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Abstract. We present an algorithm for view-independent human gait
recognition. The human gait recognition is achieved using data obtained
by our markerless 3D motion tracking algorithm. The tensorial gait data
were reduced by multilinear principal component analysis and subse-
quently classified. The performance of the motion tracking algorithm
was evaluated using ground-truth data from MoCap. The classification
accuracy was determined using video sequences with walking performers.
Experiments on multiview video sequences show the promising effective-
ness of the proposed algorithm.

1 Introduction

People are able to identify acquaintances on the basis of their walking style,
bearing or carriage as one walks. Successful identification can be done even
when acquaintance is too far to be recognized by his/her face. Gait arises from
coordinated, cyclic combination of movements that lead to individual style or
manner of walking. It is the only feature suitable for human identification when
the subject is far from the camera. Recently, vision-based gait recognition has at-
tracted increased attention due to possible applications in intelligent biometrics
and visual surveillance systems [2].

The seminal work in the area of gait recognition was done in the psychology
field [8]. It is commonly believed upon that human visual system is very sensitive
to motion stimuli, although the exact mechanism of perception is not fully clear.
Johansson’s seminal psychophysical experiments [6] demonstrated that humans
can recognize biological motion, such as gait on the basis of a small set of points
attached to the human body, which are called Moving Light Displays (MLDs).
These findings inspired computer vision community to start research on extract-
ing characteristic gait signatures from image sequences for human identification.



In one of the earliest approaches to automatic identification by gait, the gait
signature was derived from the spatio-temporal pattern of a walking person [13].
It was assumed that the head and the legs have distinctive signatures in XT
(translation and time) dimensions. They first find the bounding contours of the
walker, and then fit a five elements stick model on them. On a database of 26
sequences of five different subjects, taken at different times during the day the
classification rate varied from nearly 60% to 80% depending on weighting factors.

There are two major approaches to gait recognition, namely appearance
based (model free) and model based ones [12]. The majority of the approaches
proposed for gait-based identification rely on analysis of image sequences ac-
quired by a single camera. The main drawback of such approaches is that they
can perform recognition from a specific viewpoint, usually fronto-parallel. To
achieve view-independent motion classification [14], recently, an image-based
reconstruction method was proposed [1]. However, in tracking real human move-
ments the 2D models are often unsuitable due to their inability to take into
account the self-intersection constraints as well as to encode joint angle limits.
Recently, a gait database [5] has been developed to stimulate research on gait
recognition in the presence of occlusion.

The major advantage of the model-based approaches is that they can reliably
handle self-occlusion, noise, scale and rotation, as opposed to silhouette-based
approaches. In general, the methods that are based on holistic space-time fea-
tures or space-time shapes depend more on the training data in comparison
to the model-based approaches. One of the earliest model-based approaches to
gait-based human identification was developed by Cunado in 1997 [3]. The gait
signature has been derived from the spectra of measurements of the thigh’s ori-
entation. A recognition rate of 90% on a database of 10 subjects was achieved.

Model-based gait recognition algorithms are usually based on 2D fronto-
parallel body models and model human body structure explicitly, with support
of the biomechanics of human gait [18]. Some work has also been done on coarser
human body models. For example, in [10] several ellipses are fitted to different
parts of the binary silhouettes and the parameters of these ellipses (e.g., location.
and orientation) are used as gait features. Coarse models are usually employed
in 3D approaches to gait recognition. The 3D approaches to gait recognition
are far more resistant to view changes in comparison to 2D ones. In [17], an
approach relying on matching 3D motion models to images, and then tracking
and restoring the motion parameters is proposed. The evaluation was performed
on datasets with four people, i.e. 2 women and 2 men walking at 9 different
speeds ranging from 3 to 7 km/h by increments of 0.5 km /h. Motion models were
constructed using Vicon motion capture system. To overcome the non-frontal
pose problem, more recently multi-camera based gait recognition methods have
also been developed [4]. In the mentioned work, joint positions of the whole body
are employed as a feature for gait recognition.

In this work we present an algorithm for view-independent gait recognition,
which is based on 3D articulated body model. The motion parameters are esti-
mated using our algorithm for markerless human motion tracking. The algorithm



captures human motion on the basis of video sequences acquired by four cali-
brated and synchronized cameras. We show the tracking performance of the
motion tracking algorithm using ground-truth data from a commercial motion
capture (MoCap) system from Vicon Nexus. The captured motion was stored
in ASF/AMC data format. Afterwards, a second order tensor was calculated.
The tensorial gait data were reduced using Multilinear Principal Components
Analysis (MPCA) algorithm and then classified.

2 Markerless System for Articulated Motion Tracking

2.1 3D Human Body Model

The human body can be represented by a 3D articulated model formed by 11
rigid segments representing key parts of the human body. The model of a human
body specifies a kinematic chain, where the connections of body parts comprise
a parent-child relationship, see Fig. 1. In our approach the pelvis is the root node
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Fig. 1. 3D human body model. Human body consisting of 11 segments (left), hierar-
chical structure (right).

in the kinematic chain. Then the pelvis is the parent of the upper legs, which
are in turn the parents of the lower legs. In consequence, the position of a par-
ticular body limb is partially determined by the position of its parent body part
and partially by its own pose parameters. In this way, the pose parameters of a
body part are described with respect to the local coordinate frame determined
by its parent. The 3D geometric model is utilized to simulate the human motion
and to recover the current position, orientation and joint angles. Although typ-
ical human bodies can be represented by such model, individuals have different
body part sizes, limb lengths, and exhibit different ranges of motion. In our ap-
proach the individual parameters are pre-specified. For each degree of freedom
the model has constraints beyond which movement is not allowed. The model
is constructed from truncated cones and is used to generate contours, which are
then compared with edge contours. The configuration of the body is parameter-
ized by the position and the orientation of the pelvis in the global coordinate
system and the angles between the connected limbs.



2.2 Articulated Motion Tracking

Estimating 3D motion can be cast as a non-linear, high-dimensional optimiza-
tion problem. The degree of similarity between the real and the estimated pose
is evaluated using an objective function. Recently, particle swarm optimization
(PSO) [7] has been successfully applied to body motion tracking [19][9]. In PSO
each particle follows simple position and velocity update equations. Thanks to
interaction between particles a collective behavior arises. It leads to the emer-
gence of global and collective search capabilities, which allow the particles to
gravitate towards the global extremum. Human motion tracking can be achieved
by a sequence of static PSO-based optimizations, followed by re-diversification
of the particles to cover the possible poses in the next time step. In this work
the tracking of human motion is achieved using the Annealed Particle Swarm
Optimization (APSO) [9)].

2.3 Fitness Function

The fitness function expresses the degree of similarity between the real and
the estimated human pose. It is calculated on the basis of following expression:
fl@) =1—=(fi(x)*r - fo(z)*2), where x stands for the state (pose), whereas w
denotes weighting coefficients that were determined experimentally. The func-
tion fi(x) reflects the degree of overlap between the extracted body and the
projected model’s into 2D image. The function fa(x) reflects the edge distance-
based fitness. Figure 2 illustrates the extraction of the body and calculation of
the edge distance. A background subtraction algorithm [9] is employed to extract
the binary image of the person, see Figure 2b. The binary image is then utilized
as a mask to suppress edges not belonging to the person, see Figure 2d.

The calculation of the objective function is the most consuming operation.
Moreover, in multi-view tracking the 3D model is projected and then rendered
in each camera’s view. Therefore, in our approach the objective function is cal-
culated by OpenMP threads, which communicate via the shared memory. Each
core calculates the fitness score for single camera and every PSO thread has
access to the shared memory with the objective function values.
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Fig. 2. Person segmentation. Input image a), foreground b), gradient magnitude c),
masked gradient image d), edge distance map e).




3 Gait Characterization and Recognition

The markerless motion tracking was achieved using color images of size 960 x 540,
which were acquired at 25 fps by four synchronized and calibrated cameras. Each
pair of the cameras is approximately perpendicular to the other camera pair.
Figure 3 depicts the location of the cameras in the laboratory.

W,

Fig. 3. Layout of the laboratory with four cameras. The images illustrate the initial
model configuration, overlaid on the image in first frame and seen in view 1, 2, 3, 4.

A commercial motion capture system from Vicon Nexus was employed to
provide the ground truth data. The system uses reflective markers and sixteen
cameras to recover the 3D location of such markers. The data are delivered with
rate of 100 Hz and the synchronization between the MoCap and multi-camera
system is achieved using hardware from Vicon Giganet Lab.

A set of M = 39 markers was attached to main body parts. From the above
set of markers, 4 markers were placed on the head, 7 markers on each arm, 12
on the legs, 5 on the torso and 4 markers were attached to the pelvis. Given
such a placement of the markers on the human body and the estimated human
pose, which has been calculated by our algorithm, the corresponding positions
of virtual markers on the body model were determined. Figure 4 illustrates
the distances between ankles, which were determined by our markerless motion
tracking algorithm and the MoCap system. High overlap between both curves
formulates a rationale for the usage of the markerless motion tracking to achieve
view-independent gait recognition. In particular, as we can observe, the gait
cycle and the stride length can be calculated with sufficient precision.
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Fig. 4. Distance between ankles during walking in sequences P1 (straight and diagonal)
and P2 (straight).



Figure 5 illustrates components of a typical model-based system for gait
recognition. Given a gallery database, consisting of gait patterns from a set of
known subjects, the objective of the gait recognition system is to determine the
identity of the probe samples. In this work we treat each gait cycle as a data
sample. Thus, a gait sample is a second-order tensor, and the state space with
the time space account for its two modes.

Feature Extraction

Model

Motion Gait .

Capture [ || Signature || Classifier
Motion | 1

Database

Fig. 5. Components of a typical model-based gait recognition system.

The data extracted by markerless motion tracking algorithm were stored in
ASF/AMC data format. For a single gait cycle consisting of two strides a sec-
ond order tensor was calculated. Before feeding the gait samples to MPCA, the
tensorial inputs need to be normalized to the same dimension in each mode.
The number of frames in each gait sample has some variation and therefore
the number of frames in each gait sample was subjected to normalization. The
normalized time mode dimension was chosen to be 30, which was roughly the av-
erage number of frames in each gait sample. As mentioned in Subsection 2.1, the
configuration of the body is parameterized by the position and the orientation of
the pelvis in the global coordinate system and the angles between the connected
limbs. A set of the state variables plus the distance between ankles and the per-
son’s height account for the second mode of the tensor. Among the state variables
there is roll angle of the pelvis and the angles between the connected limbs. In
consequence, the dimension of the tensor is 30 x 33, where 30 is the number
of frames and the second dimension is equal to the number of bones (exclud-
ing pelvis) times three angles plus three (i.e. pelvis roll angle, distance between
ankles and the person’s height). Such a gait signature was then reduced using
Multilinear Principal Components Analysis (MPCA) [11] algorithm. MPCA is a
multilinear extension of Principal Component Analysis (PCA) algorithm. There
is one orthogonal transformation for each dimension (mode). The MPCA trans-
formation aims to capture as high a variance as possible, accounting for as much
of the variability in the data as possible, subject to the constraint of mode-wise
orthogonality. It determines a tensor-to-tensor projection that captures most of
the signal variation present in the original tensorial representation.



4 Experimental Results

The markerless motion tracking system was evaluated on video sequences with 10
walking individuals. In each image sequence the same actor performed two walks,
consisting in following a virtual line joining two opposite cameras and following a
virtual line joining two nonconsecutive laboratory corners. The first subsequence
is referred to as ‘straight’, whereas the second one is called ‘diagonal’. Given the
determined pose estimate, the model was overlaid on the images. Figure 6 depicts
some results which were obtained for person 1 in a diagonal walk. The degree of
overlap of the projected 3D body model with the performer’s silhouette reflects
the accuracy of the tracking.

. >
M

|
—
k< s
N R
(LY k

(
e

=il
Pl

Fig. 6. Articulated 3D human body tracking in sequence P1D. Shown are results in
frames #0, 20, 40, 60, 80, 100, 120. The left sub-images are seen from view 1, whereas
the right ones are seen from view 2.

In Fig. 7 are shown some motion tracking results that were obtained in the
same image sequence, but with the performer following a virtual line connecting
two opposite cameras. The body model is overlaid on the images from the right
profile view and the frontal view. The discussed results were obtained in 20
iterations per frame using APSO algorithm consisting of 300 particles.
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Fig. 7. Articulated 3D human body tracking in sequence P1S. Shown are results in
frames #0, 20, 40, 60, 80, 100, 120. Left sub-images are seen from view 1, whereas the
right ones are seen from view 2.

The plots in Fig. 8 illustrate the accuracy of motion estimation for some
joints. As we can observe, the average tracking error of both legs is about 50
mm and the maximal error does not exceed 110 mm. The discussed results were
obtained by APSO algorithm in 20 iterations using 300 particles.

In Tab. 1 are presented some quantitative results that were obtained in the
discussed image sequences. The errors were calculated on the basis of 39 mark-
ers. For each frame they were computed as average Euclidean distance between
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Fig. 8. Tracking errors [mm)] versus frame number.

individual markers and the recovered 3D joint locations [15]. For each sequence
they were then averaged over ten runs with unlike initializations.

Table 1. Average errors for M = 39 markers in four image sequences. The images
from seq. P1S are shown on Fig. 7, whereas the images from seq. P1D are depicted on
Fig. 6.

Seq. P1S | Seq. P1D | Seq. P2S | Seq. P2D
#particles| it. |error [mm]|error [mm]|error [mm)]|error [mm]
100 10 |56.4+£29.9|61.0£30.4 | 51.04£28.3 | 67.7+41.9
100 20 |51.4+£28.3|53.6£24.9|47.1£27.1 |62.1£40.7
300 10 |51.9+28.5|53.6£24.5|47.9428.0|62.4+38.3
300 20 |50.0£27.3|48.6£20.5|45.5£25.7 | 56.5+£38.2

APSO

Table 2 illustrates the recognition accuracy that was obtained on 10 image
sequences, each containing both straight and diagonal walks, which were per-
formed by a sole actor. Each sequence consisted of 2 or 3 full gait cycles. Given
such a collection of sequences, we obtained a database with 52 gait cycles. 10-fold
cross-validation was used to evaluate the performance of the proposed algorithm
for gait recognition . In the person identification we employed Naive Bayes (NB)
and multilayer perceptron (MLP) classifiers. The parameter @ denotes the ratio
of variations, which should be kept in each mode, whereas A denotes the num-
ber of the attributes corresponding to given @. In practical recognition tasks, @



is commonly set to a large value to capture most of the variation. As one can
observe, for A = 3 attributes and rank 2 the NB classifier achieves 100% recog-
nition accuracy, whereas the MLP gives 92% recognition accuracy. For Q equal
to 0.95 and 17 attributes and rank 2 both classifiers allows us to obtain 90%
recognition accuracy. As one can observe, for @ = 0.99, 111 attributes and rank
1 the MLP classifier gives somewhat better classification accuracy than 80%.

In [16] a far better gait recognition accuracy using data from maker-based
MoCap system has been obtained. The above work demonstrates that given a
sufficiently precise location of the joints it is possible to obtain high recognition
accuracy of the gait. Therefore, in order to obtain better recognition accuracy
of marker-less based gait recognition the precision of the motion tracking should
be improved.

Table 2. Identification accuracy [%)].

Naive Bayes MLP
Q A |Rank 1|Rank 2|Rank 3 |Rank 1|Rank 2|Rank 3
0.60 3 88 100 100 83 92 96
0.90 7 85 94 94 75 88 90
0.95 17 81 90 92 81 90 96
0.99 111 38 63 71 81 87 90

The complete human motion capture system was written in C/C++. The
evaluation of the recognition performance was performed using WEKA software.
The marker-less motion capture system runs on an ordinary PC. Our implemen-
tation of MPCA is based on Jama-1.0 library, supporting matrix operations and
eigen decomposition.

5 Conclusions

We have presented a view-independent approach to gait recognition. The recog-
nition is done using gait data obtained by our markerless human motion tracking
algorithm. We demonstrated the tracking performance of the algorithm using the
MoCap data as ground-truth. High-dimensional tensor data were reduced by the
MPCA algorithm and subsequently classified. Experiments on multiview video
sequences demonstrated that the algorithm achieves high recognition accuracy.
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