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Abstract. In this paper we present a particle swarm optimization (PSO)
based approach for marker-less full body motion tracking. The objective
function is smoothed in an annealing scheme and then quantized. This
allows us to extract a pool of candidate best particles. The algorithm
selects a global best from such a pool to force the PSO jump out of stag-
nation. Experiments on 4-camera datasets demonstrate the robustness
and accuracy of our method. The tracking is conducted on 2 PC nodes
with multi-core CPUs, connected by 1 GigE. This makes our system
capable of accurately recovering full body movements with 14 fps.

1 Introduction

Tracking of 3D articulated body motion in image sequences plays an important
role due to wide variety of potential applications. The aim of articulated body
tracking is to estimate the joint angles of the human body at any time. The
recovery of human body movements from image sequences is a very challenging
problem. The difficulties arise mainly due to the high dimensionality and non-
linearity of the search space, large variability in human appearance, noisy image
observations, self-occlusion, and complex human motions. To cope with such dif-
ficulties, much previous work has focused on the use of 3D human body models
of various complexity to recover the position, orientation and joint angles from
2D image sequences [3][4][9][10]. An articulated human body can be perceived as
a kinematic chain consisting of at least eleven parts, corresponding to the main
body parts. Usually such a 3D human model is built on very simple geometric
primitives like truncated cones or cylinders. Given the 3D model, a lot of hy-
pothetical body poses are generated and then projected into the image plane in
order to find the configuration of the 3D model, whose projection matches best
the current image observations. Multiple cameras and simplified backgrounds
are commonly used to ameliorate some of practical difficulties arising due to
occlusions and depth ambiguities [9][10].



2 Searching Schemes for Human Motion Tracking

In tracking of the articulated human motion the particle filtering is utilized in the
majority of the trackers. Particle filters [5] are recursive Bayesian filters that are
based on Monte Carlo simulations. They approximate a posterior distribution
for the human pose on the basis of a series of observations. The high dimension-
ality of the search space entails vast number of particles to approximate well
the posterior probability of the states. Moreover, sample impoverishment may
prevent particle filters from maintaining multimodal distribution for longer pe-
riods of time. Therefore, many efforts have been devoted to confining the search
space to promising regions that contain the true body pose. Deutscher and Reid
[3] developed an annealed particle filter, which adopts an annealing scheme to-
gether with the stochastic sampling to achieve better concentration of the par-
ticle spread close to modes of the probability distribution. To achieve this the
fitness function is smoothed using annealing factors 0 = a3 < ag,...,< a, =1,
and in consequence the particles migrate towards the extremum without getting
stuck in local minima. In addition, a crossover operation is employed in order to
obtain an improved particle’s diversity.

The annealed particle filter greatly improves the tracking performance in
comparison to the ordinary particle filtering. However, a considerable number
of particles it still required. In contrast, the particle swarm optimization (PSO)
[7], which is population-based searching technique, has higher searching capa-
bilities owning to combining the local search and global one. A basic variant of
the PSO algorithm is built on particles representing candidate solutions. These
particles are moved around in the search-space according to a few very simple
rules. The movements of the particles are guided by their own finest known lo-
cations in the search-space as well as the entire swarm’s best location. Particles
move through the solution space, and undergo evaluation according to some fit-
ness function f(). While the swarm as a whole gravitates towards the global
extremum, the individual particles are capable of ignoring many local optima.
In the dynamic optimization the aim is not only to seek the extrema, but also
to follow their progression through the space as closely as possible. Since the
object tracking is a kind of dynamic optimization, the tracking can be attained
through incorporating the temporal continuity information into the ordinary
PSO. In consequence, the tracking can be realized by a sequence of static PSO-
based optimizations, followed by re-diversification of the particles to cover the
possible poses in the next time step. The re-diversification of the particle i can
be realized on the basis of normal distribution concentrated around the state
estimate Z;_1, z;" «— N (&1, %).

In the original PSO, convergence of particles towards its attractors is not
guaranteed. Clerc and Kennedy [2] studied the mechanisms to improve the con-
vergence speed and proposed constriction methodologies to ensure convergence
and to fine-tune the search. They proposed to utilize a constriction factor w in
the following form of the formula expressing the i-th particle’s velocity:
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where constants ¢; and ¢ are responsible for balancing the influence of the
individual’s knowledge and that of the group, respectively, r1 and 79 stand for
uniformly distributed random numbers, 2 denotes position of the i-th particle,
p* is the local best position of particle, whereas g is the global best position.

In our approach the value of w depends on annealing factor « as follows:

w=-08a+14 (2)

where a = 0.1 + KLH, k = 0,1,...,K, and K is the number of iterations.
The annealing factor is also used to smooth the objective function. The larger
the iteration number is, the smaller is the smoothing. In consequence, in the
last iteration the algorithm utilizes the non-smoothed function. The algorithm
termed as annealed PSO (APSO) [8] can be expressed as follows:

1. For each particle ¢
2. initialize v/"°

3. ;" ~ N(gi1,%0)

4op=a fi = 1)

5. up = fi, up = (up)* .

6. ¢* =argmin; 4}, gt =p;, w =u;

7. Fork=0,1,...,K

8. update w, on the basis of (2)

9. @G = argmin; round(num_bins - @)

10. For each particle ¢
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12. PRt = waLUf’k + e (pi — 20F) + cara(gi — M)
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16.  if fi < w, then g, = "™, w, = fi

The smoothed objective functions are quantized, see 9th line in the pseudo-
code. Owing to this the similar function values are clustered into the same seg-
ment of values. In each iteration the algorithm determines the set G of the
particles, which after the quantization of the smoothed fitness function from the
previous iteration, assumed the smallest values (the best fitness scores), see 9th
line in the pseudo-code. For each particle ¢ the algorithm selects the global best
particle g¢ from {G'Ug;}, where g; determines the current global best particle of
the swarm. By means of this operation the swarm selects the global best location
from a pool of candidate best locations to force the PSO jump out of stagnation.
We found that this operation contributes considerably toward better tracking,
particularly in case of noisy observations. It is worth noting that in the literature
devoted to dynamic optimization the problem of optimization of noisy objective
functions is considered very rarely.

The fitness score is calculated on the basis of following expression: f(z) =
1= (fi(z)®r - fa(x)™2), where w denotes weighting coeflicients that were deter-
mined experimentally. The function fi(x) reflects the degree of overlap between
the segmented body parts and the projected model’s parts into 2D image. The
function fo(x) reflects the edge distance-based fitness [8].



3 Parallel APSO for Real-time Motion Tracking

PSO is parallel in nature. To shorten the optimization time several studies on
parallelizing the algorithm were done so far. However, the majority of the al-
gorithms are for the static optimization. In object tracking the calculation of
the objective function is the most consuming operation. Moreover, in multi-view
tracking the 3D model is projected and then rendered in each camera’s view.
Therefore, in our approach the objective function is calculated by OpenMP
threads [1], which communicate via the shared memory, see Fig. 1. The PSO
thread has access to the shared memory with the objective function values,
which were determined by the local threads as well as the values of the objec-
tive functions that were calculated by the cooperating swarm on another cores
or computational nodes. We employ asynchronous exchange of the best particle
location and its fitness score. In particular, if a sub-swarm, which as the first one
finished object tracking in a given frame, it carries out the re-diversification of
the particles using its current global best particle, without waiting for the global
best optimum determined by the participating sub-swarms. It is worth mention-
ing that in such circumstances the estimate of the object state is determined
using the available global best locations of cooperating sub-swarms.

- OpenMP

2‘ élhreads 2 2

shared memory

\
PSO
thread 2 )
A 4

shared memory

thread

N\ Commum\:a(mné

Fig.1: The communication in parallel PSO for real-time object tracking.

4 Experimental results

The algorithm was evaluated on two image sequences acquired by four synchro-
nized and calibrated cameras. The color images of size 1920 x 1080 were acquired
with rate 25 fps and then subsampled at a factor of 4 both horizontally and ver-
tically. Each pair of the cameras is approximately perpendicular to the other
two. A commercial motion capture (moCap) system from Vicon Nexus provides
ground truth data at rate of 100 Hz. The system employs reflective markers and
sixteen cameras to recover the 3D location of such markers. The synchronization
between the moCap and multi-camera system is based on hardware from Vicon.

All computations were conducted on a computer cluster that was composed
of 2 identical machines connected with a TCP/IP 1 GigE (Gigabit Ethernet)
local area network. Each PC node is equipped with two six-core Intel Xeon 5690



3.46 GHz CPUs. They support Hyper-Threading technology, which enables a
single core to act like multiple cores. In this way, a core with Hyper-Threading
appears to be more than one core. For example, if the CPU is a dual core
processor with Hyper-Threading, the operating system will process as many as
four threads through it simultaneously.

The accuracy of human motion tracking was evaluated experimentally in
scenarios with a walking person. Although we focused on tracking of torso and
legs, we also estimated the head’s pose as well as the pose of both arms. The
body pose is described by position and orientation of the pelvis in the global
coordinate system as well as relative angles between the connected limbs. The
overlap of the projected 3D model on the subject undergoing tracking can be
utilized to illustrate the quality of tracking, see Fig. 2, which depicts the frontal

Fig.2: Articulated 3D human body tracking. Shown are results in frames #20,
40, 60, 80, 100, 120, 140, obtained by APSO. The left sub-images are seen from
view 1, whereas the right ones are seen from view 4.

and side views from two nearly perpendicular cameras. As we can see, the overlap
of the projected model on both images is quite good. The estimation of the 3D
pose was done in 10 iterations using 300 particles. Given the estimated human
pose we calculated the location of virtual markers on the model. The location
of such markers on the body corresponds to the location of the real markers on
the person undergoing tracking. The pose error in each frame was calculated
as the average Euclidean distance between corresponding markers. We used 39
markers, where 4 markers were placed on the head, 7 markers on each arm, 12
on the legs, 5 on the torso and 4 markers were attached to the pelvis.

The results obtained on two image sequences were compared by analyses
carried out both through qualitative visual evaluations as well as quantitatively
by the use of the motion capture data as ground truth. The tracking was done
using various number of particle swarms and PC nodes, see Tab. 1. The pool of
the particles was distributed evenly among the sub-swarms. The results shown
in Tab. 1 demonstrate that the motion tracker based on APSO is better than
PSO-based one in terms of the tracking accuracy. As we can observe, the tracking
error increases slightly with the number of the swarms. The reason for the poorer
accuracy of tracking is that we employ the non-blocking parallel PSO. At two
PC nodes the processing time of the blocking parallel PSO is a dozen or so
milliseconds larger in comparison to the non-blocking version. The discussed
results were obtained in ten runs of the algorithm with unlike initializations.



Table 1: Average errors [mm] for M = 39 markers in two image sequences.

#threads Seq. 1 Seq. 2
#swarms| #particles | PC1 | PC2 PSO APSO PSO APSO
1 300 4 0 [59.3+33.4/54.9 + 30.8(57.7 + 33.6(52.3 + 27.3

2 x 150 4 4 [59.5£33.0(54.2 £29.9/61.5+ 37.0{52.2 + 28.2
3 x 100 8 4 159.9 4+ 35.3(55.3 + 31.2(62.2 £ 38.6/56.9 £ 37.0
4 x 75 8 8 |59.5 £ 34.0|54.8 £ 30.3(60.6 + 37.3|54.4 £ 33.7
6 x 50 12 12 162.6 £ 36.558.2 £ 32.2(62.5 £ 42.1|61.5 £+ 43.6
8 x 38 16 16 |73.0 £46.6|57.7 & 31.1(69.3 £ 47.9|62.3 £ 43.5
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Figure 3 depicts the tracking errors versus frame number that were obtained
during motion tracking using APSO and PSO-based motion trackers. The ex-
periments were done on an image sequence acquired by the four camera system.
As we can observe in the plots shown at Fig. 3, the tracking accuracy obtained
by the APSO-based tracker is much better. In particular, in some frames the
accuracy of PSO-based tracker considerably drops. This takes place because the
PSO is unable to find the global extremum in a given number of iterations.
Similar effect has been observed in many runs of the algorithms with unlike ini-
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Fig. 3: Tracking errors [mm] versus frame number for PSO and APSO for various
number of particles in the sub-swarms.



tializations. In general, APSO performs better than PSO over the whole image
sequences, attaining much better accurateness and robustness.

In Fig. 4 are shown the errors that were obtained using single and eight
swarms. In a APSO consisting of eight sub-swarms the optimizations were done
using 38 particles in each swarm. As we can see, the tracking errors of both legs
are something larger in comparison to tracking errors of the torso.
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Fig.4: Tracking errors [mm]| versus frame number at 1 and 2 PCs using 1 and 8
particle swarms, respectively.

In Tab. 2 are demonstrated the tracking times that were obtained for various
distributions of the sub-swarms into the computational resources. As we can
observe, for identical number of the sub-swarms the computation time is larger
on single computer in comparison to a configuration consisting of two nodes
connected by 1 GigE network. This means that the time necessary for scheduling
the threads is larger in comparison to time needed for information exchange in a

Table 2: Tracking time [ms] and speed-up for a single frame.

#threads Seq. 1 Seq. 2
#swarms| #particles | PC1 | PC2 |time [ms]|speed-up|time [ms]|speed-up

1 300 4 0 367.0 - 333.2 -

2 2 x 150 8 0 195.7 1.9 182.5 1.8
2 2 x 150 4 4 195.9 1.9 183.1 1.8
3 3 x 100 12 0 163.8 2.2 153.0 2.2
3 3 x 100 8 4 136.6 2.7 122.4 2.7
4 4x 75 16 0 138.9 2.6 125.7 2.7
4 4x75 8 8 126.2 2.9 116.8 2.9
6 6 x 50 12 12 86.6 4.2 80.5 4.1
8 8 x 38 16 16 70.9 5.2 67.6 4.9




distributed system. The image processing and analysis takes about 0.2 sec. and
it is not included in the times shown in Tab. 2. The complete human motion
capture system was written in C/C++ and works in real-time. It is worth noting
that in [6], the processing time of Lee walk sequence from Brown University is
larger than one hour.

5 Conclusions

We presented a marker-less motion capture system for real-time tracking of 3D
full body motion. The performance of the proposed algorithms was evaluated on
two image sequences captured by 4 cameras. In many quantitative comparisons
of APSO and the competing PSO algorithm, APSO expressed better tracking
accuracy. APSO shows good global search ability making it well suited for uncon-
strained motion tracking, where no strong prior or dynamic model is available.
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