion tracking in real-time. To the best of our knowledge, ours is
the first near real-time system that is able to accomplish full-body articulated
motion tracking. The quality of tracking on various number of computers was
compared by analyses carried out both through qualitative visual evaluations
as well as quantitatively through the use of the motion capture data as ground
truth. The preliminary results demonstrate that the tracking accuracy is in the
same range as the accuracy in work mentioned above.

Some parallel PSO algorithms were proposed to speed-up the optimization of
complex engineering optimization problems but, to the best of our belief, so far,
no parallel PSO algorithm for object tracking has been proposed. In particular,
our algorithm executes not only the PSO iterations in parallel in a given frame,
but being latency tolerant and asynchronous it starts processing the next frame
without waiting for all best locations of the cooperating sub-swarms.
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3 3D Body Model and Cost Function

The skeleton of the human body is modeled as a kinematic tree. The articulated
3D model consists of eleven segments with the limbs represented by truncated
cones, which model the pelvis, torso/head, upper and lower arm and legs. The
configuration of the model is defined by 26 DOF. It is parameterized by position
and orientation of the pelvis in the global coordinate system and the relative
angles between the connected limbs. In order to obtain the 3D human pose each
truncated cone is projected into 2D image plane via perspective projection. In
such a way we obtain an image with the rendered model in a given configuration.
Such image features are then matched to the person extracted by image analysis.

The fitness function consists of two components: f(z) = w; f1(x) + wa fo(z),
where w; stands for weighting coefficients that were determined experimentally.
The function f;(z) reflects the degree of overlap between the body parts and the
projected segments of the model into 2D image. It is expressed as the sum of
two components. The first component is the overlap between the binary image
and the considered rasterized image of the model. The second component is the
overlap between the rasterized image and the binary one. The larger the degree
of overlap is, the larger is the fitness value. The function fo(z) is calculated on
the basis of distance transform based Chamfer matching.

4 Latency Tolerant Parallel PSO for Object Tracking

Particle swarm optimization is a population based optimization technique, which
is stochastic in nature and makes use of the memory of each particles as well as
the knowledge gained by the swarm as a whole. In the ordinary PSO algorithm
the update of particle velocity and position is given by the following equations:
v](.z) — wv;l) + clrgf; (' — gcé-l)) + czréf} (Pg.j — x;z)) (1)

ac;l) — xy) + vj@ (2)

where w is the positive inertia weight, v;i)
Y; and rélz are uniquely generated random numbers with the uniform
distribution in the interval [0.0, 1.0], ¢1, c2 are positive constants, p( is the best

position found so far by particle ¢, py denotes a best position, which can be:

is the velocity of particle 7 in dimen-

sion j, r

e a global best that is immediately updated when a new best position is found
by any particle in the swarm

e neighborhood best where only a specific number of particles is affected if a
new best position is found by any particle in the sub-population

A topology with the global best converges faster as all the particles are attracted
simultaneously to the best part of the search space. Neighborhood best allows
parallel exploration of the search space by multi-swarm. Such configuration de-
creases the susceptibility of falling into local minima, however, it typically slows
down the convergence speed.
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The equation (1) has three main components. The first component, referred
to as inertia, models the particle’s tendency to continue the moving in the same
direction. Thus, it controls the exploration of the search space. The second com-
ponent, called cognitive, attracts towards the best position p{*) previously found
by the particle. The last component is referred to as social and attracts towards
the best position py. The fitness value that corresponds to p@ is called local
best p}(fgst, whereas the fitness value corresponding to pg is referred to as gpest-

The PSO is initialized with a group of random particles (hypothetical solu-
tions) and then it searches hyperspace (i.e. R™) of a problem for optima. Particles
move through the solution space, and undergo evaluation according to some fit-
ness function f. Much of the success of PSO algorithms comes from the fact that
individual particles have tendency to diverge from the best known position in
any given iteration, enabling them to ignore local optima, while the swarm as
a whole gravitates towards the global extremum. If the optimization problem is
dynamic, the aim is no more to seek the extrema, but to follow their progression
through the space as closely as possible. Since the object tracking process is a
dynamic optimization problem, the tracking can be achieved through incorpo-
rating the temporal continuity information into the traditional PSO algorithm.
This means, that the tracking can be accomplished by a sequence of static PSO
optimizations to determine the best person’s pose, which are followed by re-
diversification of the particles to cover the possible state in the next time step.
In the simplest case, the re-diversification of the particle ¢ can be done as follows:

2\ — N(#_1, ) (3)

where Z;_1 is the state estimate in time ¢ — 1. In the global best configuration the
estimate T4 is equal to py determined in the last iteration. In the configuration
with neighborhood best it is selected as the best position of any sub-swarm.

PSO is parallel in nature. To shorten the optimization time several studies on
parallelizing the algorithm were done so far. In general, two parallelization strate-
gies are considered, namely synchronous and asynchronous. In the synchronous
algorithm at the end of each iteration all nodes communicate with each other to
determine the global best fitness. In asynchronous parallelization the particles
use the current temporary best fitness without waiting for the global best one.
However, up to now all of the published literature reported parallel PSO algo-
rithms for static optimization, where the particles are evaluated and evolved in
parallel in several iterations until the global extremum is found out.

The latency tolerant parallel PSO uses asynchronous exchange mechanism
for the best particle location and its fitness score during the multiple calls of
particle swarm optimization, which take place during object tracking. In par-
ticular, subsequent to each iteration no barrier synchronization is executed as
the algorithm strongly relies on the stochastic nature of PSO. Particularly, if
a sub-swarm, which as a first one finished object tracking in a given frame,
it carries out the rediversification of the particles using its current global best
particle, without waiting for the global best optimum determined by the par-
ticipating sub-swarms. It is worth mentioning that in such circumstances the
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estimate of the object state is determined using the global best locations of co-
operating sub-swarms, which were available during determining in each iteration
the global best location of the considered population. After each optimization
iteration, information about the global particle location and the corresponding
fitness score is sent asynchronously without blocking the sending thread. The
frame number and the iteration number are included in the message for a con-
trol mechanism aiming at processing the same frame by all computers without
large inter-frame delays. The threads receive the data in a separate thread. On
the basis of arriving data the receiving threads are responsible for determining
the best particles for each frame and iteration. The best values are stored in a
mutually exclusive memory. After each iteration, the processing thread checks if
its global particle is better than the particle sent via other computers. If yes, it
updates its own best particle and continues the optimization.

5 Experimental Results

The algorithm was tested in two multi-camera systems consisting of synchro-
nized and calibrated cameras. The first system consists of two calibrated and
synchronized cameras. It acquires images of size 640 x 480 at frame rate of 15
Hz. Figure 1 depicts sample images that were acquired by the cameras. At the
figure we can also see the projected and overlaid model on both input images.

Fig. 1. Human motion tracking using two cameras. The images illustrate the initial
model configuration overlaid on the image in first frame.

In the second system the images were captured by four calibrated and syn-
chronized cameras acquiring images of size 1920 x 1080 with rate 24 fps. Each
pair of the cameras is approximately perpendicular to the other two, see the
placement of video cameras in Fig. 2. A commercial motion capture (moCap)
system from Vicon Nexus provides ground truth motion of the body at rate
of 100 Hz. The system uses reflective markers and sixteen cameras to recover
the 3D position of such markers. The synchronization between the moCap and
multi-camera system is based on hardware from Vicon Giganet Lab. The digi-
tal cameras are capable to differentiate overlapping markers from each camera’s
view.

The precision of human motion tracking was evaluated experimentally in sce-
narios with a walking person. The analysis of gait is currently an active research
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Fig. 2. Layout of the laboratory with four cameras. The images illustrate the initial
model configuration, overlaid on the image in first frame and seen in view 1 and 2
(upper row), and in view 3 and 4 (bottom row).

area due to various applications in medicine, surveillance, etc. Although we fo-
cused on tracking of torso and legs, we also estimated the pose of both arms
as well as of the head. The body pose is described by position and orientation
of the pelvis in the global coordinate system as well as relative angles between
the connected limbs. The results obtained on various number of computers were
compared by analyses carried out both through qualitative visual evaluations as
well as quantitatively by the use of the motion capture data as ground truth.

Figure 3 shows results obtained in the two camera system. The left images in
each image pair depict the projected and overlaid model on the image from the
first camera, whereas the right images are from the second one. The initialization
of the system was done manually through fitting the 3D model onto the images,
see Fig. 1. The tracking was done using 300 particles and 10 iterations.

Fig. 3. Articulated 3D human body tracking in two camera setup. Shown are results
in frames #10, 20, 30, 40, 50, 60, 70. The left sub-images are seen from view 1, whereas
the right ones are seen from view 2.

Figure 4 demonstrates some results that were obtained in the four camera
system. The quality of tracking is illustrated using images from first and second
camera. The initialization of the tracking was done manually. Optionally, the
tracking can be initialized on the basis of data from the moCap system. The same
number of particles and iterations was utilized as in the previous experiment. In
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all experiments on image sequences from the four camera system we used images
of size 480 x 270.

Fig. 4. Articulated 3D human body tracking in four camera setup. Shown are results
in frames #20, 40, 60, 80, 100, 120, 140. The left sub-images are seen from view 1,
whereas the right ones are seen from view 2.

Figure 5 depicts the errors that were obtained during motion tracking using
one and two desktop computers. The experiments were done on image sequences
from the four camera system. The errors of tracking the head, torso and knee
were calculated using moCap data as ground truth. In optimizations we used
300 particles and 10 iterations. In the configuration consisting of two computers
the optimizations were achieved using 150 particles on each computer. As we
can observe in the plots shown at Fig. 5, the difference between error estimates
obtained by the ordinary algorithm and the parallel algorithm running on two
computers is not significant.

Head error vs frame number Torso error vs frame number
300 300
1xPC 1xPC
2xPC 2xPC
T 200 E 200
3 3
5 5
@ 100 & 100 :
0 0
0 50 100 150 0 50 100 150
frame number frame number
Left knee error vs frame number Right knee error vs frame number
300 300
1xPC 1xPC
2xPC 2xPC
T 200 T 200
£ £
g g
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0 0
0 50 100 150 0 50 100 150
frame number frame number

Fig. 5. Tracking errors [mm] versus frame number at 1 and 2 PCs.
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In Fig. 6 are shown the error estimates that were obtained on single and eight
computers. In a PC cluster with 8 nodes the optimizations were performed using
38 particles on each computer. As we can observe, the average error is far below
90 mm. It is worth noting here that something better results can be obtained
using our GLPSO (Global-Local PSO) algorithm [7].

Head error vs frame number Torso error vs frame number
300 300
1xPC 1xPC
8xPC 8xPC
T 200 E 200
E £
8 8
G 100 H“M, H 1 amowvllwmw
0 0
0 50 100 150 0 50 100 150
frame number frame number
Left knee error vs frame number Right knee error vs frame number
300 300
1xPC 1xPC
8x PC 8xPC
E 200 E 200
E =
5 5
- /WM/W%W%W - M/«/“WM
0 0
0 50 100 150 0 50 100 150
frame number frame number

Fig. 6. Tracking errors [mm)] versus frame number at 1 and 8 PCs.

The experiments were conducted on desktop PCs with 4 GB RAM, Intel
Core i5, 2.8 GHz. All measurements were conducted on a cluster that was com-
posed of identical machines connected with a TCP/IP 1 GigE (Gigabit Ethernet)
local area network. The parallelization of the code was done using OpenMP di-
rectives. The parallel computations were realized on multi-core (4-core) CPUs.

Currently, OpenMP is widely utilized standard for parallelizing programs in
a shared memory environment [1]. It consists of a set of directives (pragmas) and
library routines that can be inserted into Fortran or C/C++ codes to enable use
of more than one thread. OpenMP provides a fork-and-join execution model in
which a program begins execution as a thread. The thread executes sequentially
until a parallelization directive for a structured block of code is found. If this
takes place, such a thread creates a set of threads and becomes the master thread
of the new group of threads. Each thread executes the same code redundantly
until the end of the parallel section and the threads communicate by sharing
variables. The exit point of a structured block is an implicit synchronization
point for the master thread and the threads created for the block. After the
synchronization the master thread continues with the computation and the other
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threads end. In our system each CPU core is responsible for calculation of the
fitness function for single camera.

Table 1 shows computation times and speeds-up that were obtained on our
PC cluster. The depicted times are needed to extract single model configuration
using images from four camera views. In the experiments we focused on efficiency
of parallel particle swarm optimization algorithm and therefore the computation
times do not comprise the image processing. The image processing was done in
advance and all images needed to compute the fitness score were stored on local
hard drives. It is worth mentioning that time needed for image processing is
about 20% of the total processing time. Moreover, the code of image processing
can be easily parallelized. Currently, the communication between the PC nodes
is realized using popular QT library. As we can see, the speed-up of our latency
tolerant parallel PSO is considerable. Using a cluster consisting of 8 PCs and
PSO with 300 particles and 10 iterations the human motion tracking can be
done at about 10 fps. The tracking time of blocking version of the parallel PSO
is considerably larger in comparison to our latency tolerant algorithm. When
images from two camera system are used, we can perform full-body motion
tracking together with image preprocessing in real-time with 10 fps.

Table 1. Tracking time [ms] for single human pose (computed on the basis of images
from 4 camera views) and speed-up.

Latency tolerant Blocking
#PCs| #particles |time [ms]|speed-up|time [ms]|speed-up

1 300 635.7 - 635.7 -

2 2 x 150 339.6 1.87 370.4 1.72
3 3 x 100 227.1 2.80 257.5 2.47
4 4 %75 173.7 3.66 202.2 3.14
6 6 x 50 123.7 5.14 146.5 4.34
8 8 x 38 96.9 6.56 110.8 5.74

In Tab. 2 are depicted the average errors that were obtained during a com-
putations on different numbers of computers. The pose error in each frame was
determined on the basis of M = 39 markers m;(z) € R®, i =1,...,M ex-
pressing locations in the world coordinates. The pose error was expressed as the
average Fuclidean distance:

1 M
B(x,&) = 17 > |Imi(z) — mi(&)]| (4)
i=1

where m;(z) denotes for marker’s position that was calculated using the esti-
mated pose, whereas m;(Z) stands for the position that was determined using
data from our motion capture system. From the above set of markers, four mark-
ers were placed on the head, seven markers on each arm, 6 on the legs, 5 on the
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torso and 4 markers were attached to the pelvis. Given the discussed placement
of the markers on the human body the corresponding virtual marker’s were as-
signed on the 3D model. The position of such virtual markers was determined
for each estimate of the human pose and then employed in calculating the av-
erage Euclidean distance expressed by (4). The ground truth was extracted on
the basis of data stored in c3d files. Finally, the average errors shown in Tab. 2
were calculated on the basis of the following equation:

L M

Err(e,2) = 7023 - lmi(a) - mi(@)] o)

k=11i=1

where L denotes the number of frames in the utilized test sequences. The dis-
cussed results were obtained on L = 180 images, see also Fig. 4, and averaged
over 5 runs of the algorithm. As we can observe, for a configuration with multiple
nodes the average error is smaller than the error obtained on a single node. This
means that multiple swarms PSO can generate better results in comparison to
PSO based on single swarm.

Table 2. Average errors [mm)].

#PCs | #particles | error [mm)] | std. dev. [mm]
1 300 75.8 45.8
2 2 x 150 72.2 38.1
3 3 x 100 71.9 34.1
4 4 x75 74.3 40.3
6 6 x 50 73.9 37.9
8 8 x 38 2.7 36.9

The complete human motion capture system was written in C/C++. One of
the future research directions of the presented approach is to explore multiple
GPUs to further shorten the processing time [8].

6 Conclusions

We have presented communication latency tolerant parallel algorithm for particle
swarm optimization. We demonstrated experimentally that the parallel PSO
is especially well suited for real-time full-body articulated object tracking. To
show its advantages we have conducted several experiments on walking sequences
and realized computations on different numbers of computers connected with
a TCP/IP 1 GigE local area network. The quality of tracking was compared
by analyses carried out both through qualitative visual evaluations as well as
quantitatively through the use of the motion capture data as ground truth.
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