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Abstract In this work, a particle swarm optimization based algorithm for multi-
target tracking is presented. At the beginning of each frame the objects are tracked
individually using highly discriminative appearance models among different tar-
gets. The task of object tracking is considered as a numerical optimization problem,
where a particle swarm optimization is used to track the local mode of the similarity
measure. The objective function is built on region covariance matrix and multi-patch
based object representation. The target locations and velocities that are determined
in such a way are further employed in a particle swarm optimization based algo-
rithm, which refines the trajectories extracted in the first phase. Afterwards, a con-
jugate method is used in the final optimization. Thus, the particle swarm algorithm
is utilized to seek good local minima and the conjugate gradient is used to find
the local minimum accurately. At this stage we optimize complex energy functions,
which represent the presence, movement and interaction of all targets in sequence of
recent frames within a temporal window. The algorithm has been evaluated on pub-
licly available datasets. The experimental results show performance improvement
over relevant algorithms.

1 Introduction

Visual tracking of multiple objects is a challenging problem. The aim is to infer the
states of all targets in the scene and to maintain their identity over time. Despite sig-
nificant progress in this area, reliable tracking of multiple targets is still a great chal-
lenge, particularly in crowded scenes. Many different methods [1, 6, 10, 17, 21, 23]
have been proposed in the last decade. One solution to multiple object tracking is
the use of multiple trackers, where each of which is responsible for tracking one
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object. The so-called tracking-by-detection algorithms [8] gained considerable at-
tention in this area of the research. A widely used approach to multi-target tracking
consists in exploiting a joint state-space representation, which concatenates all of
the targets’ states together [23], or inferring this joint data association problem by
estimating all possible associations between the targets and the observations [17,24].
In contrast to mentioned above approaches, in order to achieve multi-target track-
ing the multiple parallel filters, where a single filter per target has its own state
space were proposed in [9]. However, when the interactions among the moving tar-
gets take place, difficulties in maintaining the correct object identities might arise.
Therefore, modeling the interactions among targets and occlusion reasoning play
incredibly important role in multi-target tracking. Khan et al. [17] use a Markov
Random Field (MRF) motion prior to model the interactions among targets. An-
driyenko et al. [1] proposes a model for global occlusion reasoning. In an approach
that is based on particle swarm optimization [29], the object interactions are mod-
eled as species competition and repulsion. Particle Swarm Optimization (PSO) is a
population based stochastic optimization technique [16], which shares many sim-
ilarities with evolutionary computation techniques. It has been shown to perform
well on many nonlinear and multimodal optimization problems.

Visual object tracking is an important ingredient of any multi-object tracking
algorithm. Particle filters [13] are one of the most efficient techniques for object
tracking. They were successfully applied in many visual tracking applications [28],
including multi-object tracking [8,23]. The task of object tracking can be considered
as a numerical optimization problem, where a local optimization is used to track the
local mode of the similarity measure in a parameter space of translation, rotation
and scale. In [31], it was shown that in tasks consisting in tracking the face or the
human a particle swarm optimization-based tracker outperforms a tracker built on a
particle filter in terms of accuracy.

Visual object tracking using particle swarm optimization has been active research
area for several years [18, 19]. Recently, particle swarm optimization was proposed
to achieve full body motion tracking [14, 20, 30]. The particle swarm optimization,
which is population-based searching technique, has high search efficiency by com-
bining local search (by self experience) and global one (by neighboring experience).
In particular, a few simple rules result in high effectiveness of exploration of the
high-dimensional search space. In contrast, in a particle filter the samples do not
exchange information and do not communicate with each other, and thus they have
reduced capability of exploring huge search spaces.

In this work we present a PSO based algorithm multi-target tracking. At the be-
ginning of each frame the targets are tracked individually using highly discrimina-
tive appearance models among different targets. Each of them is tracked on the basis
of separate particle swarm optimizations. The target locations and velocities that are
determined by independent trackers are further employed in a particle swarm opti-
mization based algorithm, which refines the trajectories extracted in the first phase.
Afterwards, a conjugate method is used in the final optimization. At this stage we
utilize a complex energy function, which represents the presence, movement and
interaction of all targets within a temporal window consisting of the recent frames.
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2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [16] is a global optimization algorithm to
find the minimum of a numerical function. PSO is derivative-free, stochastic and
population-based computational method, often used to optimize functions in rather
unfriendly non-convex, non-continuous search spaces. It maintains a swarm of par-
ticles, where each one represents a candidate solution. Particles are placed in the
search space and move through such a space according to rules, which take into ac-
count each particle’s personal knowledge and the global knowledge of the swarm.
Every particle moves with its own velocity in the multidimensional search space, de-
termines its own position and calculates its fitness using an objective function f (x).
Each particle follows simple position and velocity update equations; yet as particles
interact, the collective behavior arises, and the interactions between particles lead to
the emergence of global and collective search capabilities, which allow the particles
to gravitate towards the global extremum.

At the beginning of the optimization, each individual is initialized with a random
position and velocity. While seeking for the best fitness every individual is attracted
towards a position, which is affected by the best position pi found so far by itself
and the global best position g found by the whole swarm. In every iteration k, each
particle’s velocity is first updated based on the particle’s current velocity, the parti-
cle’s local information and global swarm information. Then, each particle’s position
is updated using the velocity. The position and velocity of particle i are calculated
as follows:

v(i,k+1) = ωv(i,k) + c1r1(p(i)− x(i,k))+ c2r2(g− x(i,k)) (1)

x(i,k+1) = x(i,k) + v(i,k+1) (2)

where the constants c1 and c2 are used to balance the influence of the individual’s
knowledge and that of the group, respectively, r1 and r2 are uniformly distributed
random numbers, x(i) is position of the i-th particle, p(i) is the local best position of
particle i, whereas g stands for the global best position, and ω is an inertia constant.
The swarm stops the searching when a termination criterion is met.

Particles can be attached to each other by any kind of neighborhood topology
represented by a graph. In the fully connected neighborhood topology, which is
represented by fully connected graph all particles in the swarm are connected to one
another. Each particle in a swarm represents a candidate solution of the problem.
With respect to a fitness function, the best location that has been visited thus far
by a particle is stored in the particles memory. The fitness values corresponding
to such best positions are also stored. Additionally the particles have access to the
best location of the whole swarm, i.e. a position that yielded the highest fitness
value. A particle therefore employs the best position encountered by itself and the
best position of the swarm to move itself toward the optimal value of the objective
function.
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3 PSO–based Object Tracking

The visual object tracking can be perceived as dynamic optimization problem. In
PSO-based tracking, in each frame, the object state is determined using a fitness
function expressing the object appearance. In order to cover possible state changes
between consecutive images the particles are propagated according to weak transi-
tion model. In this section, we show how single object tracking can be accomplished
by PSO. We present the fitness function as well as the re-diversification of the swarm
to cover the object state changes between the consecutive images.

3.1 Multi-patch based object tracking using region covariance

The fitness function is based on the region covariance matrix (RC). The object is rep-
resented by an image template consisting in several non-overlapping image patches.
For every pixel i in such a patch of size M×N we calculate a feature vector bi

bi = (x y R G B Ix Iy)T (3)

where x,y represent the Cartesian coordinates of pixel i, whereas R,G,B stand for
color components, and Ix, Iy are image derivatives. The RC descriptor is given by:

C =
1

MN−1

MN

∑
i=1

(bi−b)(bi−b)T (4)

where b denotes the vector of means of corresponding features for the pixels in
the template. The region covariance descriptor has many advantages. In particular,
RC indicates both spatial and statistical properties of the objects, it allows to com-
bine multiple modalities and features, and last but not least, it is capable of relating
regions of different sizes. This descriptor is also robust to the variations in illu-
mination conditions, pose and view. Although the covariance matrixes are positive
semi-definite in general, in practice they should be regularized by adding a small
constant multiple of the identity matrix, making them strictly positive.

In [5] a Log-Euclidean Riemannian metric has been introduced to obtain statis-
tics on symmetric positive definite matrixes. The Singular Value Decomposition
(SVD) of symmetric matrix A of size n× n is UΣUT , where U is an orthonor-
mal matrix, and Σ = diag(λ1, . . . ,λn) is diagonal matrix with nonnegative eigenval-
ues. The matrix exponential exp(A) of symmetric matrix is given by: exp(A) = U ·
diag(exp(λ1, . . . ,exp(λn)) ·UT , conversely, the matrix logarithm of symmetric posi-
tive definite matrix is calculated according to: log(A)=U ·diag(log(λ1, . . . , log(λn))·
UT . Each symmetric matrix is associated to a tensor by the exponential, conversely,
a tensor has a unique symmetric matrix logarithm. The distance between two sym-
metric positive definite matrixes X and Y under the Log-Euclidean Riemannian met-
ric can be expressed as follows:
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dist(X ,Y ) = ‖ log(X)− log(Y )‖2 (5)

The Riemannian mean of several elements is an arithmetic mean of matrix elements.
Using the Log-Euclidean metric the algorithm [25] for the incremental subspace
update can be employed directly.

In object tracking we should seek in each frame a location for which the covari-
ance matrix within the object template is most similar to the covariance matrix of the
model template. Hence, we should find an object location x∗ for which the distance
dist(·, ·) between the corresponding covariance matrix X and model covariance ma-
trix X assumes the minimal value, i.e. we have to minimize

x∗ = argmin
x

dist(Xx,X) (6)

This is a nonlinear optimization problem that is solved using the PSO algorithm,
which in each frame seeks for the best match.

Figure 1 depicts some tracking results that were obtained using the multi-patch
object representation and a PSO consisting of 10 particles and executing 10 itera-
tions. The tracking of the woman’s face was done on color images of size 128×96 1.
We employed both horizontal and vertical patches. The horizontal patches were con-
structed through dividing vertically the object template into two adjoining patches.
Then such patches were divided into 10 horizontally oriented patches, in fives in
each of the two vertically oriented patches. The vertical patches were created anal-
ogously. The most right image depicts the probability image of the target in frame
#431. The detection of outliers is achieved through sorting the scores of the patches
and then omitting the poorest ones. The fitness function fg(x) is the average of K
such a best matches between the patches of the template at the location x∗ and the
corresponding patches of the model template.

Fig. 1 PSO based tracking using multi-patch object representation. Frames #431, 441, 453, 455,
460, 461, and the probability image of the target in frame #431.

A tracking algorithm built on the covariance score and with multi-patch object
representation can recover after substantial temporal occlusions or large movements.
Figure 2 illustrates some tracking results that were obtained on image sequence
‘S2L1 View 1’ from PETS 2009 database [12], see also Fig. 3. As we can observe,
the walking women is successfully tracked despite considerable and multiple tem-
poral occlusions with the static road sign and the pedestrians.

1 Sequence obtained from http://robotics.stanford.edu/birch/headtracker



6 B. Kwolek

Fig. 2 Sub-images with object undergoing tracking in frames #129, 130, 131, 149, 150, 151, 152,
153, 154, 155.

3.2 Foreground prior

In multiple object tracking the targets usually become completely or partially oc-
cluded. This results in the lack of evidence consisting in non-observability of an oc-
cluded target in the image data. In PETS 2009 datasets some occlusions by the road
sign, see images on Fig. 2, are relatively long-lasting. In consequence, the above
presented tracker was unable to successfully track some targets in the whole time
span, i.e. from the entering the scene until the exiting the tracking area. Moreover,
in a few cases, after loosing the target, the tracker concentrated mistakenly on some
background areas. In order to cope with such undesirable effects and to decrease the
probability of concentrating of the tracker on some non-target areas we extended
the feature vector bi about a term expressing the object prior. The seventh element
of the extended feature vector expresses the object probability, which is determined
by a foreground segmentation algorithm.

3.3 Foreground segmentation

Our foreground segmentation algorithm is based on a reference image, which is
foreground free and is extracted automatically in advance, given a sequence of im-
ages with moving targets. Afterwards we employ both region and pixel cues, which
handle the illumination variations. In addition, we accommodate on-line the ref-
erence image against the illumination and scene changes. The reference image is
extracted on the basis of the median of pixel values in some temporal widow. For
‘S2L1 View 1’ sequence the number of images that were needed to extract the fore-
ground free images was equal to 40. Figure 3b depicts the reference image, which
was extracted using pixel intensities and the mentioned above number of images.

The normalized cross-correlation NCC was used to extract brightness and con-
trast invariant similarity between the reference image and the current image. It was
computed very efficiently using integral images. The NCC was used to generate the
probability images between the reference images and the current image, see Fig. 3c.

We construct an image of color ratios between the reference image and the cur-
rent image, where the value of each pixel at location x1 is given by [4]:[

arctan
(

Rc
x1

Rr
x1

)
arctan

(
Gc

x1
Gr

x1

)
arctan

(
Bc

x1
Br

x1

)]T

(7)
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a) b) c)

d) e)

Fig. 3 Input image a), reference image b), NCC-based probability image between the reference
image and the input image c), color ratios between reference and current image d), image fore-
ground e).

where c and r denote the current and reference image, respectively, whereas R, G,
B stand for color components of the RGB color space. Such color ratios are inde-
pendent of the illumination, change in viewpoint, and object geometry. Figure 3d
depicts an example image of color ratios. We can observe that for the pixels be-
longing to the background the color assumes gray values. This happens because the
color channels in the RGB color space are highly correlated. Moreover, the color ra-
tios are far smaller in comparison to the ratios between foreground and background.
However, as we might observe in the color ratio image there are noisy pixels. The
majority of such noisy pixels can be excluded from the image using the probability
images, extracted by the normalized cross-correlation.

In our algorithm we compute on-line the reference image using the running me-
dian. Afterwards, given such an image we compute the difference image. The dif-
ference image is then employed in a simple rule-based classifier, which extracts the
foreground objects and shadowed areas. In the classifier we utilize also the proba-
bility image extracted via normalized cross-correlation, as well as the color ratios.
The classifier makes decision if pixel is a background, shadow or foreground. For
shadowed pixels the normalized cross-correlation assumes values near to one. The
output of the classifier is the enhanced object probability image. Optionally, in the
final stage we employ the graph-cut optimization algorithm [7] in order to fill small
holes in the foreground objects.

3.4 Re-diversification of the swarm

At the beginning of each frame, in some surrounding of the swarm’s best location gt
the algorithm selects possible object candidates. Such object candidates are delin-
eated using the foreground blobs. A simple heuristics, which is based on blob areas
and height to width ratios in connection to location of the object at the ground plane,
is carried out to select the object candidates. For the videos that were recorded us-
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ing the calibrated cameras we project the person locations on the ground onto 3D
world coordinates. Such 3D person’s location is calculated on the basis of the center
of the bottom edge belonging to the bounding box of the blob. Then we employed
such information together with the projected blob sizes to enhance the delineation
of the target candidates as well as to determine the occlusions as well as splits of the
blobs representing the pedestrians into multiple blobs. Afterwards, the particles are
initially placed in the gravity centers of the object candidates selected in such a way.
The positions of the remaining particles of the swarm are initialized on the basis of
normal distribution, which is concentrated around the state estimate in time t−1:

x(i)
t ←N (gt−1,Σ) (8)

where gt−1 denotes the location of the best particle that was determined in the
previous frame in time t− 1, where Σ denotes the covariance matrix of the Gaus-
sian distribution, whose diagonal elements are proportional to the predicted velocity
vt = gt−1−gt−2.

In Fig. 4 we can observe the behavior of the tracker with such a swarm re-
diversification. As one can notice, the tracking temporally failed in frame #109.
Thanks to placing the particles at both candidate objects, see the most right image
on Fig. 4, the tracker correctly recovered the identity of the person in frame #112.
It is worth noting, that owing to object prior in the covariance matrix, the bound-
ing box was placed on the person undergoing tracking and not on the background
areas, see frame #109. In order to enhance the object candidate selection we em-
ployed also person detector [11]. Overall, the person detector found 4550 objects in
‘S2L1 View 1’ dataset. To further enhance the re-diversification of the swarm the
particles were initially placed on the locations determined by the person detector.

Fig. 4 Sub-images with object being tracked in frames #106, 107, 109, 112, 130, 140, and the
binary sub-image in frame #112.

4 Multiple Object Tracking

The ordinary PSO is not well suited to achieve multiple object tracking. One pos-
sible approach to tackle such a problem might be to utilize a PSO that is built on
highly discriminative appearance models among different targets, for instance like
those in [10], together witch an association framework to achieve better maintaining
the identities over time. However, in practice, complex interactions between targets
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often lead to difficulties in resolving ambiguities between them. In general, it is
relative easy to track the distinctive objects, but it is much difficult to achieve re-
liable tracking when occlusion happens, particularly when the targets have similar
appearance. Another approach to this problem might be to represent the positions of
feature points by individual particles and to track them using spatial constraints like
maximum distance between feature points together with maximum distance to the
best particle, as it was done in the seminal work [19] (that introduced the PSO for
object tracking), and then to select the reliable trajectories on the basis of forward-
backward errors [15]. Taking into account the high effectiveness of the PSO in seek-
ing the high-dimensional spaces the problem of multi-object tracking might be for-
mulated as optimization of an energy function, for instance like those in [2], and
estimating the joint state. Recently, the power of the PSO has been fully exploited
in multi-object tracking [29], where species based trackers are employed and each
of which tracks one object. In the approach mentioned above the object interactions
are modeled as species competition and repulsion. The occlusion is implicitly in-
ferred using the power of each species and the image observations. Our approach
to multiple object tracking is also based on multiple particle swarms. Each object
is tracked by a separate swarm. Given the initial tracklets that were determined by
the swarms the refinement of the object trajectories is done by a PSO-based opti-
mization algorithm. In contrast to [1], which starts an optimization of the energy
function from relatively good initial object trajectories and then maintains the iden-
tities through the global optimization, in our approach a local optimization takes
place in a moving time window. The initial tracklets, which are determined by the
swarms are further distilled in PSO-based optimization stage that in turn resolves
between-object interactions. In the energy function are considered all target loca-
tions belonging to the current time window.

4.1 Multiple object tracking by multiple particle swarms

In the first phase the targets are tracked individually. The between-object interac-
tions are initially determined on the basis of our foreground extraction algorithm
and a blob analysis. Given the location of a blob in the image as well as the size
of its bounding box in relation to the area of the connected component we decide
if a blob represents a single target. In general, a single blob may include multiple
objects, while one object may split into multiple blobs. In case of occlusions, two or
more swarms responsible for tracking different objects compete for the same target
or cluster at the same location. After the end of the occlusion the swarms should
recognize the object identities and continue the tracking of the objects.

Assuming that in the considered test sequences the people walk on a known
ground plane, the location of a candidate target on the ground plane is utilized in
evaluation of the expected object area as well as its height and width. This informa-
tion helps us to decide if the considered target is occluded or eventually the consid-
ered blob is fragmented into several blobs. During the decision taking we examine
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also the distance between the edges of the corresponding rectangles that model the
locations and sizes of the objects. Two or more objects are considered as possibly
occluded if the distance between the closest edges of the boxes is below a threshold,
which in turn depends on the location of the objects on the ground plane. The larger
the distance of the object from the camera, the smaller the threshold is. At this stage
we take into account the distance between the locations of the global best particles
in the previous frame too. The information about the matching of individual patches
composing the object templates with the reference templates is considered in the de-
cision process mentioned above and helps us to decide which object or objects are
occluded and which one are occluding. The search space of the particle swarm with
the smaller fitness value is gradually expanded to allow it the recovering the target
after occlusion. In scenes with layout like a corridor with long vertical passage, with
many pairs of pedestrians, etc., where a probability of long term occlusion and the
lack of evidence in longer period of time is considerable, we extract the targets that
are close each other and have the similar motion directions. In case of such long
term occlusions we estimate the location (motion) of the occluded object on the
basis of the location of the occluder.

As we already mentioned, at this stage the targets are tracked individually. A
swarm responsible for tracking a single person is created at the moment of entering
the tracked area. The swarm finishes the tracking if the person leaves the tracking
scene. Such a scenario greatly simplifies the resolving of interactions as in each time
instant we known the number of the targets. In the presented approach the position
of the target is always defined.

The object tracking is done using the algorithm discussed in Section 3. In contrast
to a typical approach for object tracking, where a model of the object appearance is
accommodated over time, in our approach we maintain a pool of models expressing
the object appearance at various poses or in different camera views. The object
location is determined on the basis of the most similar object model from such a
pool of the object models. Each target maintains a constant number of the models in
the pool. If the target is not occluded, i.e. the area of the blob as well as the size of the
surrounding blob is consistent with the location of the target on the ground-plane,
the person detector successfully sought a person in the proximity of the considered
person location, the value of the objective function is above an assumed threshold we
replace the pre-selected in advance model by a model determined at the best object
location. At the end of the occlusion, or optionally when a target leaves the pre-
specified area surrounding the road sign in the ‘S2L1 View 1’sequence, we perform
the object back-tracking using the mentioned above pool of the object models. If
the back-tracker arrives to a different object, on the basis of the pool of the object
model we calculate the sum of the fitness values on both trajectories and choose
the trajectory with better fitness. The size of the template modeling the object is
determined with regard to its location on the ground-plane.
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4.2 Refinement of the tracklets by particle swarm optimization

Particle swarm optimization demonstrated to be an efficient global search method
for nonlinear complex systems without any a priori knowledge about the system
structure. Here, we employ its potential in optimization of the complex energy func-
tion, which represents the presence, movement and interaction of all targets in se-
quence of last frames within a temporal window. If the calibration data are available
the tracking is done in the world coordinates. That means that object locations at the
ground plane that were determined by individual trackers are projected to 3D.

Our energy function consists of three terms expressing the pedestrian presence,
priors for the pedestrian motion and mutual exclusion:

E(X) = αEl +βEv + γEc (9)

The vector X consists of ground plane coordinates of all targets being in the scene
from current time t to time t − T . That means that the energy is minimized in a
temporal window comprising the last T frames.

The energy should be smaller for the trajectories going around regions of high
pedestrian likelihood. Thus, the term expressing the pedestrian presence is given by:

El(X) =−
t−T

∑
τ=t

P

∑
id=1

exp

(
−σ

2
l

H(t)

∑
h=1
‖x(id)

τ −d(h)
τ ‖2

)
(10)

where t stands for the current time, P is the number of the targets, whereas H(t)
denotes the number of the detections in frame τ , and the d(h)

τ is the location of
the detection h in frame τ . The term expressing the motion of the target favors
movement with a constant velocity:

Ev(X) =
t−T

∑
τ=t

P

∑
id=1
‖(v(id)

τ − v(id)
τ−1‖

2 (11)

The term expressing the mutual exclusion should penalize the trajectory configura-
tions if two targets approach each other. It assumes the following form:

Ec(X) =
t−T

∑
τ=t

∑
idi 6=id j

sc

‖(x(idi)
τ − x

(id j)
τ ‖2

(12)

where sc is a scale factor.
The deterministic optimization algorithms like gradient descent converge rapidly

but may get stuck in local minima of multimodal functions. In the vicinity of the
local optimum the deterministic algorithms converge faster than stochastic search
algorithms because stochastic search algorithms waste the computational time doing
a random search. On the other hand, the PSO may avoid becoming trapped in local
optima and find the global optimum. Therefore, in our algorithm the energy function
is first optimized by a PSO and then by a conjugate gradient algorithm [26]. The
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search area of the PSO is sufficiently large to cover promising configurations. In
the PSO we employ 40 particles and the maximum number of the iterations is set
to 300. The locations determined by the individual person trackers are employed
to initialize the PSO, whereas the output of the PSO is used as starting trajectory
of the conjugate gradient optimization algorithm, which is responsible for the final
refinement of the trajectories. Thus, the particle swarm algorithm is utilized to seek
good local minima and the conjugate gradient is used to find the local minimum
accurately. The optimization is done using person coordinates and velocities from a
sequence of the last frames. Thus, the state vector X consists of the person locations
determined in the current frame by individual trackers and the refined locations of
all persons in a sequence of the last frames.

We achieved considerable improvement of the results by running the optimiza-
tion on only twenty last frames. For each person entering the tracking area the op-
timization starts in the seventh frame. In the eight frame the optimization algorithm
runs on the current locations determined by individual trackers and the refined lo-
cations from frames #2-7, etc. Substantial improvement of the tracking accuracy
was observed in scenarios with considerable temporal occlusions. In such scenarios
the blobs representing the pedestrians are frequently fragmented, the trackers tem-
porally loose the tracks making uncoordinated jumps from one object to another.
Owing to the energy optimization, which considers the interactions of all targets in
a sequence of the last frames the trajectories are far smoother, and most importantly,
they pass through regions of high pedestrian likelihood.

5 Experiments

The algorithm was evaluated on two publicly available video sequences. The per-
formance of our PSO-based algorithm for multi-object tracking was compared with
the performance of the available PSO-based algorithm [29] for tracking multi-
ple objects. In this recently proposed algorithm, species based trackers are em-
ployed and each of which tracks one object. The object interactions are mod-
eled as species competition and repulsion, whereas the occlusion is implicitly
inferred using the power of each species and the image observations. The dis-
cussed method has been evaluated on a video sequence from the PETS 2004
database, which is an open database for research on visual surveillance, available
at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. The tracking performance of our al-
gorithm was compared with the performance of the algorithm mentioned above on
an image sequence that is called ‘ThreePastShop2cor’, which consists of color RGB
images of size 384×288, recorded with 25 frames per second. Figure 5 depicts some
key frames, where three pedestrians are tracked through occlusion. All three persons
were correctly tracked in 108 frames. Thanks to patch-based representation of the
object template the algorithm is able to select the occluding object.

The algorithm was compared with state-of-the-art algorithms for multi-object
tracking by analyses carried out both through qualitative visual evaluations as well
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Fig. 5 Tracking three persons undergoing occlusions. Frames #422, 455, 465, 480, 488, 518.

as quantitatively using the latest VS-PETS benchmark from 2009 [12]. The exper-
iments were carried out on the sequence ‘S2L1 View 1’, which was recorded at 7
frames per second and contains 795 color images of size 768×576.

The algorithm was evaluated using CLEAR metrics [27]. The Multi-Object
Tracking Accuracy (MOTA) counts all missed targets, false positives and identity
mismatches. It is normalized to full amount of targets such that 100% means no
errors. The Multi-Object Tracking Precision (MOTP) expresses the normalized dis-
tance between the ground truth location and the estimated location. Mostly Tracked
(MT) accounts the percentage of ground-truth trajectories that are covered by the
tracker for more than 80% in length, whereas Mostly Lost (ML) is the percentage
of the ground-truth trajectories that are covered by the tracker for less than 20% in
length [22]. Table 5 illustrates the accuracy and precision, as well as the number of
mostly tracked and mostly lost trajectories. The accuracy is something larger than
90%. When no optimization was used the accuracy was somewhat below 75%. The
percentage of mostly tracked trajectories is nearly 4.5% higher in comparison to the
best reported results.

Table 1 Quantitative comparison of our method with state-of-the-art methods on S2L1 View 1
sequence from PETS 2009 data set.

[6] [2] [1] our method
MOTA 79.0% 81.4% 88.3% 90.4%
MOTP 59.0% 76.1% 75.7% 85.2%

MT - 82.6% 87.0% 91.3%
ML - 0.0% 4.4% 4.4%

Figure 6 depicts some tracking results. It also shows ground plane trajectories.
As we can observe, the trajectories are far longer in comparison to trajectories that
are depicted on relevant images in [1]. In almost 40 occlusions like those in frames
129-131 on Fig. 2, where the targets undergo temporal occlusion and then split into
separate blobs, or the target is occluded by the road sign like in frames 106-112
on Fig. 4, the algorithm properly recognized the identities of the targets, avoided
clustering on a single target, despite some temporal errors in location or identity
estimation.

Figure 7 illustrates some tracking results that were obtained using only individ-
ual tracking. As we can observe, the trajectories are no so smooth in comparison to
trajectories obtained through the optimization. In particular, one can observe con-
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Fig. 6 Tracking results on PETS 2009 S2L1 View 1 dataset with trajectory refinement using PSO.
Frames #70, 130, 320.

siderable jitters of the trajectory as a result of temporal switches of the identities,
see for instance a jump close to the road sign on frame #70 on Fig. 7.

Fig. 7 Tracking results on PETS 2009 S2L1 View 1 dataset. Frames #70, 130, 330.

Our results demonstrate that in multi-object tracking, considerable improvement
of the tracking accuracy can be obtained through the use of an optimization al-
gorithm for the refinement of the results obtained by individual trackers, even if
they are built on highly discriminative appearance models among different targets.
Through formulating an energy function that operates on all targets that are present
in a sequence of last frames within a temporal window, and thus takes into account
all interactions between them, it is possible to considerably refine the trajectories
obtained by individual trackers, see Fig. 8.

Fig. 8 The trajectories without optimization (top row) and with the optimization (bottom row).
Sub-images from frames #135, 320 and 320.
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In our algorithm, in contrast to [2], the joint state is optimized only in some
mowing temporal widow, which moves forward as the time elapses. The state vec-
tor consists of the states determined by the individual trackers in the current frame
and the states that were progressively refined in previous frames. In contrast to the
algorithm mentioned above no sophisticated initialization of the optimization algo-
rithm in the form of the pre-calculated trajectories by an Extended Kalman Filter
or globally optimal discrete tracker based on linear programming [3] is needed. We
also demonstrated that the PSO algorithm is an effective tool for solving such non-
linear and nonconvex energy functions. Since the PSO does not rely on any gradient
information, smoothness or continuity properties, it is possible to employ in the ob-
jective functions the terms that employ information, for instance, about the nearest
neighbors, identity switches, etc. The PSO-algorithm demonstrated also great use-
fulness in single object tracking where swarms consisting of 20 particles and in 10
iterations are able to follow objects, even in case of considerable temporal occlu-
sions. The discussed algorithms were implemented in MATLAB/C.

6 Conclusions

We demonstrated that in multi-object tracking, considerable improvement of the
tracking accuracy can be obtained through the use of an optimization algorithm for
the refinement of the results obtained by individual trackers, even if they are built on
highly discriminative appearance models. In the presented algorithm, the joint state
is optimized in some mowing temporal widow. The state vector consists of the states
determined by the individual trackers in the current frame and the states that were
progressively refined in previous frames. We demonstrated that the particle swarm
optimization is an effective tool for solving such nonlinear and nonconvex energy
functions. Individual object tracking was considered as a numerical optimization
problem, where a particle swarm optimization was utilized in searching for the best
local mode of the similarity measure.
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