Human Fall Detection by Mean Shift Combined
with Depth Connected Components

Michal Kepski* and Bogdan Kwolek

Rzeszéw University of Technology
Al. Powstancéw Warszawy 12, 35-959 Rzeszéw, Poland
bkwolek@prz.edu.pl

Abstract. Depth is very useful cue to achieve reliable fall detection
since humans may not have consistent color and texture but must oc-
cupy an integrated region in space. In this work we demonstrate how
to accomplish reliable fall detection using depth image sequences. The
depth images are extracted by low-cost Kinect device. The person un-
dergoing monitoring is extracted through mean-shift clustering. A depth
connected component algorithm is used to delineate he/she in sequence
of images. The system permits unobtrusive fall detection as well as pre-
serves privacy of the user. The experimental results indicate high effec-
tiveness of fall detection in indoor environments and low computational
overhead of the algorithm.

1 Introduction

Falls are major causes of mortality and morbidity in the elderly. As humans
become old, their bodies weaken and the risk of accidental falls increases. Many
research findings show that high percentage of injury-related hospitalizations
for seniors are the results of falls [8]. Thus, considerable research is devoted to
the problem of fall detection, mainly due to the big demand and social values
of assistive technologies [14]. Assistive technology or adaptive technology is an
umbrella term that encompasses assistive, adaptive, and rehabilitative devices
for people with special needs [4]. Among others, the assistive technology can
contribute toward independent living of the elderly. Such an assistive device or
system should detect the fall occurrence as soon as possible and to generate a
warning to caregivers or an alarm to monitoring authorities. However, despite
many efforts undertaken to attain reliable fall detection, the offered technology
does not meet the requirements of the users [17].

A wide range of methods have been proposed for detecting a fallen person.
Most of the proposed methods relies on a wearable device, which monitor the
motion of an individual, recognize a fall and trigger an alarm. Such methods
employ accelerometers or both accelerometers and gyroscopes to separate fall
from activities of daily living (ADLs) [14]. However, on the basis of such sensors it
is not easy to discriminate real falls from fall-like activities [2]. In this context, it
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is worth noting that quite a lot of ADLs like fast sitting have comparable motion
patterns with real falls. In consequence, such methods can generate considerable
number of false alarms. Moreover, such fall detectors, which are usually attached
to a belt around the hip, are inadequate to be worn during the sleep [6]. In
addition, they are not capable of monitoring in critical phases like getting up
from the bed. In general, such devices are somewhat intrusive for humans since
they require wearing continuously at least one smart sensor or mobile device.

During the last decade, a lot of work has been done on detecting falls using
a wide range of sensor types [14][17], including pressure pads [16], single CCD
camera [1][15], multiple cameras [5], specialized omni-directional ones [13] and
stereo-pair cameras [9]. Video cameras offer several advantages over other sensors
including the capability of detection of various activities. The further benefit is
low intrusiveness and the possibility of remote verification of fall events. However,
the currently available solutions require time for installation, camera calibration
and they are not generally cheap. As a rule, CCD-camera based systems require
a PC computer or a notebook for image processing. The existing video-based
devices for fall detection cannot work in night-light or low light conditions. Addi-
tionally, the lack of depth information can lead to lots of false alarms. Moreover,
in most of such systems the privacy is not preserved adequately.

Recently, in fall detection systems the time-of-flight cameras (TOF) have be-
come more and more attractive [11]. In systems using such cameras the extrinsic
calibration is restricted to the determination of the camera pose, whereas the
intrinsic calibration is not required at all. TOF cameras are independent of ex-
ternal light conditions, since they are equipped with an active light source. It is
worth noting that the TOF cameras can guarantee the person’s privacy.

The existing technology permits reaching quite high performance of fall de-
tection. However, it does not meet the requirements of the users with special
needs. To make such human-assistive technology more unobtrusive and preserv-
ing privacy we developed a depth-based system for fall detection. Depth is very
useful cue to achieve reliable fall detection since humans may not have consistent
color and texture but must occupy an integrated region in space.

The Kinect is a revolutionary motion-sensing technology that permits sens-
ing and tracking human position and motion. Unlike 2D cameras, Kinect allows
tracking the body movements in 3D. It is the world’s first system that combines
an RGB camera and depth sensor. In order to achieve reliable and unobtrusive
fall detection, our system employs the low-cost Kinect. The algorithm extracts
the person in depth images using mean-shift algorithm [7]. Mean-shift is a general
non-parametric mode finding/clustering procedure. It was extended to low-level
vision problems [3], including, image segmentation and object tracking. In this
work we propose to utilize the mean-shift to extract the person in depth image
sequences at a low computational cost. The system can reliably distinguish the
falls from activities of daily living, and thus the number of false alarms is re-
duced. An advantage of Kinect is that it can be put in selected places according
to the user requirements. Moreover, the system operates on depth images and
thus preserves privacy of people being monitored. In this context, it is worth



noting that Kinect uses infrared light and therefore it is able to extract depth
images in a room that is dark to our eyes. In [10] we demonstrated an embedded
system for fall detection in which a wearable motion-sensing device and Kinect
complement each other. Due to limited computational power of the PandaBoard,
at which the system has been implemented, a simple algorithm relying on ref-
erence map-based extraction of the person has been employed. However, after
changing the setting of furniture the performance of the person detection drops.
In such conditions, the wearable device contributes more to the decision of a
fuzzy inference engine. The contribution of this work is an algorithm for person
extraction, which delineates of individual even in case of changing the setting of
furniture. It has low computational demands and runs in real-time.

2 The System for Fall Detection

At the beginning of this section we discuss usefulness of the Kinect for the
detection of human fall. Afterwards, the extraction of the object of interest in
depth images is presented. In the last part a proposed low-cost algorithm for
person delineation is discussed.

2.1 Depth Images

The hardware employed in this work is Kinect, a motion sensing device developed
by PrimeSense company. It is composed of an RGB camera, infrared laser-based
IR emitter, an infrared camera, a multi-array microphone and a motorized tilt.
The IR camera and the IR projector comprise a stereo pair with a baseline
of approximately 75 mm. In this work, only the RGB and depth sensors are
utilized to provide the input data. The device simultaneously captures depth
and color images at a frame rate of about 30 fps. The resolution of color images
is 640 x 480 pixels with 8 bits for every color channel. The Kinect projects the
structured light code with an infrared laser onto the scene. Such a pattern is
then read by an infrared camera and the 3D information is reconstructed from
the distortions of the pattern. The disparity measurements are supplied in VGA
resolution (640 x 480 pixels) as 11-bit integers, where 1 bit is reserved to mark the
pixels for which no disparity is available. Since depth is inversely proportional
to disparity, the depth resolution is also inversely related to the disparity. Thus,
the depth resolution is not fixed and drops off with the distance growing to the
sensor. For example, the depth resolution is about 1 cm at 2 m distance, whereas
at 5 m distance one disparity level corresponds to about 7 cm depth resolution.
Kinect’s field of view is fifty-seven degrees horizontally and forty-three degrees
vertically. The minimum range for the Kinect is about 0.6 m and the maximum
range is somewhere between 4-5 m. Thanks to the Kinect’s capability to extract
the depth images in unlit or dark rooms, the fall detection can be performed in
the late evening or even in the night.

The depth images can be acquired using OpenNI (Open Natural Interaction)
library '. The OpenNI framework supplies an application programming interface
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(API) as well as it provides the interface for physical devices and for middle-
ware components. The NITE middleware, which is supplied by PrimeSense is
a perception component enabling extraction of a person and tracking his/her
skeleton. The discussed engine that enables natural human-computer interac-
tion is protected by copyright and does not run on embedded platforms like
PandaBoard.

2.2 Extraction of the Object of Interest

In our previous work [10] we presented an embedded system for person fall
detection, in which a wearable motion-sensing device and Kinect complemented
each other. Due to limited computational power of the PandaBoard, at which the
system has been implemented a reference map-based extraction of the person has
been employed. The depth reference map was extracted on the basis of several
consecutive depth images without the subject to be monitored and then it was
stored for the later use in the person detection mode. In the detection mode the
foreground objects were extracted through differencing the current image from
such a reference depth map.

The procedure responsible for extraction of the object of interest in the depth
reference images has low computational cost. However, the disadvantage of such
an approach is that in the case of modification of the furniture settings, the furni-
ture will appear in the depth difference images as foreground objects. Therefore,
to cope with such an undesirable effect the depth difference images were seg-
mented using mean-shift algorithm. Mean-shift is a nonparametric estimator of
probability density [3]. The mean-shift vector always points toward the direc-
tion of the maximum increase in the density. The main idea behind mean-shift
is to treat the points in the d-dimensional feature space as an empirical prob-
ability density function, where dense regions (or clusters) in the feature space
correspond to the modes (or local maxima) of the underlying distribution. In
contrast to the classic k-means clustering approach, it does not require prior
knowledge on the shape of the distribution nor the number of modes or clusters.

Given n data points x;, k = 1,...,n on a d-dimensional space R? the mean-
shift is calculated on the basis of the following equation:
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where g is a kernel function and h denotes bandwidth. The mean-shift algorithm
clusters a d-dimensional data set by associating each point with a peak of the
data set’s probability density. Each pixel is assigned a feature point x;. To
account for the pixel position and depth, 3-d vectors were used. For each image
pixel the mean-shift computes its associated peak by first defining a spherical
window at the data point and computing the mean of the pixel values that



lie within the window. The algorithm then shifts the window to the mean and
repeats until convergence, i.e., until the shift is less than a threshold.

In the assumed model the depth of the point k& in the object space depends
from the observed disparity as follows:

Z
Zy = —>— (2)
1+ f" d

where b is the base length, f denotes the focal length of the IR camera, d is the
observed disparity in the image space, whereas Z,, is the distance of the reference
pattern. The parameters b, f, Z, can be obtained by calibration of the camera.
Figure 1 illustrates the main steps of the extraction of the object of inter-
est using mean-shift. In the upper row are shown the disparity images, in the
middle row are depicted the segmented images, whereas on the bottom row are
shown images with the extracted object of the interest. The mean-shift based
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Fig. 1. Person detection. Disparity images (upper row), the segmented images (middle
row) and the extracted person (bottom row).

segmentation was done on the difference image, which was obtained through
differencing the current disparity image with the reference image. The images
were then median filtered to remove small artefacts. Afterwards, the foreground
object was extracted through determining the largest connected component in
the segmented map. A correspondence between the segments was taken into ac-
count at this stage. It is also assumed that the depth values on the surface of a
human object are continuous and vary only within a specific range. Finally, the
center of gravity of the object of interest was calculated. As we can observe in
frames #490 - 600 the person opens the door, which then appears as a separate
segment in the image. Afterwards, in frames #650 - 670 the person moves the
chair, which also appears in the segmented image. As we can see on images de-
picted on the bottom row, the person was extracted correctly in the considered
image sequence despite change of the furniture settings.



As one can notice in the above images, the modifications of the furniture
settings contribute towards clutter in the segmented image, which in turn can
lead to difficulties in extraction of the object of interest, see also images in middle
row on Fig. 1. Thus, in our approach we update the depth reference image on
the basis of median filtered collection of images. Figure 2 illustrates the depth
reference image (left), image on which a chair is moved (middle), and the updated
reference image (right). As we can observe, the chair is at new location and no
person is present on the extracted depth reference image. The updated depth
reference image has been obtained on the basis of 30 depth images. Every 20th
depth image was included in the collection of the images.

Fig. 2. Update of the depth reference image.

Using the discussed algorithm, the fall alarm was triggered on the basis of the
distance of the person’s gravity center to the altitude at which the Kinect was
placed. In a more sophisticated approach a height/width ratio of the person’s
bounding box in k-nearest neighbor classifier can be used to detect the fall [12].

2.3 Low-cost Algorithm for Person Segmentation in Depth Images

The mean-shift is too slow to be used for image segmentation, where each pixel
is a data point. In particular, the computational overhead is too large to make
possible real-time image segmentation on mobile/embedded platforms. On mo-
bile platforms the computational cost should be as low as possible to reduce the
energy demand. Thus, in order to decrease the computational cost the mean-
shift based person extraction was done in images with reduced spatial resolution
by factor 5, i.e. on depth images of size 128 x 96. On Fig. 3 b-c) are shown
the images that were segmented using the mean-shift. On the discussed images
the ground plane is not shown since it was removed using a method similar to
[18]. As one can observe the mean-shift is able to delineate the whole person.
However, in some images the person is represented by several components, see
Fig. 3c. Thus, in the next stage the segmented images are further refined using
a connected components algorithm. Its aim is to connect at a low computational
cost the neighboring depth segments possessing similar depth, see Fig. 3d. By
starting from a seed connected component, which is located near the person’s
gravity center in the previous frame and simultaneously has the most similar
depth to the depth at the gravity center, and then linking the neighboring com-
ponents with similar depth the algorithm is able to extract the person in long
image sequences, say several hundred of images, see also Fig. 3e.



Fig. 3. Person detection. Depth image a), segmented images using mean-shift b), c),
refined segmentation using connected components d), extracted person e). For visual-
ization purposes the images b-e were resized to the half of the size of image a.

3 Experimental Results

Five volunteers with age over 26 years attended in evaluation of our developed
algorithm and the system. Intentional falls were performed in home by four per-
sons towards a carpet with thickness of about 2 cm. Each individual performed
three types of falls, namely forward, backward and lateral at least three times.
Figure 4 depicts a person who has fallen and some daily activities that can be
distinguished from the fall. All intentional falls were detected correctly.

Fig.4. A fallen person and some activities of daily living: sitting down, squat-
ting/picking up objects from the floor, bending down, which were shot by Kinect.

The system has been implemented in C/C++ and runs at 25 fps on 2 Duo
T8100 (2.1 GHz) notebook powered by Linux. The execution time needed for
mean-shift segmentation of depth images of size 128 x 96 is about 40 ms. We are
planning to implement the system on the PandaBoard.

4 Conclusions

In this work we demonstrated how to achieve reliable fall detection using Kinect.
A mean-shift based algorithm with low computational burden was proposed to
extract a person in depth image sequences. A depth connected component al-
gorithm is used to extract the person in sequence of images. A fall alarm is
generated on the basis of the gravity center of a connected component repre-
senting the extracted person. The system permits unobtrusive fall detection and
preserves privacy of the user.
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