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Abstract. We present a view independent algorithm for 3D human gait
recognition. The identification of the person is achieved using motion
data obtained by our markerless 3D motion tracking algorithm. We re-
port its tracking accuracy using ground-truth data obtained by a marker-
based motion capture system. The classification is done using SVM built
on the proposed spatio-temporal motion descriptors. The identification
performance was determined using 230 gait cycles performed by 22 per-
sons. The correctly classified ratio achieved by SVM is equal to 93.5% for
rank 1 and 99.6% for rank 3. We show that the recognition performance
obtained with the spatio-temporal gait signatures is better in comparison
to accuracy obtained with tensorial gait data and reduced by MPCA.

1 Introduction

Gait is an attractive biometric feature for human identification at a distance,
and recently has gained much interest from academia. Vision-based gait recogni-
tion has attracted increased attention due to possible applications in intelligent
biometrics and visual surveillance systems [2]. Compared with conventional bio-
metric features, such as face or iris, gait has many unique advantages since the
identification techniques are non-contact, non-invasive, perceivable at a larger
distance and do not require a cooperation of the individual.

In general, there are two main approaches for gait-based person identification,
namely appearance-based (model free) and model-based ones [10]. Appearance-
based approaches focus on identifying persons using shape, silhouette, geomet-
rical measures, etc. On the other hand, model-based approaches are focused on
identifying persons taking into account the kinematic characteristics of the walk-
ing manner. The majority of the approaches are based on appearance and rely
on analysis of image sequences acquired by a single camera. The main drawback



of such approaches is that they can perform the recognition from a specific view-
point. To achieve view-independent person identification, Jean et al. [4] proposed
an approach to determine view-normalized body part trajectories of pedestrians
walking on potentially non-linear paths. However, Yu et al. [15] reported that
view changes cause a significant deterioration in gait recognition accuracy. View-
point dependence is still significant problem for many gait analysis techniques,
since it is not easy to match between different orientations of the subject.

Model-based gait recognition is usually based on 2D fronto-parallel body
models. In [14], a sequential set of 2D stick figures is utilized to extract gait
patterns. Afterwards, a SVM classifier is used to classify gender using such gait
signatures. The use of 3D technology for gait analysis [1] dates back to 1990. The
3D approaches for gait recognition model human body structure explicitly, often
with support of the gait biomechanics [13]. They are far more resistant to view
changes in comparison to 2D ones. In [11] 3D locations of markers were utilized,
from which joint-angle trajectories measured from normal walks were derived.
The recognition was performed using dynamic time warping on the normalized
joint-angle information. It was done on two walking databases of 18 people and
over 150 walk instances using nearest neighbor classifier with Euclidean distance.
In [9] several ellipses are fitted to different parts of the binary silhouettes and the
parameters of these ellipses (e.g., location and orientation) are used as gait fea-
tures. In [12], an approach relying on matching 3D motion models to images, and
then tracking and restoring the motion parameters is proposed. The evaluation
was performed on datasets with four people, i.e. 2 women and 2 men walking
at 9 different speeds ranging from 3 to 7 km/h by increments of 0.5 km/h.
Motion models were constructed using Vicon motion capture system (moCap).
To overcome the non-frontal pose problem, more recently a multi-camera based
gait recognition method has been developed [3]. In the mentioned work, joint
positions of the whole body are employed as a feature for gait recognition.

In controlled laboratory experiments, gait has been shown to be very effective
biometric for distinguishing between individuals. However, in real world scenarios
it has been found to be much harder to achieve good recognition accuracy. Most
of gait analysis techniques, particularly neglecting 3D information, are unable to
reliably match gait signatures from differing viewpoints. Moreover, they are also
strongly dependant on the ability of the background segmentation and require
accurate delineation between the subject and the background.

In this work we present an approach for 3D gait recognition. The motion
parameters are estimated on the basis of markerless human motion tracking.
They are inferred with the help of a 3D human model. The estimation takes place
on video sequences acquired by four calibrated and synchronized cameras. We
show the tracking performance of the motion tracking algorithm using ground-
truth data acquired by a commercial motion capture (moCap) system from Vicon
Nexus. The identification is done on the basis of the proposed spatio-temporal
motion descriptors. We show that they allows us to achieve better results in
comparison to an algorithm based on third order tensor and a reduction of the
tensorial gait data by Multilinear Principal Components Analysis (MPCA) [7].



2 Markerless System for Articulated Motion Tracking

2.1 3D Human Body Model

The human body can be represented by a 3D articulated model formed by 11
rigid segments representing the key parts of the body. The 3D model specifies
a kinematic chain, where the connections of body parts comprise a parent-child
relationship, see Fig. 1. The pelvis is the root node in the kinematic chain and at
the same time it is the parent of the upper legs, which are in turn the parents of
the lower legs. In consequence, the position of a particular body limb is partially
determined by the position of its parent body part and partially by its own
pose parameters. In this way, the pose parameters of a body part are described
with respect to the local coordinate frame determined by its parent. The 3D
geometric model is utilized to simulate the human motion and to recover the
persons’s position, orientation and joint angles. To account for different body
part sizes, limb lengths, and different ranges of motion we employ a set of pre-
specified parameters, which express typical postures. For each degree of freedom
there are constraints beyond which the movement is not allowed. The model
is constructed from truncated cones and is used to generate contours, which
are then matched with the image contours. The configuration of the body is
parameterized by the position and the orientation of the pelvis in the global
coordinate system and the angles between the connected limbs.
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Fig. 1. 3D human body model consisting of 11 segments (left), hierarchical structure
(right).

2.2 Articulated Motion Tracking

Estimating 3D motion can be cast as a non-linear optimization problem. The
degree of similarity between the real and the estimated pose is evaluated using
an objective function. Recently, particle swarm optimization (PSO) [5] has been
successfully applied to full-body motion tracking [8]. In PSO each particle follows
simple position and velocity update equations. Thanks to interaction between
particles a collective behavior of the swarm arises. It leads to the emergence of
global and collective search capabilities, which allow the particles to gravitate
towards the global extremum. The motion tracking can be achieved by a sequence



of static PSO-based optimizations, followed by re-diversification of the particles
to cover the possible poses in the next frame. In this work the 3D motion tracking
is achieved through the Annealed Particle Swarm Optimization (APSO) [8].

2.3 Fitness Function

The fitness function expresses the degree of similarity between the real and
the estimated human pose. Figure 2 illustrates the calculation of the objective
function. It is determined in the following manner: f(x) = 1−(f1(x)w1 ·f2(x)w2),
where x stands for the state (pose), whereas w denotes weighting coefficients that
were determined experimentally. The function f1(x) reflects the degree of overlap
between the extracted body and the projected 3D model into 2D image. The
function f2(x) reflects the edge distance-based fitness. A background subtraction
algorithm [8] is employed to extract the binary image of the person, see Fig. 2b.
The binary image is then utilized as a mask to suppress edges not belonging to
the person, see Fig. 2d. The projected model edges are then matched with the
image edges using the edge distance map, see Fig. 2g.

Fig. 2. Calculation of the fitness function. Input image a), foreground b), gradient
magnitude c), masked gradient image d), edge distance map e), 3D model h) projected
onto image 2D plane i) and overlaid on binary image f) and edge distance map g).

3 Gait Characterization and Recognition

The markerless motion tracking was achieved using color images of size 960×540,
which were acquired at 25 fps by four synchronized and calibrated cameras. Each
pair of the cameras is approximately perpendicular to the other camera pair.
Figure 3 depicts the location of the cameras in the laboratory.

A commercial motion capture system from Vicon Nexus was employed to
provide the ground truth data. The system uses reflective markers and ten cam-
eras to recover the 3D location of such markers. The data are delivered with
rate of 100 Hz and the synchronization between the moCap and multi-camera
system is achieved using hardware from Vicon Giganet Lab.



Fig. 3. Layout of the laboratory with four cameras. The images illustrate the initial
model configuration, overlaid on the image in first frame and seen in view 1, 2, 3, 4.

A set of M = 39 markers attached to main body parts has been used. From
the above set of markers, 4 markers were placed on the head, 7 markers on
each arm, 12 on the legs, 5 on the torso and 4 markers were attached to the
pelvis. Given such a placement of the markers on the human body and the
estimated human pose, which has been determined by our APSO algorithm, the
corresponding positions of virtual markers on the body model were determined.
Figure 4 illustrates the distances between ankles, which were determined by
our markerless motion tracking algorithm and the moCap system. High overlap
between both curves formulates a rationale for the usage of the markerless motion
tracking in view-independent gait recognition. In particular, as we can observe,
the gait cycle and the stride length can be determined with high precision.

Fig. 4. Distance between ankles in sequences P1S, P2S and P3S (straight).

In a typical system for gait-based person identification a gait signature is
extracted in advance. Given a gallery database consisting of gait patterns from a
set of known subjects, the objective of the gait recognition system is to determine
the identity of the probe samples. In this work we treat each gait cycle as a data
sample. Thus, a gait sample consists of some attributes describing a person, like
height, stride length and joint angles estimated by marker-less motion capture.

The data extracted by markerless motion tracking algorithm were stored in
ASF/AMC data format. For a single gait cycle consisting of two strides a gait
signature was determined. The number of frames in each gait sample has some
variation and therefore the number of frames in each gait sample was subjected
to normalization. The normalized time dimension was chosen to be 30, which
was roughly the average number of frames in each gait cycle. As mentioned in
Subsection 2.1, the body configuration is parameterized by the position and the



orientation of the pelvis in the global coordinate system and the angles between
the connected limbs. Among the state variables there is roll angle of the pelvis
and the angles between the connected limbs. A set of the mentioned above state
variables plus the distance between the ankles and the person’s height account
for the gait sample. In consequence, the dimension of single data sample is 32,
and it is equal to the number of bones (excluding pelvis) times three angles plus
two (i.e. distance between ankles and the person’s height). From such a gait data
sample we excluded the angles not used and the resulting dimension of the gait
sample was equal to 22. Thus, a single gait pattern was of size 30× 22.

In order to comprise the variation of the gait attributes over time we eval-
uated a number of spatio-temporal motion descriptors. The first group of gait
descriptors was calculated on the basis of the normalized cumulative sums and
the corresponding variances, which were calculated for each attribute in some
time intervals. In the first gait signature g cum5 they were calculated in every
fifth frame, in the second signature g cum10 they were calculated every tenth
frame, whereas in third one g cum15 they were calculated every fifteenth frame.
Given the dimension of the gait sample, the lengths of the gait signatures were
264, 132 and 88. The second group of gait signatures was determined analogously,
but instead of the normalized cumulative sums and variances, the averages and
the corresponding variances were calculated for a specified range of adjacent
frames, i.e. 5, 10 and 15. That means that the first gait signature g ti5 consisted
of the averages and the variances of the attributes corresponding to frames 1-5,
6-10, . . . , 25-30. Such gait signatures were then utilized by the classifiers.

4 Experimental Results

The markerless motion tracking system was evaluated on video sequences with 22
walking individuals. In each image sequence the same actor performed two walks,
consisting in following a virtual line joining two opposite cameras and following a
virtual line joining two nonconsecutive laboratory corners. The first subsequence
is referred to as ‘straight’, whereas the second one is called ‘diagonal’. Given the
estimated pose, the 3D model was projected to 2D plane and then overlaid on
the images. Figure 5 depicts some results, which were obtained for person 1 in
a straight walk. The degree of overlap of the projected 3D body model with the
performer’s silhouette reflects the accuracy of motion tracking.

Fig. 5. Articulated 3D human body tracking in sequence P1S. Shown are results in
frames #0, 20, 40, 60, 80, 100, 120. The left sub-images are seen from view 1, whereas
the right ones are seen from view 2.



The plots depicted in Fig. 6 illustrate the accuracy of motion estimation for
some joints. As we can observe, the average tracking error of both legs is about
50 mm and the maximal error does not exceed 110 mm. The results presented
above were obtained by APSO algorithm in 20 iterations using 300 particles.
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Fig. 6. Tracking errors [mm] versus frame number.

In Table 1 are presented some quantitative results that were obtained using
the discussed image sequences. The errors were calculated on the basis of 39
markers. For each frame they were computed as average Euclidean distance be-
tween individual markers and the recovered 3D joint locations. For each sequence
they were then averaged over ten runs of the APSO with unlike initializations.

Table 1. Average errors for M = 39 markers in three image sequences. The images
from sequence P1S are depicted on Fig. 5.

Seq. P1S Seq. P2S Seq. P3S
#particles it. error [mm] error [mm] error [mm]

APSO

100 10 50.9±31.4 54.6±30.3 55.6±34.1
100 20 46.9±26.5 49.0±27.1 49.7±26.5
300 10 46.7±26.6 50.4±28.5 50.5±26.1
300 20 44.4±25.9 46.6±24.8 48.2±25.2

Table 2 shows the recognition accuracy that was obtained on 230 gait cycles
from both straight and diagonal walks. Each of 22 persons performed 2 walks in
each direction, and each crossing consisted of 2 or 3 full gait cycles. 10-fold cross-
validation was used to evaluate the performance of the proposed algorithm for
view independent gait recognition. In the evaluation of the system we employed
Näıve Bayes (NB), multilayer perceptron (MLP) and a linear SVM. The first
column of the table contains acronym of the utilized gait signature, whereas the
second one contains the number of the attributes of the gait signature. In order
to show the usefulness of the spatio-temporal gait signatures we show also the
correctly classified ratio (CCR), which was obtained by the use of all attributes,



see signature g all, and a signature g avg consisting of the averages and the
variances for each attribute. As we can observe, for rank 1 the best correctly
classification ratio was obtained by MLP classifier operating on all attributes.
However, taking into account that this result was obtained on large number of
attributes, the usefulness of MLP classifier can be reduced in practice due to its
computational and memory requirements, tendency to overfitting, and reduced
generalization abilities on such set of attributes. Unlike MLP, the computational
complexity of SVMs does not depend on the dimensionality of the input space.
Moreover, SVM classifiers are usually much quicker. As we can observe, the
correctly classified ratios achieved by SVM are better than corresponding MLP
CCRs for almost all remaining gait signatures (apart from g ti5). In particular,
for the SVM the best CCRs have been achieved using spatio-temporal features.
For rank 3 the SVM gives better results than MLP, excluding the g all gait
signature for which the CCR is equal to the best CCR of the SVM.

Table 2. Correctly classified ratio [%] using data from markerless motion capture.

rank 1 rank 3
gait sig. # att. NB MLP SVM NB MLP SVM
g all 660 84.8 96.1 90.0 94.6 99.6 98.3
g avg 44 87.0 90.9 91.6 95.2 97.0 99.6
g cum5 264 82.6 91.3 93.5 92.6 97.8 99.1
g cum10 132 83.0 90.0 93.5 92.6 97.8 98.7
g cum15 88 83.9 88.7 91.7 93.9 97.0 99.1
g ti5 264 81.7 91.3 90.4 91.7 98.3 98.3
g ti10 132 80.4 90.9 92.2 93.6 98.3 98.3
g ti15 88 83.0 91.3 93.0 95.2 98.7 99.6

The discussed experimental results were obtained using data, which were
employed in [7] and were produced by our marker-less motion tracking system.
For rank 1, the best identification performance obtained by SVM and operating
on spatio-temporal features is better about 4% in comparison to results reported
in [7], i.e. obtained by MLP operating on tensorial gait data that were reduced
using Multilinear Principal Components Analysis (MPCA).

Figure 7 depicts the confusion matrix, which was obtained by SVM and
g cum10 signature. As we can see, eleven persons were classified with 100%
probability. The lowest probability associated with true label is equal to 72.7%.

In Tab. 3 are shown results that were obtained using motion data from
marker-based motion capture. As we can observe, the 3D data allows us to obtain
very promising correctly classified ratios. In particular, the results demonstrate a
potential of 3D techniques in view-independent gait analysis. The data obtained
by motion capture systems are available at: http://home.agh.edu.pl/~bkw/
research/data/3DGaitData.7z.



Fig. 7. Confusion matrix for SVM using g cum10 (CCR=93.5%).

Table 3. Correctly classified ratio [%] using data from marker-based moCap (rank 1).

gait sig. # att. NB MLP SVM 1NN 3NN 1NN 3NN
Euclidean dist. Manhattan dist.

g all 8880 100 - 100 100 100 100 100
g avg 148 99.1 100 100 100 100 100 100
g cum20 888 99.6 100 100 100 100 100 100
g cum40 444 99.6 100 100 100 100 100 100
g cum60 296 99.6 100 100 100 100 100 100
g ti20 888 99.6 100 100 99.6 100 100 100
g ti40 444 99.6 100 100 100 100 100 100
g ti60 296 99.6 100 100 99.6 100 100 100

The complete motion capture system was implemented in C/C++. The
recognition performance was evaluated using WEKA software. The marker-less
motion capture system runs on an ordinary PC. As demonstrated in [6], the full
body motion tracking can be realized in real-time on modern GPUs.

5 Conclusions

We have presented an approach for view-independent gait recognition. The mo-
tion parameters were estimated using markerless human motion tracking. The
person identification was done on the basis of the proposed spatio-temporal mo-
tion descriptors. The classification performance was determined on a dataset
consisting of 230 gait cycles that were performed by 22 persons. The correctly
classified ratio achieved by SVM is equal to 93.5% for rank 1 and 99.6% for
rank 3. The identification accuracy is better than accuracy reported in [7], where



tensorial gait data reduced by Multilinear Principal Components Analysis were
classified by a multilinear perceptron. The correctly classified ratio of SVM, MLP
and k-NN classifiers on data obtained by the moCap system is equal to 100%.

Acknowledgments. This work has been partially supported by the Polish
National Science Center (NCN) within the research projects NN 516 475740,
NN 516 483240 and Ministry of Science and Higher Education within a grant
for young researchers (DS/M).

References

1. Areblad, M., Nigg, B., Ekstrand, J., Olsson, K., Ekstrm, H.: Three-dimensional
measurement of rearfoot motion during running. J. of Biomechanics 23(9), 933 –
940 (1990)

2. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging
signal processing technology for biometric identification. Signal Processing Maga-
zine, IEEE 22, 78–90 (2005)

3. Gu, J., Ding, X., Wang, S., Wu, Y.: Action and gait recognition from recovered
3-D human joints. IEEE Trans. Sys. Man Cyber. Part B 40(4), 1021–1033 (2010)

4. Jean, F., Albu, A.B., Bergevin, R.: Towards view-invariant gait modeling: Com-
puting view-normalized body part trajectories. Pattern Recogn. 42(11) (Nov 2009)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks. pp. 1942–1948. IEEE Press, Piscataway, NJ (1995)

6. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the
motion of 3D articulated figure. In: Int. Conf. on Computer Vision and Graphics,
Lecture Notes in Computer Science, vol. 6374, pp. 155–162. Springer-Verlag (2010)

7. Krzeszowski, T., Michalczuk, A., Kwolek, B., Switonski, A., Josinski, H.: Gait
recognition based on marker-less 3D motion capture. In: 10th IEEE Int. Conf. on
Advanced Video and Signal Based Surveillance. pp. 232–237 (2013)

8. Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm intelligence based search-
ing schemes for articulated 3D body motion tracking. In: Int. Conf. on Advanced
Concepts for Intell. Vision Systems, LNCS. pp. 115–126. Springer, vol. 6915 (2011)

9. Lee, L., Dalley, G., Tieu, K.: Learning pedestrian models for silhouette refinement.
In: Proc. of the Ninth IEEE Int. Conf. on Computer Vision. pp. II:663–670 (2003)

10. Nixon, M.S., Carter, J.: Automatic recognition by gait. Proc. of the IEEE 94(11),
2013–2024 (2006)

11. Tanawongsuwan, R., Bobick, A.: Gait recognition from time-normalized joint-angle
trajectories in the walking plane. In: IEEE Comp. Society Conf. on Computer
Vision and Pattern Recognition. vol. 2, pp. 726–731 (2001)

12. Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In:
Proc. of IEEE Int. Conf. on Automatic Face and Gesture Rec. pp. 17–22 (2004)

13. Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and
running via model-based approaches. Pattern Rec. 37(5), 1057 – 1072 (2004)

14. Yoo, J.H., Hwang, D., Nixon, M.S.: Gender classification in human gait using
support vector machine. In: Proc. of the 7th Int. Conf. on Advanced Concepts for
Intelligent Vision Systems. pp. 138–145. LNCS, Springer-Verlag (2005)

15. Yu, S., Tan, D., Tan, T.: Modelling the effect of view angle variation on appearance-
based gait recognition. In: 7th Asian Conf. on Computer Vision, Lecture Notes in
Computer Science, vol. 3851, pp. I:807–816. Springer Berlin Heidelberg (2006)


