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Abstract. In this paper we propose a particle swarm optimization with
resampling for marker-less body tracking. The resampling is employed to
select a record of the best particles according to the weights of particles
making up the swarm. The algorithm better copes with noise and reduces
the premature stagnation. Experiments on 4-camera datasets show the
robustness and accuracy of our method. It was evaluated on nine se-
quences using ground truth provided by Vicon. The full body motion
tracking was conducted in real-time on two PC nodes, each of them with
two multi-core CPUs with hyper-threading, connected by 1 GigE.

1 Introduction

In 1995, Dyer et al. [6] in Motion Capture White Paper, which was issued by
SGI wrote that "motion capture is one of the hottest topics in computer graphics
today”. As stated in the mentioned paper, motion capture involves measuring an
object’s position and orientation in physical space, then recording that informa-
tion in a computer-usable form. Since then it has been published many survey
papers, for example [12][13], and the number of papers grows exponentially.

In the last years many motion capture (also known as MoCap) systems have
been developed for gaming and animation [14], sport [1], rehabilitation treat-
ment and medical applications [15][18]. In optical MoCap systems either passive
reflective markers or active markers are attached to a performer. The locations
of the markers on the suit are designed such that the required body parts (e.g.
joints) are covered, and a system of fixed cameras records the position of such
markers. In general, existing commercial MoCap systems are only suitable for
a well controlled indoor environment. In contrast, marker-less human motion
capture consists in capturing human motion without any markers, by operating
on image sequences only. The recovery of human body movements from image
data without using markers is a very challenging task. The major difficulties
are due to large number of degrees of freedom (DOFSs) of the human body pose



that needs to be recovered, large variability in human appearance, noisy image
observations, self-occlusion, and complex human motions.

Most previous work on human motion tracking has focused on the use of 3D
articulated models of various complexity to recover the position, orientation and
joint angles. Such models can be perceived as a kinematic chain, where at least
eleven elements correspond to the major body parts. Usually, the 3D geometric
model is constructed from truncated cones or cylinders and is used to generate
contours, which can be compared with edge contours. A lot of hypothetical body
poses is generated, which are projected into image plane to find a configuration
of the 3D model, whose projection best fits the image observations.

Particle filters [7] are one of the most popular techniques for body track-
ing. However, given the high-dimensionality of the models to be tracked, the
number of required particles to properly populate the space of possible solutions
makes the pose tracking computationally very expensive. Deutscher and Reid [5]
developed an annealed particle filter (APF), which adopts an annealing scheme
together with the stochastic sampling to achieve better concentration of the par-
ticle spread close to the extremum. Additionally, a crossover operation is utilized
to achieve improved particle’s diversity. Recently, particle swarm optimization
(PSO) [9] has been successfully applied to body motion tracking [17]. In PSO
each particle follows simple position and velocity update equations. Thanks to in-
teraction between particles a collective behavior arises. It leads to the emergence
of global and collective search capabilities, which allow the particles to gravitate
towards the global extremum. Human motion tracking can be achieved by a se-
quence of static PSO-based optimizations, followed by re-diversification of the
particles to cover the possible poses in the next time step.

In recent work, John et al. propose a PSO-based hierarchical approach for full
body pose tracking [8]. However, the discussed algorithm can have difficulties in
escaping from local maxima determined in preceding hierarchical levels. In [10]
a parallel PSO algorithm for full body tracking in multi-view image sequences
has been proposed. However, the tracking has been done using an ordinary PSO,
which has been parallelized and then executed on several multi-core CPUs. In
more recent work [11], a PSO algorithm with a pool of best particles has been
proposed to achieve better tracking. The pool of candidate best solutions has
been obtained through smoothing the objective functions in an annealing scheme
and then quantizing them. The better performance has been achieved owing to
the ability of the algorithm to deal with observation ambiguities and noise.

Resampling is perhaps the most obvious and simple approach to deal with
noise. It is one of the techniques to improve the performance of evolutionary
algorithms (EAs) in noisy environment [4]. Motivated by the work mentioned
above we elaborated a particle swarm optimization algorithm with resampling to
achieve full body tracking in real-time. In contrast to [4], which handles multi-
objective problems through mutation operator whose range of action varies over
time, our algorithm relies on resampling. During tracking a repository of best
particles is selected according to importance weights. One of the contributions of
this paper is a parallel particle swarm algorithm with resampling, which allows
us to track the full body in real-time using multi-view images.



2 Annealed PSO with Resampling

The ordinary PSO algorithm consists of particles representing candidate solu-
tions. Particles move through the solution space, and undergo evaluation ac-
cording to some fitness function f(). The movements of the particles are guided
by their own finest known locations in the search-space as well as the entire
swarm’s best location. While the swarm as a whole gravitates towards the global
extremum, the individual particles are capable of ignoring many local optima.
The object tracking can be realized by a sequence of static PSO-based optimiza-
tions, followed by re-diversification of the particles to cover the possible poses in
the next time step. The re-diversification of the particle ¢ can be realized on the
basis of normal distribution concentrated around the state estimate determined
in the previous frame.

In the ordinary PSO, the convergence of particles towards its attractors is
not guaranteed. In order to ensure convergence and to fine-tune the search, Clerc
and Kennedy [3] employed a constriction factor w in the following form of the
formula expressing the i-th particle’s velocity:

VPR = W[ ey (P — 2F) 4 cora (g — 2BF)) (1)

where constants ¢; and co are responsible for balancing the influence of the
individual’s knowledge and that of the group, respectively, r; and ro stand for
uniformly distributed random numbers, 2 denotes position of the i-th particle,
p* is the local best position of particle, whereas ¢ is the global best position.

In our approach the value of w depends on annealing factor « as follows:

w=—08a+1.4 (2)

where o« = 0.1 + KLJrU k =0,1,...,K, and K is the number of iterations.
The annealing factor is also used to smooth the objective function. The larger
the iteration number is, the smaller is the smoothing. In consequence, in the
last iteration the algorithm utilizes the non-smoothed function. The algorithm
termed as annealed PSO with resampling (RAPSO) can be expressed as follows:
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The initialization of the algorithm takes place at the beginning of each frame,
see lines 1-6 of the pseudo-code. Given the location g;_; of the best particle in
time ¢ — 1, for each particle ¢ the algorithm determines initial location z? and
initial velocity v?. Afterwards, best particle locations pi and corresponding fitness
values u! are determined. For such fitness values the smoothed values @¢, the best
location ¢; and the corresponding best fitness value y; are calculated. At the
beginning of each iteration k, the algorithm updates w,, and linearly scales @ to
range [0, 1]. It then calculates the normalized weights w!. Finally, a record of best
particles G is selected according to importance weights w{, see 12th line in the
pseudo-code. Each particle selects best particle form such a record, determines
its own velocity and location, see lines 14-16 in the pseudo-code. Finally, best
locations with the corresponding fitness values are updated.

The fitness score is calculated on the basis of following expression: f(z) =1—
(f1(z)*r - fo(x)®2), where w denotes weighting coefficients that were determined
experimentally. The function f;(z) reflects the degree of overlap between the
extracted body and the projected model’s into 2D image. The function fo(x)
reflects the edge distance-based fitness.

The calculation of the objective function is the most consuming operation.
Moreover, in multi-view tracking the 3D model is projected and then rendered in
each camera’s view. Therefore, in our approach the objective function is calcu-
lated by OpenMP threads [2], which communicate via the shared memory. The
PSO thread has access to the shared memory with the objective function values,
which were determined by the local threads as well as the values of the objec-
tive functions that were calculated by the cooperating swarm on another cores
or computational nodes. We employ asynchronous exchange of the best particle
location and its fitness score. In particular, if a sub-swarm, which as the first one
finished object tracking in a given frame, it carries out the re-diversification of
the particles using its current global best particle, without waiting for the global
best optimum determined by the participating sub-swarms. It is worth mention-
ing that in such circumstances the estimate of the object state is determined
using the available global best locations of cooperating sub-swarms.

3 Experimental Results

The proposed algorithm was evaluated on several image sequences, which were
acquired by four synchronized and calibrated cameras. Each pair of the cameras
is approximately perpendicular to the other camera pair. The cameras acquire
color images of size 1920 x 1080 at 25 fps. In experiments we employed images



sub-sampled by 2 in both the z and y directions. A commercial motion capture
(MoCap) system from Vicon Nexus was employed to provide the ground truth
data. The system uses reflective markers and sixteen cameras to recover the 3D
location of such markers. The system is capable of differentiating overlapping
markers from each camera’s view. The data are delivered with rate of 100 Hz and
the synchronization between the MoCap and multi-camera system is achieved
using hardware from Vicon Giganet Lab. The location of the cameras and layout
of laboratory is depicted in Fig. 1.

[T,

Fig.1: Layout of the laboratory with four cameras. The images illustrate the
initial model configuration, overlaid on the image in first frame and seen in view
1, 2, 3 and 4.

Our algorithm was tested on a variety of sequences with walking humans,
observed from different viewpoints. To provide quantitative evaluation, the pose
of walking subject was estimated by our algorithm. On the basis of the pose
estimates, the configuration of the 3D model was determined. The model was
then overlaid on the images. In each image sequence the same actor performed
two walks, consisting in following a virtual line joining two opposite cameras and
following a virtual line joining two nonconsecutive laboratory corners. The first
subsequence is referred as ‘straight’, whereas the second one is called ‘diagonal’.
Figure 2 depicts some results that were obtained in a sequence #1 with a person

Fig.2: Articulated 3D human body tracking in four camera setup. Shown are
results in frames #0, 20, 40, 60, 80, 100. The left sub-images are seen from
view 1, whereas the right ones are seen from view 2.

following a line joining two nonconsecutive laboratory corners. The degree of
overlap of the projected 3D model on the performer illustrates the accuracy of
the tracking. Focusing on tracking of the torso and the legs, we estimated also
the head’s pose as well as the pose of both arms. The configuration of the body
is parameterized by the position and the orientation of the pelvis in the global
coordinate system and the angles between the connected limbs. The human
body model consists of eleven rigid body parts, each of which is represented by a



truncated cone. The model represents pelvis, upper torso, two upper arms, two
lower arms, two thighs, two lower legs and the head, see also Fig. 2.

In Fig. 3 are depicted some results that were obtained in the same image
sequence, but with the performer following a virtual line between two opposite
cameras. The figure depicts model overlaid on the image from right profile view
and the frontal view. The discussed results were obtained by RAPSO algorithm
in 20 iterations per frame, consisting of 300 particles.

Fig. 3: Articulated 3D human body tracking in four camera setup using frontal
and side views. Shown are results in frames #0, 20, 40, 60, 80, 100, 120. Left
sub-images are seen from view 1, whereas the right ones are seen from view 2.

The plots in Fig. 4 illustrate the accuracy of motion estimation for some
joints. As we can observe the tracking error of both forearms is something smaller
in comparison to the remaining limbs. The average error of both knees is about
50 mm, whereas the maximal errors do not exceed 100 mm for the left knee and
slightly exceeds 100 mm for the right one. The discussed results were obtained
by RAPSO algorithm in 20 iterations and using 300 particles.
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Fig.4: Tracking errors [mm] versus frame number.



Figure 5 depicts the distance between ankles, which was registered in se-
quences P2, P3, and P4. In the sequence P4 the performer walked in the direc-
tion to the camera, whereas in sequence P2 and P3 the person moved diagonally.
The sequences P2 and P4 depict the best results of the diagonal and the straight
walks, respectively, whereas the sequence P3 depicts the poorest result of the
diagonal walks. On the basis of the motion estimates the gait cycle is can be
detected with good precision.
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Fig.5: Distance between ankles during walking in sequences P2 (diagonal), P3
(diagonal) and P4 (straight).

In Tab. 1 are presented some quantitative results that were obtained on four
image sequences. The errors were calculated using 39 markers. For each frame
they were computed as average Euclidean distance between individual markers
and the recovered 3D joint locations [16]. For each sequence they were then
averaged over ten runs with unlike initializations.

Table 1: Average errors for M = 39 markers in four image sequences.

Seq. 1 (P1)|Seq. 2 (P1)|Seq. 3 (P6)|Seq. 4 (P6)

#particles| it. | error [mm] | error [mm)] | error [mm] | error [mm]

100 10 |50.5+28.7(56.7 £ 33.0|56.6 &= 37.1 | 54.4 £ 28.5

PSO 100 20 |45.04+23.6(49.6 £27.2(46.2 £25.9(47.3 £23.8
300 10 |45.24+£25.5(48.1£25.0|47.6 +26.4[48.7 £24.4

300 20 (41.9+£21.2|45.44+24.4|41.2£22.3|43.3+£21.8

100 10 (44.7 £23.8|51.1 £27.6|46.7 £ 26.6/45.7 £ 23.8

APSO 100 20 [39.5 +20.2|46.0 + 26.3 [40.3 £+ 22.8|40.8 + 20.1
300 10 |39.6 £19.7|44.7 £ 23.8|40.6 £+ 22.9(39.6 = 19.3

300 20 |37.0+18.6|40.4 +19.9|35.8 +19.6|/36.3 = 16.6

100 10 |46.9 +27.9(50.2 +27.2|48.8 + 28.050.9 £ 26.7

RAPSO 100 20 [40.0 £20.7|45.6 £23.1{41.3 £23.7|40.1 £19.6
300 10 [40.6 £20.5|45.0 & 25.2|43.0 & 25.0|40.5 & 19.7

300 20 (36.4 +17.4/40.4+20.5[36.2£20.1|35.3 £15.7




In Tab. 2 are results illustrating the tracking accuracy of APSO and RAPSO
algorithms. For each sequence the bold indicates the best results for the diagonal
and the straight walks. As we can observe, both algorithms allow full body
tracking with similar accuracy.

Table 2: Average errors [mm] for M = 39 markers using 300 particles, in 20
iterations.

APSO RAPSO

Person | Straight |Diagonally | Straight |Diagonally
P1 |37.0+18.6|40.4 £19.9|36.4 4+ 17.4|40.4 £+ 20.5
P2 |45.5+25.8(56.5 + 38.2|44.6 - 24.7|56.9 & 38.9
P3  |43.4+23.0(45.8£17.7|42.7 +20.8|46.1 + 19.0
P4 |43.2 £21.3/43.1 £19.3|45.0 £23.3|41.9 + 18.3
P5 [54.1 +£19.3|52.6 + 16.6/54.6 + 20.6 | 53.5 + 16.7
P6 |35.8+19.6/36.3+16.6(/36.2+20.1|35.3 +15.7
p7 50.0 +27.3(48.6 +20.5(49.6 + 26.3|47.1 + 18.8
P8 |37.8 £25.4/38.2 +£19.4/38.2+25.1|38.6 +21.2
P9 |45.6 £24.7|41.7 +21.2|/45.9 + 25.3|42.0 £ 20.7

In Tab. 3 are demonstrated the tracking times, which we achieved for vari-
ous distributions of the sub-swarms/particles into the computational resources.
As we can notice, for the same number of the sub-swarms the computation

Table 3: Tracking time [ms] and speed-up for single frame.

#threads Seq. 1 (P1)
#swarms| #particles | PC1 | PC2 |time [ms]|speed-up

1 300 4 0 326.7 -
2 2 x 150 8 0 175.3 1.9
2 2 x 150 4 4 172.5 1.9
3 3 x 100 12 0 147.7 2.2
3 3 x 100 8 4 123.1 2.7
4 4x75 16 0 125.6 2.6
4 4 x75 8 8 88.4 3.7
6 6 x 50 12 12 79.2 4.1
8 8 x 38 16 16 65.9 5.0




time is larger on single computer in comparison to a configuration consisting
of two nodes connected by 1 GigE network. This means that the time needed
for threads scheduling is larger than the time needed for information exchange
in a distributed system. The image processing and analysis takes about 0.2 sec.
and it is not included in the times shown in Tab. 3. For the RAPSO algorithm
decomposed into two PCs and executing 8 swarms, the motion tracking can be
done at about 15 fps. The complete human motion capture system was written
in C/C++. The experiments were conducted on two desktop PCs, each equipped
with two XEON X5690, 3.46 GHz (6-core) CPUs. The nodes were connected by
a TCP/IP 1 GigE (Gigabit Ethernet) local area network. The parallelization of
the code was done using OpenMP directives. It is worth noting that on Lee walk
sequence from Brown University, the processing time of the algorithm proposed
in [8], which has been implemented in Matlab, is larger than one hour.

In Tab. 4 are depicted average errors that were obtained on sequence P1
using various number of sub-swarms. As we can observe, the tracking accuracy
is far better in comparison to tracking accuracy that was achieved in [10]. The
results presented in Tab. 3-4 were achieved on images from sequence P1 sub-
sampled by 4 and therefore the tracking accuracy on single computer is worse
in comparison to the relevant accuracy shown in Tab. 2.

Table 4: Average errors [mm]| obtained with various number of sub-swarms.

#swarms| #particles | error [mm] | std. dev. [mm]
1 300 41.9 23.6
2 2 x 150 43.0 24.2
3 2 x 100 44.9 25.6
4 4 x 75 42.6 22.7
6 6 x 50 45.4 27.3
8 8 x 38 50.6 35.8

4 Conclusions

We have proposed a particle swarm optimization with resampling for full body
tracking. Owing to resampling the algorithm better copes with noise and reduces
premature stagnation. The parallel algorithm, which was executed on two PC
nodes with multi-core CPUs allowed us to perform real-time tracking at 15 fps.
The accuracy of the algorithm for the real-time full body tracking is better in
comparison to recently proposed parallel PSO algorithm. Experimental results
on various multi-view sequences of walking subjects demonstrate the effective-
ness of the approach.
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