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Abstract. The estimation of full body pose in monocular images is a
very difficult problem. In 3D-model based motion tracking the challenges
arise as at least one-third of degrees of freedom of the human pose that
needs to be recovered is nearly unobservable in any given monocular
image. In this paper, we deal with high dimensionality of the search
space through estimating the pose in a hierarchical manner using Particle
Swarm Optimization. Our method fits the projected body parts of an
articulated model to detected body parts at color images with support
of edge distance transform. The algorithm was evaluated quantitatively
through the use of the motion capture data as ground truth.

1 Introduction

At present human behavior understanding is becoming one of the most active
and extensive research topics of artificial intelligence and cognitive sciences. The
strong interest is driven by broad spectrum of applications in several areas such
as visual surveillance, human-machine-interaction and augmented reality. Track-
ing of human behavior inherently involves localization of body parts and estima-
tion of the body pose [11]. Pose estimation can be approached with different ways
depending on the image sensor configuration and the scenarios. The approaches
can be categorized as either model-based and model-free ones [9]. In [13], an
example-based approach for view-invariant estimation of 3D pose of upper body
using single image has been proposed. In model-based approach, which uses a
priori model of the subject to guide the pose estimation, the markerless motion
tracking is typically more robust and accurate. In such an approach, the pose
estimation is usually formulated as an optimization problem aiming at seeking
the pose parameters, which minimize the errors between the projected 3D body
segments and the image observations. One of the major difficulties in recovering
human pose from 2D images is the high number of degrees-of-freedom (DOF)
in the body’s movement that has to be estimated. Generally, a human body
consists of no less than 10 large body parts, equating to more than 20 DOF that
are needed for describing realistic human movements.

Reconstructing 3D human poses from monocular images is considerably more
difficult than 3D pose estimate from multiple views. The challenges to be ad-
dressed in single camera-based pose estimation are depth and observation ambi-
guities, self-occlusions, and last but not least the matching imperfect and very
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flexible model to cluttered images. Observation ambiguities take place since any
image observation can be mapped to several 3D human poses. Besides the dif-
ficulties mentioned above, for any realistic human model at least one-third of
DOFs are almost unobservable in any given monocular image. In consequence,
without depth information it is challenging to reconstruct skeleton in 3D. A suc-
cessful approach to recovering 3D human body pose from monocular images is
presented in [1], which consists in the use of direct nonlinear regression of join an-
gles against histogram-of-shape-context silhouette shape descriptors. The most
successful algorithm to date is based on propagating a mixture of Gaussians,
which approximate the probability density functions representing the probable
3D poses [14]. The key contribution is efficient and exhaustive searching of the
cost surface relating the candidate body configurations to image features. How-
ever, it is unclear if without explicit mechanism for re-initialization the propa-
gation of multimodal distribution over longer period of time remains reliable.

The typical framework to human pose estimation is to fit the geometrical
models to the image features by the use a deterministic or stochastic strategy.
In 3D model based estimation of the human pose in monocular image sequences
the particle filters are widely used. Particle filters [3] are recursive Bayesian filters
that are based on Monte Carlo simulations. They approximate a posterior distri-
bution for the configuration of a human body given a series of observations. The
high dimensionality of articulated body motion requires huge number of particles
to represent well the posterior probability of the states. In such spaces, sample
impoverishment may prevent particle filters from maintaining multimodal dis-
tribution for long periods of time. Therefore, many efforts have been spent in
developing methods for confining the search space to promising regions with true
body pose. In [12], Schmidt et al. proposed a kernel particle filter to effectively
explore the probability distributions and achieved reliable real-time tracking of
the upper-body in monocular image sequences. Another possibility to constrain
the configuration space is to use hierarchical search. In such an approach, a
part of the articulated model is localized independently in advance, and then its
location is used to constrain the search for the remaining limbs. In [4], an ap-
proach called search space decomposition is proposed, where on the basis of color
cues the torso is localized first and then it is used to confine the search for the
limbs. Recently, Particle Swarm Optimization (PSO) algorithm was proposed to
achieve full body motion tracking using single [8] and multiple cameras [15][5].
PSO is a population based stochastic optimization technique [6], which shares
many similarities with evolutionary computation techniques. It has been shown
to perform well on many nonlinear and multimodal optimization problems.

In this paper, we present an approach for 3D model based reconstructing the
3-dimensional motions of human figure in monocularly-viewed image sequences.
Full body pose estimation is performed in a hierarchical manner using PSO. At
the beginning of each frame we determine the pose of the torso and afterwards
the pose of the remaining limbs. To obtain reliable motion tracking we segment of
the person’s silhouette into torso and limbs. In order to obtain better orientation
of the torso we take into account the direction of person’s walking.
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2 PSO for Dynamic Optimization

PSO maintains a swarm of particles, where each one represents a candidate solu-
tion. Every particle determines its own position, moves with its own velocity in
the multidimensional search space and determines its fitness using an objective
function f(z). At the beginning each individual is initialized with a random po-
sition and velocity. During searching for the best fitness each particle is attracted
towards the position that is affected by the best position p; found so far by itself
and the global best position g found by the whole swarm. The i-th particle’s
velocity and position are updated according to the following two equations:

oF = wol + erri(p; — 2F) + cora(g — 2f) (1)

xf“ = xf + pftt (2)

2

where the constants ¢; and ¢y are used to balance the influence of the individual’s
knowledge and that of the group, respectively, 1 and ry are uniformly distributed
random numbers, x; is position of the i-th particle, p; is the local best position
of particle 7, whereas g stands for the global best position, and w is an inertia
constant. The swarm stops the updating when a termination criterion is met.
Because the pose tracking is a dynamic optimization problem, in order to cover
possible pose changes the particles are propagated according to weak transition
model when a new image becomes available.

3 3D Body Model and Cost Function

3.1 Human Body Model

The articulated human body model is represented as a kinematic tree consisting
of 11 segments. It is made of truncated cones that model the pelvis, torso/head,
upper and lower arm and legs. Its 3D pose is defined by 26 DOF and it is
determined by position and orientation of the pelvis in the global coordinate
system and the relative angles between the connected limbs. The perspective
projection is used in mapping the model onto 2D image plane. In this way we
attain the image of the 3D model in a given configuration, which can then be
matched to the person extracted through image analysis. The aim of the tracking
is to estimate the pose of the pelvis and the joint angles and this is achieved by
maximizing the fitting cost.

3.2 Body Part Detection

Our approach to full body motion tracking in monocular images is motivated
by findings from other previous work, which stresses the importance of good 2D
features to achieve reliable human pose estimation, cf. [10]. However, detection
of body parts, such as torso and the limbs in color images is difficult due to
variations caused by varying shape, appearance, clothing, etc.
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In first stage of our algorithm the background subtraction is performed us-
ing algorithm [2]. The binary foreground image is then employed in determining
the silhouette-overlap degree. The silhouette features extracted via background
subtraction are complemented by image edges, which contribute towards more
precise aligning the body parts. At this stage a cost of fitting the projected model
edges to the image edges is determined. The most common approach to edge de-
tection is based on image gradient, which shares many properties with optical
flow. In particular, the gradient features are independent from background sub-
traction. Gradient angle is invariant to global changes of image intensities. In
contrast to optical flow, gradients features are discriminative for both moving
and non-moving body parts. In our approach, the gradient magnitude is masked
by the closed image of the foreground. In this fashion we obtain edges belonging
only to the person undergoing tracking. They are then employed to generate the
edge distance map, see also Fig. 1. The distance map assigns each pixel a value
that is the distance between that pixel and the nearest nonzero edge pixel. In
our implementation we employ chessboard distance and limit the number of it-
erations on the chain propagation to three. A color histogram in HSI color space,
quantized into 8 x 8 x 8 bins was used to approximate the distribution of the skin
color. The skin color areas were detected via histogram backprojection and then
refined using a skin-locus [7]. Owing to skin-locus it is possible to successfully
delineate the skin areas even in front of wooden planking, see also images in first
row at Fig. 1. The torso has been detected using histogram-based model of color
distribution in HSI color space. The remaining part of the foreground blob was
segmented as legs.

Fig. 1. Input images (upper row), segmented body parts (middle row), edge distance
map (bottom row).
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3.3 Hierarchical Optimization and Objective Function

In hierarchical fitting the pose of the body parts, which are the most predictable
should be estimated first. Therefore, at the beginning of each time step we es-
timate the position of the torso. The location is determined with regard to the
torso area delineated in the image. During determining the orientation of the
torso we take into account the direction of motion of the walking person. With
the help of camera calibration we determine the contact point with the floor
for both legs or single leg. Given such contact point(s), we determine the pose
of the legs. Finally, using the segmented forearms and/or arms we estimate the
pose of both hands. In hierarchical PSO we used the following fitness function:
f(x) = 0.(x)* x e (x)!= | z € {torso,legs,skin}, where o, denotes the sil-
houette overlap term, whereas e, stands for the edge distance-based fitness. In
ordinary PSO we utilized the following fitness function: f(z) = o(z)%* xe(z)! 1,
where o(z) = oT'(z) + BL(x) + vS(z), where a+ S+~ =1 and T'(x), L(z), S(x)
stand for silhouette overlap term for torso, legs and skin, respectively.

4 Experimental Results

The PSO-based algorithms for full body motion tracking were compared by
analyses carried out both through qualitative visual evaluations as well as quan-
titatively through the use of the motion capture data as ground truth. A GigE
vision camera was used to acquire the color images of size 1920 x 1080 at 25
fps. Human motion tracking was performed on the cropped images with spatial
resolution 740 x 800 pixels, see Fig. 2. An average silhouette height was approx-
imately 300 pixels and varied from 250 pixels to 425 pixels. The swarm was
initialized around the default initial pose, see the most left image at Fig. 1.

Fig. 2. Scene view with overlaid person, shot in frames #64, 128, 160,192 and 240.

At Fig. 3 are shown some tracking results that were obtained by ordinary and
hierarchical PSO. The overlap of the projected 3D model on the subject under-
going tracking is shown to illustrate the quality of tracking. In the experiments
presented below we focused on analyses of motion of walking people with bared
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and freely swinging arms. The analysis of the human way of walking, termed gait
analysis, has attracted considerable attention in recent years and can be utilized
in several applications ranging from medical applications to surveillance.
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Fig. 3. Full body motion tracking in monocular images.

We evaluated the accuracy of the PSO-based algorithm for motion tracking
on a number of image sequences of a walking person taken from a fixed viewpoint.
In Tab. 1 are depicted some quantitative results, which are averages over ten runs
of the motion tracker with unlike initializations. The results were obtained on
image sequence consisting of 240 frames, see Fig. 3, in 40 iterations using PSO
consisting of 512 particles, and a configuration for hierarchical PSO with 40
iterations, 102 particles for torso, 205 for legs, and 205 particles for hands.

Table 1. Average errors for M = 39 markers.

full body | torso [left hand|right hand|left ankle|right ankle
PSO avg. err [mm] 222.3 112.6 258.5 660.8 225.8 227.1
std. dev. [mm] 83.9 40.1 122.8 150.7 95.4 153.0
HPSO avg. err [mm] 167.8 110.1 242.4 223.8 228.8 239.4
std. dev. [mm)] 66.7 229 128.1 123.0 86.5 105.8

The results for the full body, see also first column in Tab. 1, were obtained for
M = 39 markers. From the above set of markers, 4 markers were placed on the
head, 7 markers on each arm, 12 on the legs, 5 on the torso and 4 markers were
attached to the pelvis. Given such a placement of the markers on the human body
and the estimated human pose, which has been calculated by our algorithm, the
corresponding positions of virtual markers were determined and then utilized in
calculating the average Euclidean distance between corresponding markers. The
average Euclidean distance d; for each marker ¢ was calculated using real world
locations m; € R® on the basis of the following equation:

- 1 & R
&= ; |Imi (&) — mi(z)]| (3)
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where m; (&) stands for marker’s position that was calculated using the estimated
pose, m;(x) denotes the position, which has been determined using ground-truth,
whereas T stands for the number of frames. The errors reported in columns 2-6
of Tab. 1 indicate the distance errors for single markers on the considered limbs.
For each marker ¢ the standard deviation o; was calculated as follows:

1 T —\2
0; = ﬁZ(Hmi(it)—mi(wt)ll—di) (4)

t=1

The standard deviation @ shown in Tab. 1 is the average over all markers. The
errors were obtained in scenarios with walking person, see Fig. 3. As we can
observe, the hierarchical PSO algorithm outperforms the PSO based tracker.
The results shown in Tab. 1 demonstrate that in our scenario with walking
person that was shot by a monocular HD camera, the Particle Swarm Opti-
mization algorithm is capable of estimating the full body motion with promising
accuracy. The 3D reconstruction of human motion in monocular walking se-
quences is reliable in almost the whole sequence. The errors of the left hand
are slightly larger for the reason that it has undergone complete occlusion in
considerable number of frames. The mean distance error for Lee walk sequence
recorded at 30 fps and 20 fps, that was obtained in [5] is equal to 283.6 &+ 113.0
and 299.04+121.9, respectively. The error obtained by our method on our walking
sequence is far smaller owing to person segmentation into individual body parts
as well as taking into account the direction of walking and the points of floor
contact. Since the full body pose is estimated hierarchically, a large distance
error of the torso can lead to considerable distance error of the whole body.
A demo illustrating full body pose tracking using single monocular camera is
available at: http://prz.edu.pl/~bkwolek/res/icaisc12/sv_hmt.avi.

The complete human motion capture system was written in C/C++. The system
runs on Windows in both 32 bit and 64 bit modes. The entire tracking process takes
approximately 7 sec. per frame on a PC with dual CPU Intel Xeon X5690 3.46 GHz us-
ing a configuration with 512 particles and 40 iterations for PSO and a configuration for
hierarchical PSO with 40 iterations, 102 particles for torso, 205 for legs, 205 for hands.
The image processing and analysis takes about 0.45 sec. Although the customization
of the model can be completed automatically, the model is adjusted manually for each
person to be tracked.

5 Conclusions

In this paper, we have shown that a successful full body motion tracking in monocular
image sequences can be achieved using Particle Swarm Optimization and reliable seg-
mentation of person into body parts. To show the advantages of the hierarchical PSO
algorithm, we have conducted several experiments on sequences with a walking individ-
ual. The ordinary and hierarchical PSO algorithms were compared by analyses carried
out both through qualitative visual evaluations as well as quantitatively through the
use of the motion capture data as ground truth.
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