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ABSTRACT

In this work, a novel salient point descriptor for 3D point clouds, called Covariance Matrix Pyramids
(CMPs), is presented. With CMPs it is possible to compare unstructured and unequal numbers of points
which is an important characteristic when working with point clouds. Corresponding points from
different scans are matched in a pyramidal approach combined with Particle Swarm Optimization. The
flexibility of CMPs is demonstrated on the basis of several databases with objects, such as 3D faces, 3D
apples, 3D kitchen scenes, 3D human-machine interaction gesture sequences, and 3D buildings all
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recorded with different 3D sensors. Quantitative results are given and compared with other state-of-the-
art descriptors, whereby CMPs show promising performance.

1. Introduction
1.1. Motivation

In the computer vision domain conventional cameras which
output one channel (gray) images or three channel (color) images
are increasingly supplemented by information from novel sensors
[1,2]. Especially 3D sensors are important to gather necessary
information about the environment for all kinds of human-
machine interaction applications. Examples for such sensors
include the PointGrey Bumblebee XB3, the Velodyne LIDAR used
in the DARPA Urban Challenge, the Siemens Structured-Light 3D
Scanner, or Microsoft's Kinect sensor. The output of these devices
is not conveniently structured as image but as 3D point cloud. The
huge success of the NVidia/Google supported Point Cloud Library
[3] and Microsoft's Kinect can be seen as indicator that in the near
future point clouds will play an important role in the computer
vision field and probably even replace conventional images for
many applications. However, almost all salient point descriptors
rely on dense gray or color images, and only little work has been
done on matching points in point clouds. Therefore, we felt the
need to present a new point descriptor that is able to cope with 3D
point clouds. A possible application for such a descriptor would be

* Corresponding author. Tel.: +49 89 289 28547; fax: +49 89 289 28535.
E-mail addresses: moritz.kaiser@mytum.de, moritz.kaiser@tum.de (M. Kaiser),
xiao.xu@tum.de (X. Xu), bkwolek@prz.edu.pl (B. Kwolek),
shamik@sit.iitkgp.ernet.in (S. Sural), gerhard.rigoll@tum.de (G. Rigoll).

automatic labeling of a database. The user could select salient
points in, for example, one reference face and the other faces in a
database are then automatically labeled.

1.2. Related work

There exists a considerable number of salient point descriptors.
Among the most prominent ones are KLT [4], SIFT [5], PCA-SIFT [6],
and SURF [7]. In [8], a comparison among state-of-the-art point
descriptors is given, in which the SIFT descriptor performs best.
Also for tracking, accurate optical flow methods exist, such as
[9-12]. The SURF descriptor has been further refined in [13], where
the FAIR-SURF descriptor has been proposed. In [14], the authors
present a scale invariant method for image matching which
applies weighted voting on a 3D affinity matrix.

Covariance matrices have been used in [15,16], where both
approaches are applied to conventional images. In [17], the
authors propose a similar approach, called Sigma Set, which is
computationally less demanding. In [18], Pang et al. applied Gabor-
based covariance matrices for face recognition. This approach has
been further refined in [19], where the Kernel Gabor Region
Covariance Matrix has been presented and also applied for face
recognition tasks. In [20], the authors explore smart possibilities to
extract features from co-occurrence histograms of oriented gra-
dients (CoHOGs) for person detection. However, all these methods
rely on conventional images. Thus, they are not suited for 3D point
clouds. In [21], the authors propose an interesting approach where
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SIFT features are adapted for 2.5D range data with image structure
and without texture.

There have also been contributions with methods that work
directly with point clouds. Frome et al. presented 3D shape contexts
and harmonic shape contexts to classify whole shapes without using
texture [22]. In [23], the authors introduced a technique for the
registration of 3D point clouds and Brostow et al. presented a work
on semantic segmentation based on 3D point clouds in [24]. Another
promising approach is spin images [25]. Note that the point matching
strategy is brute force. Furthermore, spin-images are quite restrictive,
i.e., they are designed to match points from exactly the same object,
while matching, for example, facial feature points of two different
individuals might fail. Rusu et al. [26] presented the Persistent Point
Feature Histograms (PFH) for 3D point clouds that are also already
available in Willow Garage's Point Cloud Library [3].

1.3. Overview

In this work, covariance matrix pyramids (CMPs), that have
been presented in [16], are used for point clouds. Since images and
point clouds are structurally different, the method substantially
changed in order to work for point clouds. The result is a new,
highly flexible salient point descriptor that works directly on 3D
point clouds. The method is summarized as follows:

® A list of potential features for the description of the salient
point's neighborhood is presented. With a training set, ade-
quate features are selected via Sequential Forward Selection
(SES) with discrete weights (Section 2).

® Features are summarized by a covariance matrix. Employing a
covariance matrix as salient point descriptor is practical for
matching salient points. In contrast to many previously proposed
descriptors (SIFT, SURF, local optical flow, etc.), it provides a
convenient way to fuse conventional features (red, green, blue)
with non-conventional features (depth, infrared, etc.). Spatial
distribution is captured by the covariance between x, y, or z-
coordinates of the points and their other features. Furthermore,
covariance matrices are, to a certain extent, robust against noise
and illumination offset, because both are filtered out by an
average filter during covariance computation (Section 3).

® Corresponding points from different scans are matched. To
allow for larger displacements covariance matrices are used in
pyramids, motivating the name covariance matrix pyramid.
Particle Swarm Optimization (PSO) is employed to find the
best match at each pyramid level (Section 4).

Five application scenarios are given in Section 5. In the first two
experiments, salient points in 3D faces are matched. Two publicly
available databases with handlabeled landmarks have been
employed. With these landmarks as ground truth quantitative
results can be given and it can also be shown that PSO reduces
computation time while not affecting matching accuracy.

Further, salient points in 3D apples, gesture sequences, kitchen
scenes, and buildings are matched. The matching accuracy is
compared to another point descriptor for 3D point clouds and
two other point descriptors that rely on 2D images. All experi-
ments demonstrate promising performance of CMPs. In Section 6,
the work is concluded and future scope is outlined.

2. Adequate features
2.1. Output from sensors

We assume that sensors output an unstructured 3D point cloud.
Examples for these sensors include the PointGrey Bumblebee XB3,

the Velodyne LIDAR used in the DARPA Urban Challenge, the Siemens
Structured-Light 3D Scanner, Inspeck Mega Capturor II 3D, Di3D
Dynamic Imaging System, or Microsoft's Kinect sensor. Each point
has spatial attributes (x, y, z) and color attributes (r, g, b). If one of the
points is selected as salient point, information about this point and
its neighborhood must be extracted for its representation. For this
purpose, features are extracted, as explained in the next section.

2.2. Feature extraction

For a salient point a set of features is computed. We propose a
list of potential features (depicted in Fig. 2 for a face of the
Bosphorus database [27]) of which the best features can be
selected automatically if a training set is available. Spatial informa-
tion (x,y,z) can be directly taken. Hue H, saturation S, and value V
are computed from each point's rgh-values.

The surface normal n; for point i, which is depicted in Fig. 1, is
computed as follows. The point cloud is triangulated with Delau-
nay triangulation. The surface normal n; at the triangle centroid is
computed. For the triangle t (p;, p,,p3) the surface normal is

Ny
ne=|ny
n;

=(P2—P1) X (P3—P1)- (1

The surface normal n; of point i is then the average of all surface
normals of the triangles of which point i is a vertex:

n; ¢ - N, (2)

1

- tht t
where w; is a weight that depends on the distance between the
centroid of triangle t and point i and Y w¢ = 1.

There is no straightforward way to compute the intensity
gradient for point clouds, as for conventional images, so an
alternative measure is considered. The intensity normals g; are
computed similar to the surface normal, except that the third
component of the triangle point is the intensity instead of z:
pi=y1)"

A further feature is the intensity entropy. To compute the
entropy, all points in the neighborhood of point i are taken. We
set the neighborhood size to 2% of the object height. A histogram
of the intensity values of all points in the neighborhood is created.
With this histogram a numerical probability p, can be assigned to
each gray value ge(0,255). The intensity entropy is then

255
H()= Zopg -log p,. 3)
g=

We also perform several operations on these features that are
inspired by a mean filter, a mean of absolute values filter, and a
Laplace filter for conventional images. These three operations are
applied to all three components of the surface normal (ny,ny,n;)

Ps

Fig. 1. The surface normal n; of point i is the average of the surface normals of
adjacent triangles.
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and also for the three components of the intensity normals
(Ix,1y.1;). The mean operation, which is denoted by m(ny), is the
mean over all points in the salient point's neighborhood:

1
Z nx,j . (4)

m(iy) = Vi &
thjeN;

We take again 2% of the object height as neighborhood size.
Additionally, the mean of absolute values over a certain neighbor-
hood is taken:

ma(ny;) = M}—ilja%lnle. 5

The sum of differences operation is the sum of differences
between a certain component of point i and the neighboring

points:

d() = o 3 (=g ®)
INil X,
Hence, a total of 35 features can be computed for one point. All
potential features are depicted in Fig. 2. If no training material is
available, features must be chosen manually, which also works
fine, as demonstrated in Section 5 for apples. A better performance
is achieved if a training set is available and features can be selected
automatically, as illustrated in the next section.

2.3. Feature selection

There are several techniques for the selection of adequate
features, such as Sequential Forward Floating Selection [28] or

(d(1)) ma(d([))

Fig. 2. List of potential features for 3D points in a point cloud.

d(d(1))
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Fig. 3. Matching error e over the number of features computed with a training set
of 400 facial surfaces.

AdaBoost [29]. However, these methods would require a prohibi-
tively large amount of computation time. Hence, we apply an
alternative technique, which we will call Sequential Forward
Selection [28] with discrete weights for the selection of adequate
features. The method is relatively fast but also computes weights
for the features. Let F={fy.f,,....f;} be the set of potential
features depicted in Fig. 2, where fj is a particular potential feature
and J is the total number of features. The average matching error
e(wy,w,...,w)) (explained in Section 5 in more detail) is the
measure of matching accuracy. wjeNy is the weight that corre-
sponds to feature f;. If w; is zero, feature f; is not employed at all.
Discrete weights w; for each potential feature f; are computed. The
method is presented by the following pseudo code.

1: vj: w;=0 /[Initialization of discrete weights
2: loop

3: k=argmin; cj;e(wy,...,wj+1,...,w))

4: Wgewi + 1

5: end loop

All weights wj; are initialized with 0. The best single feature is
determined and its weight is set to 1. In subsequent iterations the
feature which performs best in combination with the features
chosen at previous iterations is added to the set. New features are
chosen from the whole feature set F at each iteration. If feature f
is chosen twice, three times, etc., simply its weight wj is incre-
mented. Therefore, the output of the feature selection method is
not only the order of the features in terms of significance, but also
a discrete weight for each feature.

Fig. 3 depicts the matching error e over the number of features
for 400 3D faces of the Bosphorus database. It can be seen that
after 15 features the matching error does not improve significantly
any more and thus we decided to employ 15 features for the rest of
this work. These 15 features provide manifold information about a
salient point, or more precisely its neighborhood. This information
is summarized with a covariance matrix, which is described in the
next section.

3. Covariance matrix as salient point descriptor

In this section the covariance matrix as salient point descriptor
for point clouds will be introduced and an appropriate distance
measure will be presented.

3.1. Covariance matrix

A covariance matrix is used to describe the neighborhood of a
salient point. Let P be a point cloud with points p;. For each point i
a feature vector f;eR" with F features can be extracted. The
neighborhood around point i is denoted by A;. The covariance
matrix that describes the neighborhood of point i is

1

Ci= V=1 Zf Fi—n) (- (7)

JEN;

where p; = 1/|Ni| Xjen f; denotes the mean vector of the compo-
nent vectors and || stands for the number of points in region A/;.
Covariance matrices capture important information about the
salient point's neighborhood.

Variance: The covariance matrix encodes each feature by
storing its variance computed over the neighborhood of a salient
point. For a sufficient number of features this is already a
conclusive descriptor. Fig. 4(a) shows two surfaces with the same
shape but different texture. The variance of, for example, the hue
feature of the two surfaces is different.

Covariance: The variance cannot capture all aspects of the shape
and texture. Thus, the covariance between features is another
important value. It is a convenient way to fuse features. In Fig. 4(b),
two surfaces are shown. For both surfaces the hue feature increases
from back to front. The saturation increases from back to front for the
upper figure and decreases from back to front for the lower figure.
Although the texture is different, the variances of the hue and the
saturation features are equal for the two surfaces. However, the
covariance between hue and saturation is different and makes it
possible to distinguish between the two surfaces.

Spatial layout: The spatial layout of each component is encoded
by the covariance with x-, y-, and z-features. Fig. 4(c) shows two
different surfaces with equal texture. The variances of the hue-
feature are equal for both surfaces. Also the variances of the z-
feature are equal, but the covariances between hue and z-feature
are different.

Mean shift invariance: The covariance is not affected if the mean
of a feature is shifted, so it can cope with illumination changes to a
certain extent. Fig. 4(d) shows two surfaces, one with bright
illumination and the other one with dim illumination. Never-
theless, the hue feature has the same variance for both surfaces.
The same is true for the variance of the saturation and the value.

Noise robustness: Noise is largely filtered out by averaging over
the neighborhood while computing the covariance matrix. This is
important since during the recording process, mesh generation,
and feature computation noise is added to the features. Fig. 4
(e) shows two equal surfaces, but one with and the other one
without noise. For both surfaces hue, saturation and value have
approximately the same variance.

3.2. Distance measure

Covariance matrices do not lie in Euclidean space and thus
most of the distance measures used in machine-learning, such as
Euclidean or Mahalanobis distance, cannot be applied. We com-
pare several distance measures that have been proposed for
covariance matrices. Assume two covariance matrices C; and C,,
with size F x F, where F is the number of features per point. In
[30], two distance measures named log-Euclidean norm

p(C1,C2) = |[log(Cy)-log(C)l (8
and log-Euclidean trace
p(C1,Cy) = tr(log(C1)-10g(C2))*] ©)

have been presented. The matrix logarithm log(C) is computed as
follows. First, C is diagonalized: C = R"DR, where R is the rotation
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Fig. 4. The covariance matrix is a discriminative salient point descriptor. (a) The variance of features is already informative, (b) the covariance between features provides
further information, (c) spatial distribution is encoded by the covariance with x-, y-, or z-features and (d) covariance matrices are robust against mean shift and (e) noise.
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Fig. 5. Matching error e over the number of features computed with a training set
of 400 facial surfaces. The log-eigenvalue measure performs best.

matrix and D a diagonal matrix. Subsequently, the natural loga-
rithm is applied to each diagonal element of D in order to obtain D.
Finally, log(C) = R'DR.

In [31], two metrics based on the generalized eigenvalues are
proposed, namely the log-likelihood measure

1 F
p(€1.C) = T (Gi=log"(a)-1) (10)
i=
and the log-eigenvalue measure
1k 2
p(€C1,Cr) = F > log"(4). 1
i=1

The generalized eigenvalues of C; and C, are denoted by {;};_ 1..r
and they are defined by 4;C;v; = C,v;, with v;#0. A generalized
eigenvalue problem can be converted into a normal eigenvalue
problem: C{]szi:iivi.

For all distance measures p(Cq,C5), high values mean great
difference between the two covariance matrices. If p =0, both
covariance matrices are equal. We perform the channel selection
via SFS with discrete weights, as explained in Section 2, for all four
distance measures. Fig. 5 depicts the matching error e over the
number of features. It can be seen that the log-eigenvalue measure
performs best.

4. Matching strategy

The covariance matrix descriptor is used to match points
between two surfaces that are represented by 3D point clouds.
The point cloud in which one or several reference points is
selected will be called reference point cloud P, and the point
cloud in which corresponding points is searched will be called new
point cloud Ppew. Corresponding points should have similar covar-
iance matrices. Hence, if we want to find a point jePyew that
corresponds to point i€P,.f, Wwe have to minimize

j = arg minp(C;, C)), (12)
J€Pnew

with p(-, -) being the log-eigenvalue distance measure described in
Section 3.2. This is a nonlinear optimization problem that we will
solve with a pyramidal approach to avoid local minima, where at
each level the best match is found via PSO.

4.1. Pyramidal approach

Inspired by multi-resolution pyramids for images we employ a
similar coarse-to-fine strategy for 3D point clouds in order to
avoid local minima when solving Eq. (12). The covariance matrix
descriptor of a point is computed using a subset of points that lie
within the neighborhood N of the point under consideration. The
region in which a corresponding point is searched in Ppew is
defined as the search region S. There is a tradeoff between a large
and a small neighborhood A. A large N allows us to find the
region of the salient point robustly but not the exact location,
whereas a small A allows us to find the location more exactly but
not so reliably. Therefore, at first A" and search region S are quite
large (as illustrated in Fig. 6) to determine robustly the area where
the corresponding point lies. Once a rough location is found, the
position is step-by-step refined. At the next level the search is
repeated with the following modifications: (i) the center of the
search region S is the best match found at the previous level, (ii)
the size of S is reduced, and (iii) the size of A\ is also reduced to
make the solution more precise.

Note that the neighborhoods of two points from P.ef and Ppew
usually comprise different amounts of points, although the neigh-
borhoods have the same size, because of different sensor resolu-
tions, different angles to the projector, different object heights, etc.
The advantage of the covariance matrix descriptor is that we can
compare subsets with different amounts of points.
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Fig. 6. Illustration of the covariance matrix pyramid for 3D point clouds.

At each level, the point in the search region with the lowest
distance measure p has to be found. An exhaustive search would
be computationally quite expensive. Thus, we propose a more
efficient solution to this problem based on PSO.

4.2. Particle swarm optimization

PSO, first introduced in [32], is a simple technique that has
proven to be efficient for many nonlinear optimization problems
[33]. We perform the search in a uv-space, i.e., along the surface,
because it is much faster. Hence, also the search of the points that
lie within N, which would be computationally intensive, can be
sped up considerably. For each 3D point, uv-coordinates are
computed. There are many mapping methods, such as parallel
projection, cylindrical projection [34], Least Squares Conformal
Mapping [35], Harmonic Mapping [36], ABF++ [37], etc. Most of
these methods were developed in the context of texture mapping.
An overview of recent texture mapping methods is given in [38].
The choice of the method depends on the shape of the object the
matching is used for. For the results in Section 5 we have
employed parallel projection (gesture and kitchen set), cylindrical
projection (faces), and ABF++ (apples). Note that for more com-
plex shapes more complex texture mapping methods must be
applied. If the shape is too complex, computing uv-coordinates
might fail. A mesh is laid over the points in uv-space and for each
hole all points of Ppew with uv-coordinates within this hole are
registered. Hence, the points inside a certain neighborhood Ny
with center x in uv-coordinates can be computed quickly.

Let N\V; be the neighborhood of a salient point ieP,.s and let C;
be the covariance matrix computed over all points that lie within
this region. A location x in uv-space that has a similar covariance
matrix Cy is searched in Ppew. This leads to the nonlinear
optimization problem

X =arg min E(x), (13)
EEN

where the energy function is E(xX)=p(C;,Cx). The search is
restricted to the search region S. Note that the center x can also
lie between points, i.e., ¥ does not have to coincide with an exact
point location. A total of N particles are created, each with location
x,€R? and velocity v,€R? in uv-space. At each iteration, particles
are drawn toward the positions of their own previous best &, and
the global best g, while they must stay inside the search region S.
Our complete method is summarized by the following pseudo
code.

1: g(—xref
for level [=4 to 1 do

// Initialize global best

2

3 Sy, radius: 2% of reference object height, center: &
4: N, radius: 2'% of reference object height

5 v,<0 and X, < Gaussian distribution, mean: g

6 Xp<xp and g = arg miny, E(x,)

7: for M iterations do

8: for N particles do

9: Viek - (@Vq + C1719Rn—Xn) +CoT2°(§—Xn))
1
0

- Xn<—Xp + Vp Update particle location
11: if x,€5, then
1- if E(xn) < E(Xp), Xn<—Xn Local best
2:
1- if E(x;) <E@), gy Global best
3:
1- end if
4:
1- end for
5:
1- end for
6:
17: end for

The center of the search region at the coarsest level (level 4) is
initialized with the location of the salient point in the reference
point cloud (Line 1). For each level the best match is computed.
The velocities of all particles are initialized with zero and their
positions are drawn from a Gaussian distribution (Line 5), where
the mean is the current global best and the standard deviation is
empirically set to the size of the search region divided by 4. The
global best g is initialized as the best of all particles (Line 6). M
iterations are performed (Line 7), where for each particle (Line 8)
the velocity is computed according to Line 9. The vectors r; and r,
are vectors of random numbers in the range [0, 1], which are
generated at each iteration according to a uniform probability
distribution. The operator © denotes element-wise multiplication.
We set k=0.75, »=0.9, and ¢; = c; =2.05, as suggested after an
in-depth analysis in [39]. Tests confirmed the suitability of this
parameter selection. Particle locations are updated (Line 10) and if
necessary the local best &, or the global best g are updated (Lines
12 and 13). The corresponding point is then the 3D point that lies
closest to g after the optimization stops.

Compared to a brute force search, PSO with, for example, N=10
particles and M=20 iterations, reduces the computation time by
roughly a factor of 10 while the matching accuracy is not affected
considerably, as shown in the next section.

5. Experiments

5.1. Quantitative evaluation and comparison with other state-of-the-
art methods

Several experiments have been conducted demonstrating the
versatility of CMPs. We provide a quantitative evaluation with a
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Table 1
List of the databases that have been used for the evaluation of CMPs.

Database name Number of scans Number of landmarks Sensor type Number of scans used 2D image
used for testing for training available

Bosphorus database [27] 2516 22 Inspeck Mega Capturor I 3D 400 Yes

BU-3DFE database [40] 2100 83 Di3D Dynamic Imaging System 500 Yes

3D apples 15 5 Siemens 3D Scanner No training Yes

HMI gesture scenes 300 3-6 Microsoft Kinect No training Yes

Kitchen scenes [26] 15 10 Hokuyo UTM-30LX No training No

Google 3D warehouse scenes [41] 100 20 Various No training Yes

a) Reference face

b) New faces

Fig. 7. Some 3D faces from the Bosphorus database. (a) Shows the face that has been used as reference face with landmarks and (b) shows faces from the database with the

landmarks found with CMPs.

comparison to other state-of-the-art methods and a qualitative
evaluation. The necessary number of particles and iterations is
investigated on the basis of the Bosphorus database. The
quantitative evaluation is performed as follows. All databases
are handlabeled with landmarks which we used as ground
truth. For each handlabeled landmark the matching error e; =

\/Ax? + Ay? + Az? between the position estimated by the algo-

rithm and the ground truth is computed. The error is averaged
over all K landmarks

e= €;. (14)

1

Nl =
I ™M=

1
Subsequently, the average error is normalized to the height of the
reference object height. If for a certain database rgbh-images are
also available, we can compare our method with conventional
point descriptors that work with images (namely local optical flow
[34], SIFT-64, and SIFT-128 [5]) and verify if working with 3D point
clouds is worthwhile. Because of the normalization to the object

height, a fair comparison of the matching error is possible.
Furthermore, we compare the results to PFH [3], that rely, similar
to CMPs, directly on point clouds.

For the experiments six different databases have been used. Table 1
lists the six databases that have been employed, namely Bosphorus
database [27], BU-3DFE database [40], 3D apples, HMI gesture scenes,
kitchen scenes [26], and Google 3D warehouse scenes [41].

5.1.1. Bosphorus database

In the first experiment, salient points in 3D faces are matched.
For this purpose the Bosphorus 3D face database [27] is employed.
Each face is handlabeled with 22 landmarks, which we used as
ground truth. The rgb-images for each face are employed for
comparison with other methods that rely on images. The compu-
tation time and the numbers of particles and iterations are also
investigated. Fig. 7 (a) shows individual number 000 from the
database having neutral expression, which was chosen as refer-
ence face, with the 22 landmarks.
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The test set that has been used includes 2516 faces and it does
not contain the 400 faces that have been employed for the feature
selection in Section 2. In Table 2, the matching errors normalized
to the head height of SIFT-64, SIFT-128 [5], local optical flow [34],
PFH [3], CMPs with a brute force matching, and CMPs with PSO are
shown. It can be seen that CMPs improve the matching accuracy
by 37%, 36%, 16%, and 21% compared to SIFT-64, SIFT-128, local
optical flow, and PFH, respectively. The database contains many
different individuals. It seems that other descriptors are not able to
detect correspondences among individuals as good as CMPs under
these circumstances. The table also shows that, with a brute-force
search, which is much more time consuming than PSO, the
average matching error cannot be considerably improved (0.8%).
This justifies the usage of PSO to speed up the matching process.

Fig. 7(a) shows the reference face we used and Fig. 7(b) shows
some faces in which the 22 salient points have been marked with
CMPs. Some limitations of CMPs can be observed. If a face has an
open mouth while the reference face does not, the texture and the
depth values are too different. Further, it is difficult to locate points
in the chin region, where there is little texture and also depth
values are not very descriptive. Note that even for humans it is
difficult to choose landmarks at the chin region unambiguously,
which can also be observed when looking at the ground truth

Table 2

landmarks. Apart from that, remarkable results can be achieved for
the individuals of the database with different facial expressions,
sex, ethnic background, with or without facial hair, and with
varying illumination conditions and poses, as can be seen in Fig. 7.

5.1.2. BU-3DFE database

The BU-3DFE database [40] contains 2600 faces. The faces have
been recorded with a Di3D Dynamic Imaging System. We used 500
scans as training set and 2100 as test set. Each face has 83 handlabeled
landmarks. The quantitative results are shown in Table 2. CMPs
improve the matching accuracy by 26%, 25%, 14%, and 16% compared
to SIFT-64, SIFT-128, local optical flow, and PFH, respectively. In
general, detecting the landmarks of this database is more challenging
than for the Bosphorus database, since there are less landmarks at
edges and corners. SIFT and also PFH have difficulties especially if the
landmarks are not situated exactly at corners. The BU-3DFE database
also contains scans of many different individuals and it can be seen
that CMPs are more appropriate to deal with these differences.

5.1.3. 3D apples
The 3D apples have been recorded with a Siemens Structured-
Light 3D Scanner. A total of 15 apples have been used. The apples

Average error e between the position of landmarks estimated by the registration method and the ground truth. The error is normalized to the height of the object. CMPs are

compared to SIFT-64, SIFT-128 [5], local optical flow method of [34], and PFH [3].

Database name SIFT-64 5] SIFT-128 5] Local optical flow method of [34] PFH 3] CMPs CMPs, brute force
Bosphorus database [27] 0.0557 0.0549 0.0421 0.0451 0.0353 0.0350

BU-3DFE database [40] 0.0625 0.0617 0.0539 0.0544 0.0456 -

3D apples 0.0624 0.0596 0.0340 0.0551 0.0273 -

HMI gesture scenes 0.0268 0.025 0.0275 0.0247 0.0231 -

Kitchen scenes [26] - - - 0.0325 0.0339 -

Google 3D warehouse scenes [41] 0.0522 0.0513 0.0847 0.0778 0.0532 -

a) Reference apple

Fig. 8. Scans of apples with a Siemens Structured-Light 3D Scanner. (a) Five points have been selected as reference points and (b) could be found in other apples with CMPs

without using color information.
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have different colors and sizes. Also the shooting angle is different
and there are various backgrounds, such as black board, computer
screen, books, and a person holding the apple. Given that no
training set is available, features are manually chosen. Color is not
very meaningful, because the apples have different colors, such as
red, green, and even yellow. Thus, all features based on color
information were removed. Fig. 8(a) shows the reference apple for
which five points have been chosen manually.

In addition to the point cloud the Siemens Structured-Light 3D
Scanner outputs images, so we could also compare CMPs to methods
that rely on 2D images. It can be seen that CMPs improve the
matching accuracy by 55%, 54%, 21%, and 51% compared to SIFT-64,
SIFT-128, local optical flow, and PFH, respectively. The improvement
compared to other methods is larger than for the 3D faces. While
other methods are developed especially for the description of corners
and edges, CMPs are also quite robust for less descriptive regions
since they integrate the whole neighborhood.

Fig. 8(b) shows some corresponding points that have been
estimated using CMPs. The points could be found correctly. Note
that it is already quite difficult for humans to detect these points.
Here the flexibility of CMPs can be observed. Color information is
not very helpful, so it is ignored. Nevertheless, CMPs find accurate
corresponding points by using only features that are based on
shape information. Especially the surface normals and the correla-
tion of surface normals with the xyz-coordinates provide sufficient
information to detect the points robustly.

5.1.4. Human-machine interaction gesture scenes

In this section, salient points are tracked in human-machine
interaction gesture scenes. The gestures include arm movements,
hand and finger movements and whole body movements. The
scenes are recorded with a Point Grey Bumblebee XB3 stereo
camera. The output is 25 frames per second video sequence. The
database consists of 100 gesture scenes, each of which lasts
roughly 3-4 s. We handlabeled 1 frame per second resulting in a

Frame O

total of 300 labeled scans. We used 3-6 landmarks depending on
the scene.

For each frame not all pixels have depth values, as can be seen
in Fig. 9, where the black pixels in frame O are pixels without
depth information. No training set is available, so we took the
features trained for the 3D faces. Fig. 9 shows some qualitative
results. (Some of the videos are also provided as supplementary
material). It can be seen that points at the hand, elbow, shoulder,
and face are tracked accurately. The quantitative results are shown
in Table 2. The landmarks are put only at corners, so also the other
descriptors show good performance. CMPs improve the matching
accuracy by 11%, 8%, 14%, and 4% compared to SIFT-64, SIFT-128,
local optical flow, and PFH, respectively.

5.1.5. Kitchen scenes

For the presentation of the performance of PFH [26] the
authors employed several kitchen scans recorded by a Hokuyo
UTM-30LX Laser Scanner. The scans show the same room from
different viewpoints. For each scan we handlabeled 10 salient
points, chose another scan where these points are also visible, and
handlabeled the corresponding points as ground truth. Subse-
quently, we tried to find the corresponding points in another scan
automatically and measured the matching error e as explained
above. The 3D point clouds are recorded with intensity informa-
tion. No 2D images are provided, so a comparison to other 2D
methods is not possible. Fig. 10(a) shows 10 landmarks that were
set in this scan and (b) illustrates the corresponding points that
have been found automatically with CMPs. It is shown that even in
not very descriptive regions a corresponding point can be found
quite reliably. In Table 2, the average matching error for PFH [3]
and CMPs is shown. Both descriptors show good performance,
although PFH can improve the matching accuracy by 2%. PFH are
well-suited for finding salient points of the same object recorded
from different points of view. However, CMPs are able to perform
the correspondence estimation almost as exact as PFH.

Tracking

|

Fig. 9. Human-machine interaction gesture scenes recorded with a Bumblebee XB3 stereo camera. The black pixels in frame 0 have no depth value. Points that are selected

in frame O are tracked with CMPs.
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Fig. 10. Two sample scans of the kitchen scenes [26]. In (a) salient points have been selected and in (b) where the same scene is scanned from a different viewpoint the

corresponding points have been found automatically with CMPs.

Y AN

Abld

Fig. 11. (a) Shows the Chrysler Building, the Church of Lyon, the Mainz Cathedral, Jefferson Main Street, and the St. Mary Church of Tadcaster and (b) shows the St. Mary

Church of Tadcaster from 5 different points of view.

5.1.6. Google 3D warehouse scenes

Google 3D warehouse is a rich source of user created freely
available 3D scenes. The scenes can be directly downloaded as
collada 3D point cloud. We selected 20 different 3D models of
famous buildings, namely Jefferson Main Street (USA), Chrysler
Building (USA), United States Capitol (USA), The McLeod Building
(USA), 24 and 26 Lichfield Street (UK), Parish Hall of Llanelli (UK),
Shire Hall (UK), St. Mary Church of Tadcaster (UK), Holst's House in
Barnes (UK), Windsor Guildhall (UK), Royal Castle of Neuschwan-
stein (Germany), Mainz Cathedral (Germany), Dalberghaus (Ger-
many), Taj Mahal (India), National Stadium of China (China),
Mann's Chinese Theatre (China), Church of Lyon (France), Church
in Venice (Italy), Catholic Church Via del Plebiscito of Rome (Italy),
and Oosterbeek Church (Netherlands). Fig. 11(a) shows several
samples from the dataset. For each 3D object 20 points were
selected randomly. For every scene 5 different points of view (see
Fig. 11 (b)) were employed and these 20 points were searched. As
in the previous sections the average matching error was computed
with Eq. (14). Since in Google 3D warehouse the color values are

also given for the 3D points, the 2D methods can be applied for
comparison, too.

The quantitative results are shown in Table 2. CMPs improve
the matching accuracy by 37% and 32% compared to local optical
flow and PFH, respectively. SIFT-64 and SIFT-128 are 2% and 4%
better for this dataset. In general, the results are a little worse for
the 3D buildings than for the other sets, which implies that this set
is more challenging. Fig. 11 (a) shows several samples from the
dataset. It can be seen for the building similar texture blocks are
often repeated which is difficult to deal with for the matching
methods. Furthermore, the points have not been selected at
certain descriptive edges but just randomly which adds further
complexity.

5.1.7. Summary of the quantitative evaluation

The applied datasets can be divided into two groups: Same 3D
object from different view angles (kitchen scenes [26], Google 3D
warehouse scenes [41]) and different 3D objects of the same class
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Fig. 12. Matching error @ over number of particles N and number of iterations M.
The error is normalized to the height of the reference face.
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Fig. 13. Computation time per face over number of particles N and number of
iterations M.

(Bosphorus database [27], BU-3DFE database [40], 3D apples, HMI
gesture scenes). For the first group CMPs show similar or better
performance compared to other state-of-the-art descriptors. For
the second group CMPs can improve results up to 21% compared to
the second best descriptor. This fact implies that CMPs are
especially suitable for datasets where objects slightly differ.

5.2. Evaluation of number of particles and iterations

At each pyramid level a certain number N of particles and M
iterations are employed. Reasonable values for N and M have to be
determined. Fig. 12 shows the influence of N and M on the
matching error e computed for 100 faces from the database. The
graph illustrates that beyond certain values for N and M the
improvement of the matching accuracy is only minor. Hence, if
good performance is the only criterion, a combination of N=20
and M=50 is a good choice. However, the computation time ¢t is
linearly dependent on N and M, which is depicted in Fig. 13. The
reported computation times per face are for a Matlab implemen-
tation running on an Intel Core i5 processor with 4 GB working
memory. Therefore, for all reported matching errors, we have
employed N=10 particles and M=20 iterations, which is a reason-
able compromise between efficient computation and matching
accuracy.

6. Conclusion and future work

In this article, we have presented a point descriptor for 3D
point clouds, called Covariance Matrix Pyramids (CMPs). CMPs are
flexible, a list of potential features that are incorporated into the
description is presented but it is easy to change or expand this
feature set. Results are given for a variety of 3D databases with
handlabeled landmarks that are used as ground truth. The pro-
posed method was compared to other point descriptors relying
both on 2D images and 3D point clouds. CMPs show promising
performance in comparison to the other state-of-the-art methods.
Especially, when objects slightly differ from each other CMPs show
strong performance and can improve the matching accuracy
considerably.

In our ongoing research, we are working on the expansion of
the feature set. Furthermore, we have planned to integrate CMPs
into more sophisticated tracking methods.
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