Human Fall Detection Using Kinect Sensor
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Abstract. Falls are major causes of mortality and morbidity in the el-
derly. The existing CCD-camera based solutions require time for instal-
lation, camera calibration and are not generally cheap. In this paper we
show how to achieve automatic fall detection using Kinect sensor. The
person is segmented on the basis of the updated depth reference images.
Afterwards, the distance of the person to the ground plane is calculated.
The ground plane is extracted by the RANSAC algorithm. The point
cloud belonging to the floor is determined using v-disparity images and
the Hough transform.

1 Introduction

Falling is an everyday possible accident that all of us are exposed to. A fall can
lead to severe consequences, such as fractures, and a fallen person might need
assistance at getting up again. Thus, in recent years a lot of research has been
dedicated into the development of fall detection methods [16][14]. Such methods
are designed to robustly detect falls and then to raise a medical alert. Medical
personnel can then be dispatched to the site where the alarm was activated.

As humans become old, their bodies weaken and the risk of accidental falls
raises noticeably [11]. The research results demonstrate that high percentage
of injury-related hospitalizations for seniors are the results of falls [6]. Since
the population of elderly is increasing dramatically in almost all countries of
the world, high demand for unobtrusive and assistive technology is observed.
In particular, the assistive technology can contribute toward independent living
of the elderly [3][15]. However, regardless of numerous efforts undertaken to
attain reliable and unobtrusive fall detection, current technology does not meet
the requirements of the seniors [20]. False alarms can happen while seniors are
bending over, laying down, or doing a variety of other day to day activities.
In general, current technology leads to much higher rate of false alarms when
compared with standard medical alert.

Applicable techniques for fall detection include a variety of methods. Most of
the techniques are based on body-worn or built-in devices, which are intrusive as
they require the user to wear a smart device. Such methods utilize accelerometers
or both accelerometers and gyroscopes to discriminate the fall from activities of
daily living (ADLs) [15]. However, very often on the basis of such sensors it is



hard to separate real falls from fall-like activities [2]. Bending over, laying down,
sitting down, or even setting down a purse can all resemble a fall depending on
how it was done. In consequence, these methods trigger significant number of
false alarms. What’s more, the detectors that are typically attached to a belt
around the hip, are uncomfortable to be worn during the sleep [5]. Furthermore,
their usefulness in monitoring of critical phases like getting up from the bed is
relatively poor. In addition to applications presented in scientific publications,
commercial fall detection systems are available as shown in a survey [16] with
7 examples of commercially available fall detection systems and over 40 patents
on fall detectors.

During the recent years, a lot of research has been done on detecting falls
using a wide range of sensor types [15][20], including pressure pads [19], sin-
gle CCD camera [1][18], multiple cameras [4], specialized omni-directional ones
[13] and stereo-pair cameras [7]. Video cameras offer several advantages over
other sensors including the capability of detection of various activities. The fur-
ther benefit is low intrusiveness and the possibility of remote verification of fall
events. However, the currently available solutions require time for installation,
camera calibration and they are not generally cheap. As a rule, CCD-camera
based systems require a PC computer or a notebook for image processing. The
existing video-based devices for fall detection cannot work in nightlight or low
light conditions. Additionally, the lack of depth information can lead to lots of
false alarms. Moreover, in most of such systems the privacy is not preserved
adequately.

Recently, the Kinect sensor has been successfully used in fall detection sys-
tems [12][17][8]. It is the world’s first system that at reasonable price combines
an RGB camera and a depth sensor. Unlike 2D cameras, the low-cost Kinect al-
lows tracking the body movements in 3D. Thus, if only depth images are used it
can guarantee the person’s privacy. The Kinect sensor is independent of external
light conditions, since it is equipped with an active light source. As the Kinect
uses infrared light it is able to extract depth images in a room that is dark to
our eyes.

2 Motivation and Background

Depth is very useful cue to achieve reliable person detection because humans
may not have consistent color and texture but must occupy an integrated region
in space. However, in many home scenarios is not easy to detect a person using
only depth images due to occlusions, for instance, if a person stands behind
a chair being in turn in the front to the Kinect. The software called NITE,
which is a binary distribution from PrimeSense offers skeleton tracking with the
Kinect sensor. However, this software has been developed for human computer
interaction, and not to detect the person fall. Thus, in some circumstances it
has difficulties in extracting and tracking the skeleton, see Fig. 1a-b, as well as
segmenting the person, see Fig. 1c, where we can see two segments belonging to
the person lying on the floor.



Fig. 1. NITE-based skeleton tracking during a person fall.

Because of the inconveniences mentioned above as well as the lack of the
distribution of the NITE for an embedded platform we elaborated algotithm
for person extraction on depth images at relatively low computational cost. In
order to achieve reliable fall detection we employ both Kinect and accelerometer
that complement one another [8]. We implemented the system on PandaBoard
ES, which is a low-power, low-cost single-board computer development platform
based on Texas Instruments OMAP4 line of processors [9]. It enables develop-
ment of mobile applications. Regarding low-cost computational power of the
board the person was detected on the basis of the scene reference image, which
was extracted in advance. Such a fast method of person segmentation can be
applied in many scenarios, for instance in fall detection systems mounted on the
stairs. However, in home environments such an approach can be impractical.
The main reason for this is that in case of the moved furniture, like chair or
even opening the door the scene reference image contains such objects, what in
turns can lead to difficulties in segmentation of the person on the basis of depth
connected components.

In this work we demonstrate a method for updating the depth reference image
at a low computational cost. We also demonstrate how to extract the ground
plane on depth images. The ground plane is extracted automatically using the
v-disparity images, Hough transform and the RANSAC algorithm.

3 Fall Detection on Embedded Platform

In this section we present the main ingredients of our embedded system for
human fall detection [9]. Our fall detection system uses both data from Kinect
and motion data from a wearable smart device containing accelerometer and
gyroscope sensors. Data from the smart device (Sony PlayStation Move) are
transmitted wirelessly via Bluetooth to the PandaBoard on which the signal
processing is done, whereas Kinect is connected via USB. The device contains
one tri-axial accelerometer and a tri-axial gyroscope consisting of a dual-axis
gyroscope and a Z-axis gyroscope. The fall alarm is triggered by a fuzzy inference
engine based on expert knowledge, which is declared explicitly by fuzzy rules
and sets. As inputs the engine takes the acceleration, the angular velocity and
the distance of the person’s gravity center to the altitude at which the Kinect
is placed. The acceleration’s vector length is calculated using data provided



by the tri-axial accelerometer, whereas the angular velocity is provided by the
gyroscope. The sampling rate of both sensors is equal to 60 Hz. The sensor is
typically attached to trunk or lower back because such body parts represent the
major component of body mass and move with most activities.

The Kinect sensor captures depth and color images simultaneously at a frame
rate of about 30 fps. It consists of an infrared laser-based IR emitter, an infrared
camera and a RGB camera. The IR camera and the IR projector form a stereo
pair with a baseline of approximately 75 mm. Kinect depth measurement is based
on structured light, making a triangulation between the dot pattern emitted
and the one captured by the IR CMOS sensor. Pixels in the provided depth
images indicate calibrated depth in the scene. Kinect’s field of view is fifty-seven
degrees horizontally and forty-three degrees vertically. The minimum range for
the Kinect is about 0.6 m and the maximum range is somewhere between 4-5 m.

The depth images are acquired using OpenNI (Open Natural Interaction)
library. A mean depth map is extracted in advance to delineate the foreground
object at low-computational cost. It is extracted on the basis of several consecu-
tive depth images without the subject to be monitored and then it is stored for
the later use in the detection mode. In the detection mode the foreground ob-
jects are extracted through differencing the current image from such a reference
depth map. Afterwards, the foreground object is determined through extracting
the largest connected component in the thresholded difference map. According
to the reports of the code profiler the module responsible for detection of the
foreground object uses 50% of the CPU’s computational power.

4 V-disparity Based Ground Plane Detection

The v-disparity images were originally proposed in [10] to achieve obstacle de-
tection using disparity maps between two stereo images. Given a depth map
extracted by the Kinect sensor, the disparity d can be calculated in the follow-
ing manner:
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where z is the depth (in meters), b is the horizontal baseline between the cameras
(in meters), f is the (common) focal length of the cameras (in pixels). For the
Kinect sensor the value of b is 7.5 cm and it is the measured distance between
the IR and projector lenses, whereas f is equal to 580 pixels.

Let H be a function of the disparities d such that H(d) = I4. The I, is the
v-disparity image and H accumulates the pixels with the same disparity from a
given line from the disparity image. Thus, in the v-disparity image each point in
the line 4 represents the number of points with the same disparity occurring in
the 4-th line of the disparity image. Figure 2c illustrates the v-disparity image
that corresponds to the depth image depicted on Fig. 2b. The size of the images
acquired by Kinect is 640 x 480.

The line corresponding to the floor pixels was extracted using the Hough
transform. Assuming that the Kinect is placed at height about 1 m from the
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Fig. 2. V-disparity map calculated on depth images from Kinect: RGB image a), cor-
responding depth image b), v-disparity map c).

floor, the extracted line should begin in the disparities ranging from 21 to 25
depending on the tilt angle of the sensor. On the basis of the extracted line the
pixels belonging to the floor areas were determined. Due to the measurement
inaccuracies we considered also pixels in some disparity extent d; as belonging
to the ground. Assuming that d, is a disparity in the line y, which represents
the pixels belonging to the ground, we take into account the disparities from
the range d € (dy — d;, dy + d) as representing the ground. Figure 3a illustrates
the point cloud corresponding images shown on Fig. 2b. On Fig. 3b we can
observe the point cloud without the points belonging to the floor. Given the
extracted line by the Hough transform, the points on the v-disparity image with
the corresponding depth pixels were selected, and then transformed to point
cloud, see Fig. 3c depicting the points cloud of the floor, which was selected
using the v-disparity map.

Fig. 3. Points cloud corresponding to the depth image (from Fig. 2b) a), the points
cloud without the points belonging to the floor b), the points cloud from image b, with
points belonging to the floor c).

After the transformation of the pixels to the 3D points cloud representing
the floor, the plane described by the equation ax + by + cx +d was recovered. The
parameters a, b, ¢ and d were estimated using RANSAC algorithm. The distance
of the 3D centroid of the segmented person to the ground plane was determined



on the basis of the following equation:
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where X, Y., Z. are coordinates of the centroid.
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5 Person Segmentation

In our previous work [9], a depth reference map-based extraction of the person
has been utilized. The method has been investigated mainly due to limited com-
putational power of the PandaBoard at which the system has been implemented.
The depth reference map was extracted on the basis of several consecutive depth
images without the subject to be monitored and then it was stored for the later
use in the person detection mode. In the detection mode the foreground objects
were extracted through differencing the current image from such a reference
depth map. Experimental findings demonstrated that such a technique can be
applied in many scenarios, for instance in systems monitoring fall detection on
stairs. However, in case of change of the scene layout, for example due to change
of furniture settings some non-person objects can appear in the reference images
and this in turn can lead to difficulties in segmenting the person.

In order make the system applicable in a wide range of scenarios we elabo-
rated a fast method for updating the depth reference image. In our approach,
each pixel of the depth reference image assumes the median value of several pix-
els from the past images. At the beginning we collect a number of images, and
for each pixel we assemble a list of the pixels from the former images, which is
then sorted in order the extract the median. For images of size 640 x 480 the
computation time needed for extraction of the median is about 9 miliseconds
at 2.4 GHz I7 processor running 4 threads. At the PandaBoard this operation
can be completed in 0.15 sec. Given the sorted lists of pixels the depth reference
image can be updated quickly by removing the oldest pixels and updating the
sorted lists with the pixels from the current depth image and then extracting
the median value. We found that for typical human motions, good results can
be obtained using 13 depth images. For Kinect acquiring images at 25 Hz we
take every tenth image.

Figure 4 illustrates some example depth reference images, which have been
obtained using the discussed technique. In the image #388 we can see the opened
door, which was closed to demonstrate how the algorithm updates the reference
image. In frame #560 we can see that the door appears in the reference image,
and then it is removed in frame #822. As we can observe, the updated reference
image is free of clutter and allows us to extract the depth silhouette. In or-
der to eliminate small objects the depth connected components were extracted.
Afterwards, small artifacts were eliminated. Otherwise, the depth images can
be cleaned using morphological erosion. When the person does not move the
reference image is not updated. It is worth noting that the accelerometer can
support the detection of periods in which the movement of the person takes
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Fig. 4. Person segmentation. RGB images (upper row), the depth images (middle row)
and the segmented person (bottom row).

place. As we utilize only one Kinect, an occlusion happening because of the fur-
niture (e.g. sofa or chair) can led to difficulties in detecting the fall, when only
images are employed. In such situations the decision can be made on the basis
of the information provided by the accelerometer and the gyroscope.

6 Experimental Results

Four volunteers with age over 26 years attended in experiments and tests of
our algorithm. A data-set of normal activities like walking, sitting down and
crouching down has been composed in order to determine the threshold value,
i.e. the distance of the centroid of the person to the floor below which the alarm
should be triggered. Figure 5 depicts the distance D to the ground plane that
has been obtained for some daily activities. As we can observe, on the basis of
analysis of the motion of the centroid it is possible to discard some short-term
actions, like sitting down, for which the centroid was temporally below the alarm
threshold.

Intentional falls were performed in home towards a carpet with thickness of
about 2 cm. Each individual performed three types of falls, namely forward, back-
ward and lateral at least three times. Figure 6 depicts a person who has fallen
and the corresponding binary map, which was obtained through differencing the
current depth image from the reference depth image and then thresholding the
difference image. All intentional falls were detected correctly.

The system was implemented in C/C++ and runs at 25 fps on 2.4 GHz I7
(4 cores, Hyper-Threading) notebook powered by Linux. We are planning to
implement the system on the PandaBoard.
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Fig. 5. Distance of the controid to the ground plane for person performing some daily
activities.

Fig. 6. Image with a fallen person (left), corresponding depth image (middle) and
binary image with the extracted person (right).

7 Conclusions

In this work we demonstrated our approach to fall detection using Kinect. The
detection of the fall is done on the basis segmented person in the depth images.
The segmentation of the person takes place using updated depth reference im-
ages of the scene. The distance of the controid of the segmented person to the
ground plane is used to trigger the fall alarm. The ground plane is extracted
automatically using the v-disparity images, Hough transform and the RANSAC
algorithm.
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