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Abstract. Falls are major causes of mortality and morbidity in the el-
derly. However, prevalent methods only utilize accelerometers or both
accelerometers and gyroscopes to separate falls from activities of daily
living. This makes it not easy to distinguish real falls from fall-like ac-
tivities. The existing CCD-camera based solutions require time for in-
stallation, camera calibration and are not generally cheap. In this paper
we show how to achieve reliable fall detection. The detection is done by
a fuzzy inference system using low-cost Kinect and a device consisting
of an accelerometer and a gyroscope. The experimental results indicate
high accuracy of the detection and effectiveness of the system.

1 Introduction

In developed countries the segment of the elderly population over 65 years of age
is growing quickly. About one third of people aged over 65 years are failing once
a year at least. This rate increases to one half for the segment of people aged over
80 years. 20 up to 30% of 65+ adults who fall suffer moderate to severe injuries,
and 2% of such falls result in broken hips [4]. Approximately 30% of people older
than 60 years live alone. Considerable portion of the elderly population is also
willing to accept new technologies to increase safety and the quality of life. The
above mentioned issues stimulated a great interest in fall detection systems.
Most proposed systems to fall detection are based on a wearable device that
monitor the movements of an individual, recognize a fall and trigger an alarm.
Body attached accelerometers [2][5] and gyroscopes [8] are widely used in mon-
itoring human movement and detecting falls. Fall detection methods can be
divided into two groups of methods in relation to how kinetic data is utilized to
distinguish activities of daily living (ADLs) from falls. To the first group belong
methods that are based on a fixed threshold. In [2] a system based on magni-
tude of acceleration values has been proposed, whereas in [1] an algorithm using
measures of angular velocity obtained from gyroscopes has been presented. The
critical issue in such algorithms is to determine proper threshold. However, sev-
eral ADLs like fast sitting have similar kinematic motion patterns to those of
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real falls and in consequence the methods belonging to this group might trigger
many false alarms. In the second group of approaches are methods that combine
kinematic thresholds with posture. The method proposed in [8] assumes that a
fall always ends in a lying position. The assumption that a fall always ends in
a lying pose permits to separate out some fall-like ADLs like sitting, running
and jumps. However, such an assumption might also lead to both false positive
alarms when a person lies quickly on a bed or false negatives in case of remaining
in a sitting position after a harmless fall. According to the experimental evalu-
ation of the method its sensitivity is 91%, while specificity is 92%. In general,
the solutions mentioned above are somehow intrusive for people as they require
wearing continuously at least one device or smart sensor.

Several attempts were made to amend the limitations mentioned above. Some
of them propose the use of two or more wearable devices [10]. However, such
methods can be uncomfortable for elderly people. Moreover, body attached de-
vices might be uncomfortable when sleeping, during change of clothes, wash,
etc. Some approaches focus on ambient devices, which are installed in the places
to be monitored. Common examples of such sensors are pressure sensors on the
floor, bed exit detectors, etc. However, pressure sensitive mats have unavoidable
edges that can cause falls. In addition, the installation of such multiple sensors is
time consuming and monitoring is strictly limited to the places with the sensors.

There have also been several attempts to achieve reliable human fall detec-
tion using single CCD cameras [11], multiple cameras [3] or specialized omni-
directional ones [9]. A vision system [7], which uses a camera mounted on the
ceiling was tested on 21 volunteers who carried out simulated falls. The fall
detection ratio was 77%. There are several advantages of using video cameras,
among others the ability to detect various events. Another advantage is low in-
trusiveness. In some circumstances, the possibility of remote verification of fall
events might be very important. Internet network IP cameras, including GigE
vision cameras can be used to achieve such capability easily. However, the exist-
ing solutions require time for installation and/or camera calibration and are not
generally cheap. Moreover, in monocular camera based approaches the lack of
depth information may lead to false alarms. The shortcomings mentioned above
motivated us to develop a low-cost and reliable system to trigger a fall alarm.

Our system employs both an accelerometer and a video camera, which com-
plement each other. The system is based on expert knowledge and demonstrates
high generalization abilities. The main part of the algorithm is based on a fuzzy
inference system (FIS). We show that low-cost Kinect contribute toward reliable
fall detections. The disadvantage of Kinect is that it only can monitor restricted
areas. In such areas we utilized an accelerometer. On the other hand, in some
ADLs during which the use of this wearable sensor might not be comfortable, for
instance during changing clothes, wash, etc., the system relies on Kinect camera
only. An advantage of Kinect is that it can be put in certain places according to
the user requirements. Moreover, the system operates on depth images and thus
preserves privacy for people being monitored. In this context, it is worth noting
that Kinect uses infrared light and therefore it is able to extract depth images



in a room that is dark to our eyes. Using both devices, our system can reliably
distinguish the falls from activities of daily living, and thus the number of false
alarms is reduced.

2 The system

Our fall detection system uses both data from Kinect and motion data from
a wearable smart device containing accelerometer and gyroscope sensors. Data
from the smart device (Sony PlayStation Move) are transmitted wirelessly via
Bluetooth to a notebook computer on which the signal processing is done,
whereas Kinect is connected via USB, see Fig. 1. The device contains one tri-
axial accelerometer and a tri-axial gyroscope consisting of a dual-axis gyroscope
and a Z-axis gyroscope. The fall alarm is triggered by a fuzzy inference engine
based on expert knowledge, which is declared explicitly by fuzzy rules and sets.
As inputs the engine takes the acceleration, the angular velocity and the distance
of the person’s gravity center to the altitude at which the Kinect is placed. The
acceleration’s vector length is calculated using data provided by the tri-axial
accelerometer, whereas the angular velocity is provided by the gyroscope.
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Fig. 1. The system architecture.

A tri-axial accelerometer is a sensor that returns a real valued estimate of
acceleration along z,y and z axes. Data from an accelerometer contains time
and acceleration along three axes. Figure 2 depicts the plots of acceleration
and angular velocities readings vs. time for walking and simulated falling. The
sampling rate of both sensors is equal to 60 Hz. The measured acceleration signals
were median filtered with a window length of three samples to suppress the noise
and then used to calculate the acceleration’s vector length. When people fall,
acceleration and angular velocity are rapidly changed, as demonstrated at right
plots at Fig. 2. A lot of attention to the optimal sensor placement on the body
has been done until now [5]. The attachment of the sensor to trunk or lower
back is recommended because such body parts represent the major component
of body mass and move with most activities. The depicted plots were obtained
for the device that was worn at the waist or near the pelvis region.

Kinect is a motion sensing input device for the Xbox 360 video game console.
The Kinect device has two cameras and one laser-based IR projector. The IR
camera and the IR projector form a stereo pair with a baseline of approximately



Walking Falling

5 6;
5 5,
g3 g
o o
@ @
g2 82
I ©
AAARAAA A A
[0) 0
0 2000 4000 6000 0 2000 4000 6000
time [ms] time [ms]
Walking Falling
@ 500 @ 500
j=2) j=2
(7] (7]
k=3 S,
= 2 0
8 o= 3
[ [
z 2 -500
Kol K
S S
2 2
© -500, S -

o

2000 4000 6000 2000 4000 6000
time [ms] time [ms]

Fig. 2. Acceleration and angular velocity for walking and a real fall.

75 mm. The IR projector sends out a fixed pattern and dark speckles. The
depth is determined by triangulation against a known pattern. Then the pattern
is remembered at known depth. Given the known depth of such a plane and the
disparity, the depth for each pixel is calculated by the triangulation. In Fig. 3
color and depth images that were acquired by Kinect are depicted. The depth
image was then segmented using OpenNI library. Finally, on the basis of the
segmented objects the center of gravity of the object of interest was calculated.
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Fig. 3. Color and depth images provided by Kinect.

Figure 4 illustrates the architecture of the fall detection system. A fuzzy
inference system proposed by Takagi and Sugeno (TS) [12] is used to generate
the fall alarm. It expresses human expert knowledge and experience by using
fuzzy inference rules represented in if — then statements. In such an inference
system the linear submodels associated with TS rules are combined to describe
the global behavior of the nonlinear system.

When input data is fed into the TS type fuzzy inference system, each feature
value of the unknown input vector is fuzzified, i.e., converted to a fuzzy num-
ber, through their membership functions (MFs), see Fig. 4. The common types of
membership functions are singletons, triangles, trapezoids, Gaussians, etc. Every
kind of membership function has its advantages and disadvantages. For example,
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Fig. 4. The fuzzy inference system.

triangular membership function is very easy to implement and it can be calcu-
lated fast. Figure 5 shows the membership functions (MFs), which were designed
by an expert. The acceleration is proportional to the gravitational acceleration
g, angular velocity is expressed in degrees, whereas the center of gravity is the
difference between the estimated persons gravity center to the floor level and
the Kinect altitude.
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Fig. 5. Membership functions.

The inference is done by the TS fuzzy system consisting of R rules of the fol-
lowing form: if x1is A, and ... andx;is A;rand ... andxy 1s An, theny, =
Por+Pp1rX1+- - +DPNrTN , Where A;, denotes the linguistic labels of the ith input
variable (i = 1,..., N), associated with the rth rule (r =1,..., R), por, pir are
the parameters of the rth rule, whereas z; stands for the numerical value of the
ith input variable. The inference function is given by the following expression:

Zf: WrYr
y="T5 (1)

The twenty seven rules in the system produce a decision surface. The decision
surfaces of our fall detection system for the two inputs are illustrated in Fig. 6.
The filtered data from the accelerometer and the gyroscope were interpolated
and decimated as well as synchronized with the data from Kinect, i.e. the center
of gravity of the moving person. The output y that is generated with 30 Hz is



fed into the alarm trigger module, see also Fig. 4, which makes the final decision.
The alarm is triggered if a specified number of samples in a predefined period of
time is above a predefined value.
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Fig. 6. Decision surfaces of the fuzzy inference engine.

3 Experimental Results

Three volunteers with age over 26 years attended in evaluation of our developed
algorithm and system. Intentional falls were performed towards carpets of various
thicknesses ranging from 2 cm to 5 cm. During the simulation of falls, it was paid
attention to falling not too heavily. The accelerometer was worn near the pelvis.
Each individual performed three types of falls, namely forward, backward and
lateral at least three times. Each individual performed also ADLs like walking,
sitting, crouching down, leaning down/picking up objects from the floor, lying
on a bed. Figure 7 depicts some example images with selected ADLs.

Fig. 7. Images with activities of daily living: walking, crouching down, lying on a bed,
leaning down/picking up objects from the floor, sitting and falling (from left to right
and from top to bottom), which were shot by Kinect.

The corresponding depth images, which were extracted by Kinect, are de-
picted in Fig. 8. As we can observe, one of the disadvantages of Kinect is a blind



spot that cannot be directly observed. Kinect’s field of view is fifty-seven degrees
horizontally and forty-three degrees vertically and in consequence some areas at
the floor close to Kinect are not observable, see also the right-down image at
Fig. 8. The minimum range for the Kinect is about 0.6 m and the maximum
range is somewhere between 4-5 m.

Fig. 8. Depth images corresponding to images from Fig. 7, extracted by Kinect.

Figure 9 demonstrates some example outputs of our fall detection system,
that were generated during performing some ADLs, including a fall simulated
by a volunteer. These plots show that a single accelerometer with gyroscope and
Kinect are completely sufficient to implement a reliable fall detection system.
All intentional falls performed by three volunteers were detected correctly. In
particular, sitting down fast, which is not easily distinguishable from a typical
fall when only accelerometer or even accelerometer and gyroscope are used, was
detected reliably by our system. One activity consisting in seating on a sofa
was wrongly classified as a fall using only Kinect. The false alarm was altered
because on the depth image acquired by Kinect the legs were merged with the
sofa bottom part. In consequence, the gravity center extracted by the OpenNI
library was situated at a relatively small distance to the floor. It is worth noting
that in the near future the modern mobile devices will be equipped with some
fall detection capabilities, but in some daily activities their helpfulness can still
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Fig. 9. FIS output smoothed with a moving average filter. Person fall is easily recog-
nizable.



be reduced. Our results demonstrate that the use of low-cost Kinect will make it
possible to construct unobtrusive and reliable fall detection systems. Moreover,
using Kinect it will be possible to recognize simultaneously some daily activities,
which is an important and challenging problem [6].

4 Conclusions

In this paper we demonstrate how to achieve reliable fall detection. The detection
was done by fuzzy inference system using Kinect, accelerometer and gyroscope.
The results show that a single accelerometer with gyroscope and Kinect are
completely sufficient to implement a reliable fall detection system.
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