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Abstract. This paper demonstrates how appearance adaptive models
can be employed for real-time object tracking using particle swarm op-
timization. The parallelization of the code is done using OpenMP direc-
tives and SSE instructions. We show the performance of the algorithm
that was evaluated on multi-core CPUs. Experimental results demon-
strate the performance of the algorithm in comparison to our GPU based
implementation of the object tracker using appearance-adaptive models.
The algorithm has been tested on real image sequences.
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1 Introduction

One of the rising stars of Collective Intelligence is Particle Swarm Optimization
(PSO), developed in 1995 by Kennedy and Eberhart [10]. PSO is a derivative-
free optimum search algorithm based on the collective intelligence of a group
of simple agents, which interact with each other and with their environment.
Such local interactions result in the global behavior of the whole population.
The individual entities are simple, knowing no more than their own current
locations and fitness scores, their personal best locations, and the swarm’s best
location. In Particle swarm optimization, each potential solution to the problem
is called particle and the word ”swarm” comes from the irregular movements of
the particles in the problem space. PSO was inspired by the social behavior of
bird flocking and fish schooling and it has its roots in artificial life and social
psychology, as well as in engineering and computer science.

PSO can be used to solve a wide spectrum of different optimization problems,
including tasks that can be solved using Genetic Algorithms. Some example ap-
plications include function minimization and neural network training. In [13],
a parallel PSO algorithm was proposed. The algorithm is synchronous and has
good performance on problems where the fitness evaluations require the same
amount of time. In [1], a PSO algorithm was successfully applied to object track-
ing. In [12] it has been shown that a GPU implementation of a PSO based object
tracker can exhibit a more than 40-fold speed-up over a CPU implementation.
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Vision based object tracking is a mandatory step in many applications, such
as surveillance, traffic monitoring, sport event analysis, mixed virtual reality
and even in observational problems in the natural science. It is one of the major
steps toward understanding video content. The goal of visual object tracking
is to repeatedly localize an object of interest in successive frames. Most object
trackers search for the target locally in new frames using a similarity measure
between a reference object model and candidate targets. Thus, the task of ob-
ject tracking can be considered as a numerical optimization problem, where a
local optimization is used to track the local mode of the similarity measure in a
parameter space of translation, rotation and scale. In [14], it was shown that in
tasks consisting in tracking the face or the human a PSO tracker outperforms
a particle filter based tracker in terms of accuracy. Particle filters [8], which are
sequential Monte Carlo methods based on point mass representations of prob-
ability densities, can be employed to any state-space model and generalize the
conventional Kalman filtering methods. Currently, they are widely used to track
targets in image sequences. Their weakness is that they require a large number
of particles for accurate estimation of state variables lying in a high dimensional
space. In contrary, PSO has better capabilities to explore the search space as
well as facility to balance the trade-off between exploration and exploitation.

Image sequences acquired in real scenarios pose specific challenges to tracking
algorithms, due to, for example, low or variable lighting conditions, scale change
and changes of the appearance. On-line appearance models [9] are one of the most
successful approaches to object tracking. An on-line variant of the Expectation
Maximization (EM) [5] algorithm is typically used to learn the parameters of the
appearance models. It identifies stable structures and naturally combines such
structures with transient image information in the WSL framework [9]. Adaptive
appearance models were successfully applied in various applications, including
challenging tasks like model based articulated object tracking [2][11]. One of
the drawbacks of the object trackers, which are built on adaptive appearance
models is considerable computation time. This motivated us to develop the GPU
implementation of a tracker built on the appearance-adaptive models and the
particle swarm optimization [12].

In this work we show the processing times of our GPU object tracker, which
was extended about the affine transformations. We demonstrate the computation
times as well as speeds-up that have been obtained on GPU as well as on multi-
core CPUs. The parallel computations on multi-core CPUs were achieved using
Streaming SIMD Extensions (SSE) and Open Multi-Processing (OpenMP). Cur-
rently, OpenMP is widely utilized standard for parallelizing programs in a shared
memory environment [3]. Experimental results show that our parallel algorithm
exhibits about 4.5 fold speed-up over standard C/C++ implementation. Using
256 and 512 particles in PSO the tracking at a 4-core CPU can be done with 20
and about 10 frames per second, respectively. Using a 2-core CPU of a low-cost
notebook we tracked objects with 6 fps. The algorithm has been tested on real
image sequences.
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2 Appearance-Adaptive Models for Object Tracking

Let I;(z) denote the brightness value at the location x = [z1,25]” in an image
7 that was acquired at time ¢. Let R be a set of J image locations {z(j)|j =
1,2,...,J} defining a template. Y;(R) = {L(z(4))|j = 1,2,...,J} is a vector
of the brightness values at locations z(j) in the template. We assume that the
transformations of the template can be modeled by a parametric motion model
g(x;wy), where = denotes an image location and w; is a motion parameter vector.

The image variations of planar objects that undergo orthographic projection
can be described by a six-parameter affine motion models [6]:

g(z;w) = {Z (ﬂﬂH {Zj = Az +u, (1)
where the motion parameter vector w = (a,c,d, e, us,us)”. The affine trans-
formation allows different stretching along rows and columns of an image and
shearing. Applying an affine transformation on image patches is called warping.
We assume that the warped current image is a representation of the reference
object template. The goal of the tracking is to estimate the warping parameters
w; in each frame.

Our intensity-based appearance model consists of three components, namely,
The W-component accounting for the two-frame variation, the S-component
depicting the stable structure within all previous observations and F component,
which takes the place of the original lost component £ and represents a fixed
template. The model A; = {W;, S, Fi} represents the appearances existing in
all observations up to time ¢ — 1. It is a mixture of Gaussians [9] with centers
{pir|% = w,s, f}, their corresponding variances {O‘it |i = w,s, f} and mixing
probabilities {m; |7 = w,s, f}.

The fitness score has been evaluated according to the following equation:
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where Y;(R) = Yi(g(R;w;)). In the fitness function we utilize a recursively up-
dated appearance model, which depicts stable structures seen so far, initial object
appearance as well as two-frame variations.

The update of the current appearance model A; to A;1q is done using the
EM algorithm. For a template Yt(R) = Yi(9(R;&y)), which has been obtained
through applying the estimated W;, we evaluate the posterior contribution prob-
abilities as follows:

. 2
0;,(J) = L(]) exp —1 <M> 3)
202, (7) 2\ oul)

where i = w, s, f and j = 1,2,...,J. The posterior contribution probabilities
(with 7, 0;,:(j) = 1) are utilized in updating the mixing probabilities in the
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following manner:

Mi11(5) = 70ie(J) + (L =v)mir(d) |i=w,s, f (4)

where v is accommodation factor. Then, the first and the second-moment images
are determined as follows:

My i1(j) = (1 —v)My1:(5) + ’YUs,t(J')Yt(J') (5a)
Mo yi1(5) = (1 =) Mai(5) +705,:(3) Y2 (5) (5b)

In the last step the mixture centers and the variances are calculated as follows:

pesinli) = 5, 0,0 ) = \/ ST 0 )
fwir1(7) = Ye(5),  Owir1(d) = 0w1(j) (7)
prir1(J) = wea(d),  op1(d) = 05109) (8)

In order to initialize the model A; the initial moment images are set using the
following formulas: M;; = mg1Yio(R) and My = my (02, + Y3(R)).

3 Object Tracking Using PSO

PSO is a population based algorithm introduced in [10] that utilizes a set of
particles representing potential solutions of the optimization task. Despite the
simplicity of the individual particles, the swarm as a whole has a remarkable
level of coherence and coordination. Each solution is represented as a series of
coordinates in n-dimensional space. A number of particles are initialized ran-
domly within the search space. Every particle flies in the solution space with a
velocity adjusted dynamically according to its own experience and the experi-
ence of the whole swarm. Each particle has a very simple memory of its personal
best solution so far, called pbest. The global best solution for each iteration is
also determined and is termed gbest. On each iteration, every particle is moved
a certain distance from its current location, influenced a random amount by the
pbest and gbest values. The particles are evaluated according to a user defined
fitness function f(). The velocity of each particle ¢ is updated in accordance with
the following equation:

1)1(]) — wvij) + clr§]>(pbestl(-j> — w9 4 cgr$? (gbest; — ng)) (9)

K2

(#)

where v;”’ is the velocity in the j—th dimension of the i—th particle, ¢, co

denote the acceleration coefficients, r%j ) and réj ) are uniquely generated random
numbers in the interval [0.0, 1.0], and w stands for an inertia weight. The inertia
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weight allows the balance of the exploration and exploitation abilities of the
swarm as well as eliminates the need for velocity clamping.

The first part in (9) takes into account the previous velocity, which provides
the necessary momentum for particles to fly across the search space. The second
part is known as the cognitive component and represents the personal thinking
of each particle. This component encourages the particles to fly toward their
own best position pbest found so far. The third part is known as the social
component and represents the collaborative effect of the particles in finding the
global optimum. This component pulls the particles toward the best position(s)
found so far by their neighbors. The inertia part keeps particles to explore new
areas while the cognitive and social parts try to keep them exploiting around
the visited points.

The new position of a particle is calculated in the following manner:

xgj) — xﬁj) + vgj) (10)
The local best position of each particle is updated as follows:

wi, if f(w;) > f(pbest;)
pbest;, otherwise

pbest; — { (11)

and the global best position gbest is defined as:
gbest «— arg max { f (pbest;)} (12)
pbest;

The value of velocity v; should be restricted to the range [—vmaz, Umaz] t0 prevent
particles from moving out of the search range. In [10], Eberhart and Kennedy
suggested that the PSO should perform better if v,,4, in each dimension is set
equal to the dynamic range of that dimension. In some optimization problems
the local best version of PSO, where particles are influenced by the best position
within their neighborhood, as well as their own past experience can give better
results. While such a configuration of the PSO is generally slower in convergence
than algorithm with gbest, it typically results in much better solutions and
explores a larger part of the problem space.

At the beginning of the optimization the PSO initializes randomly locations
as well as the velocities of the particles. Then the algorithm selects pbest and
gbest values. Afterwards, equations (9)-(12) are called until maximum iterations
or minimum error criteria is attained. After that, given &; = gbest we calculate
Y;, and then update of the object model using formulas (3)-(8).

In contrast to traditional optimization problems with stationary optima,
tracking objects in image sequences requires the algorithm to find the opti-
mum not once, but in every successive image. There are various approaches to
dealing with moving objects, such as decaying the score of the best location
after every. In consequence, such an operation results in forcing the swarm to
continually search for a better location. In particular, it prevents the swarm
from completely converging to a single point, allowing the swarm agents to be
appropriately spaced in order to quickly reacquire a target in the next image.
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In the simplest solution the tracking can be realized as deterministic searching
of window location whose content best matches a reference window content. PSO
allows us to avoid such time consuming exhaustive searching for the best match.
It provides an optimal or sub-optimal match without the complete knowledge of
the searching space. In PSO based tracking, at the beginning of each frame in
the initialization stage, an initial position is assigned to each particle

w; ¢ — N(gbest, X) (13)

given the location gbest that has been estimated in the previous frame ¢t — 1. In
the evaluation phase the fitness value of each particle is determined on the basis
of (2). Every particle has an associated affine transformation, which is used to
warp a video frame.

4 Experimental Results

The experiments were conducted on a desktop PC with 4 GB RAM, Intel Core i5,
2.8 GHz processor with NVIDIA GeForce 9800 GT graphics card. The graph-
ics card has 14 stream multiprocessors with 1.5 GHz, each with 8 cores. It is
equipped with 1024 MB RAM, 64 KB constant memory and 16 KB common
memory for each multiprocessor. We implemented the algorithm in CUDA and
compared the runtimes with its counterpart that was implemented in C/C++
and executed on the CPU. The CPU code was compiled with Intel C++ Com-
piler for Windows. Table 1 shows the running times of the tracking algorithm
both on CPU and GPU as well as the speed-up. The communication delays for
copying images from CPU to GPU and vice versa have not been taken into ac-
count. The most time-consuming operation of the algorithm is calculation of the
fitness function (2). This operation amounts to 0.9 of the whole processing time.

Table 1. Tracking time [ms| and speed-up of GPU (NVIDIA GeForce 9800 GT) over
CPU (Intel Core i5, 2.8 GHz) at a desktop PC.

# particles | 256 512 | 1024 | 2048 | 4096
CPU [ms) 250 405 949 | 1878 | 3737
GPU [ms] 61 69 72 90 165
CPU/GPU | 4.1 5.7 132 | 209 | 227

OpenMP is a library (application program interface or API) that supports
parallel programming on shared memory parallel computers. It consists of a set
of directives (pragmas) and library routines that can be inserted into Fortran or
C/C++ codes to enable use of more than one thread. It handles scheduling over
available cores in a static fashion. OpenMP provides a fork-and-join execution
model in which a program begins execution as a thread. The thread executes
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sequentially until a parallelization directive for a structured block of code is
found. If this takes place, such a thread creates a set of threads and becomes the
master thread of the new group of threads. Each thread executes the same code
redundantly until the end of the parallel section and the threads communicate
by sharing variables. The exit point of a structured block is an implicit synchro-
nization point for the master thread and the threads created for the block. After
the synchronization the master thread continues with the computation and the
other threads end. The advantage of OpenMP is that an existing code can be
effortlessly parallelized by placing OpenMP directive instructions.

Table 2 contains tracking times that have been obtained using OpenMP. As
we can see the efficiency of parallel computations is very high. The speed-up
over the program executed without OpenMP support is about 3.3. The speed-
up was achieved owing to data parallelism [7], which is also known as loop-level
parallelism. It focuses on effective distributing the data across different parallel
computing nodes. In the appearance-adaptive models the pixels are assumed to
be independent and therefore they can be processed in parallel.

Table 2. Tracking time [ms| and speed-up of the GPU over the CPU (Intel Core i5,
2.8 GHz, OpenMP).

#particles 256 512 1024 2048 4096
CPU [ms] 73 145 284 573 1142
CPU/GPU| 1.2 2.1 4.0 6.4 6.9

Table 3 shows computation times that were achieved using OpenMP and SSE
instructions and registers. The functions like exp, log, pow were implemented
using algorithms presented in [4] and SSE, SSE2 SSE3 and SSSE 3 (Supplemental
Streaming SIMD Extension 3) instructions. All SSE instructions operate on 128-
bit XMM registers. By the use of such registers the fitness score given by (2) can
be computed very quickly. In our implementation we evaluate simultaneously all
three Gaussians N (Y, Wi, 0;), which are then simultaneously multiplied by the
mixing probabilities. Such values are finally used in updating the fitness score.
This process can be depicted in the following pseudo-code:

fw = My XN(Y/7/1'wao'w)
fs= ms XN()?-/M&US )
fr=mg x N(Y, us,05)
fe [+ Yog(fuw+ fs+ ff)

For each mixture j the mixing probabilities m,,, ms, mys are stored in 96 bits of
single 128-bit XMM register. The corresponding mixture centers and the vari-
ances are stored in two XMM registers.

As we can see in Tab. 3 the speed-up is considerable. For 512 particles the
algorithm is faster than the GPU algorithm. It is worth noting that for such a
number of particles not all GPU resources were fully exploited.
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Table 3. Tracking time [ms| and speed-up of the GPU over the CPU (Intel Core i5,
2.8 GHz, SSE and OpenMP).

#particles 256 512 1024 2048 4096
CPU [ms] 51 101 200 398 803
CPU/GPU 0.8 1.5 2.8 4.4 4.9

In Tab. 4 are presented the results that were obtained on a typical notebook
with Intel Core 2 Duo 2.2 CPU and NVIDIA GeForce 9600M GS graphics card.
As we can notice, the ratio of computation times for 4096 and 256 particles at
the notebook is far larger comparison of the ratio on the desktop computer. The
graphics card of the desktop has 14 multiprocessors, whereas the graphics card
of the notebook has 4 multiprocessors and therefore the discussed ratio is smaller
for the desktop computer.

Table 4. Tracking time [ms] and speed-up of GPU (NVIDIA GeForce 9600M GS) over
CPU (Intel Core 2 Duo, 2.2 GHz, OpenMP and SSE) at a notebook.

#particles 256 512 1024 2048 4096
CPU [ms] 164 339 667 1327 2651
GPU [ms] 65 84 113 248 416
CPU/GPU| 2.5 4.0 5.9 5.4 6.4

The experimental results presented above indicate that OpenMP together
with SSE instructions can lead to faster tracking algorithm on multi-core CPUs.
More important, thanks to OpenMP support we achieved tracking in real-time
using 265 particles, i.e. tracking with 13 fps, see Tab. 2. With OpenMP and
SEE support we performed tracking using 512 particles at about 10 Hz, see also
results in Tab. 3.

Figure 1 depicts some tracking results that were achieved using an active
camera. The aim of the algorithm was to keep the face undergoing tracking at
specific location in the image. In the tracking experiments the face moved in
front of the wooden furniture, which has very similar color to skin color. It is
worth to note that in such a scenario very popular skin-color based trackers
are unable to track the target. The precision of tracking in the depicted image
sequence was about 0.5 pix using PSO consisting of 256 particles. The precision
was evaluated using the corners of the template as ground-truth, which has been
determined manually. The size of the reference template is 32 x 32 pixels. The
algorithm operates on images of size 640 x 480 pixels.
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Fig. 1. Real-time tracking of the face using an active camera. Frame #0 a), #50 b),
#100 c), #150 d) and #200 e).

We conducted also experiments consisting in person following with a mo-
bile robot. The camera was mounted on a mobile robot Pioneer 2DX. Sample
experimental results are depicted in Fig. 2.

Fig. 2. Person following using a vision-guided mobile robot. Frames #55, 120, 165,
250, 275, 300 (left-to-right, top-to-bottom).

5 Conclusions

In this paper, we have shown how the particle swarm optimization tracker built
on appearance-adaptive models can be accelerated significantly using OpenMP
and SSE instructions. The results showed that our algorithm running on a 4-core
CPU is about 4.5 times faster than an algorithm based on pure C/C++ code.
As a result the tracking algorithm runs at frame-rates exceeding 20 frames per
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second. Future work will concentrate on particle swarm optimization based mul-
tiple object tracking with the use of the appearance-adaptive models. We intend
to apply multiple swarms to make collective decisions for objects undergoing
temporal occlusions.
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