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Abstract

Since falls are a major public health problem in an ageing society, there is considerable demand for low-cost fall
detection systems. One of the main reasons for non-acceptance of the currently available solutions by seniors is
that the fall detectors using only inertial sensors generate too much false alarms. This means that some daily
activities are erroneously signaled as fall, which in turn leads to frustration of the users. In this paper we
present how to design and implement a low-cost system for reliable fall detection with very low false alarm
ratio. The detection of the fall is done on the basis of accelerometric data and depth maps. A tri-axial
accelerometer is used to indicate the potential fall as well as to indicate whether the person is in motion. If the
measured acceleration is higher than an assumed threshold value, the algorithm extracts the person, calculates
the features and then executes the SVM-based classifier to authenticate the fall alarm. It is a 365/7/24
embedded system permitting unobtrusive fall detection as well as preserving privacy of the user.
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1 Introduction

Assistive technology or adaptive technology is an um-
brella term that encompasses assistive and adaptive
devices for people with special needs [1, 2]. Special
needs and daily living assistance are often associated
with seniors, disabled, overweight and obese, etc. As-
sistive technology for ageing-at-home has become a hot
research topic since it has big social and commercial
value. One important aim of assistive technology is to
allow elderly people to stay as long as possible in their
home without changing their living style.

Wearable sensor-based systems for health monitor-
ing are an emerging trend and in the near future
they are expected to make possible proactive personal
health monitoring along with better medical treat-
ment. Inertial measurement units (IMUs) are low-cost
and low power consumption devices with many po-
tential applications. Current miniature inertial sensors
can be integrated into clothes or shoes [3]. Inertial
tracking technologies are becoming widely accepted for
the assessment of human movement in health moni-
toring applications [4]. Wearable sensors offer several
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advantages over other sensors in terms of cost, weight,
size, power consumption, ease of use and, most impor-
tantly, portability. Therefore, in the last decade, many
different methods based on inertial sensors were de-
veloped to detect human falls. Falls are a major cause
of injury for older people and a significant obstacle
in independent living of the seniors. They are one of
the top causes of injury-related hospital admissions in
people aged 65 years and over. The statistical results
demonstrate that at least one-third of people aged 65
years and over fall one or more times a year [5]. An in-
jured elderly may be laying on the ground for several
hours or even days after a fall incident has occurred.
Therefore, significant attention has been devoted to
developing an efficient wearable system for human fall
detection [6, 7, 8, 9].

1.1 IMU based approaches to fall detection
The most common method for wearable-device based
fall detection consists in the use of a tri-axial ac-
celerometer and a threshold-based algorithm for trig-
gering an alarm. Such algorithms raise the alarm when
the acceleration is larger than a threshold value [10].
A variety of accelerometer-based methods and tools
have been proposed for fall detection [11]. Typically,
such algorithms require relatively high sampling rate.
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However, most of them discriminate poorly between
activities of daily living (ADLs) and falls, and none
of which is universally accepted by elderly. One of the
main reasons for non-acceptance of the currently avail-
able solutions by seniors is that the fall detectors using
only accelerometers generate too much false alarms.
This means that some daily activities are erroneously
signaled as fall, which in turn leads to frustration of
the users.

The main reason of high false ratio of accelerometer-
based systems is the lack of adaptability together with
insufficient capabilities of context understanding. In
order to reduce the number of false alarms, many at-
tempts were undertaken to combine both accelerome-
ter and gyroscope [6, 12]. However, several ADLs like
quick sitting have similar kinematic motion patterns
with real falls and in consequence such methods might
trigger many false alarms. As a result, it is not easy to
distinguish real falls from fall-like activities using only
accelerometers and gyroscopes. Another drawback of
the approaches based on wearable sensors, from the
user’s perspective, is the need to wear and carry vari-
ous uncomfortable devices during normal daily life ac-
tivities. In particular, the elderly may forget to wear
such devices. Moreover, in [13] it is pointed out that
the common fall detectors, which are usually attached
to a belt around the hip, are inadequate to be worn
during the sleep and this results in the lack of ability of
such detectors to monitor the critical phase of getting
up from the bed.

In general, the solutions mentioned above are some-
how intrusive for people as they require wearing con-
tinuously at least one device or smart sensor. On the
other hand, these systems, comprising various kinds
of small sensors, transmission modules and processing
capabilities, promise to change the personal care, by
supplying low-cost wearable unobtrusive solutions for
continuous all-day and any-place health and activity
status monitoring. An example of such solutions with
a great potential are smart watches and smartphone-
based technologies. For instance, in iFall application
[14], data from the accelerometer is evaluated using
several threshold-based algorithms and position data
to determine the person’s fall. If a fall is inferred, a no-
tification is raised requiring the user’s response. If the
user does not respond, the system sends alerts message
via SMS.

Despite several shortcomings of the currently avail-
able wearable devices, the discussed technology has a
great potential, particularly, in the context of grow-
ing capabilities of signal processors and embedded sys-
tems. Moreover, owing to progress in this technology,

data collection is no longer constrained to laboratory
environments. In fact, it is the only technology that
was successfully used in large scale collection of people
motion data.

1.2 Camera based approaches to fall detection
Video-cameras have largely been used for detecting
falls on the basis of single CCD camera [15, 16], multi-
ple cameras [17], specialized omni-directional ones [18]
and stereo-pair cameras [19]. Video based solutions of-
fer several advantages over others including the ca-
pability of detection of various activities. The further
benefit is low intrusiveness and the possibility of re-
mote verification of fall events. However, the currently
available solutions require time for installation, camera
calibration and they are not cheap. As a rule, CCD-
camera based systems require a PC computer or a
notebook for image processing. While these techniques
might work well in controlled environments, in order
to be practically applied they must be adapted to non-
controlled environments in which neither the lighting
nor the subject tracking is fully controlled. Typically,
the existing video-based devices for fall detection can-
not work in nightlight or low light conditions. Addi-
tionally, the lack of depth information can lead to lots
of false alarms. What is more, their poor adherence to
real-life applications is particularly related to privacy
preserving. Nevertheless, these solutions are becom-
ing more accessible, thanks to the emergence of low-
cost cameras, the wireless transmission devices, and
the possibility of embedding the algorithms. The ma-
jor problem is acceptance of this technology by the se-
niors as it requires the placement of video cameras in
private living quarters, and especially in the bedroom
and the bathroom.

The existing video-based devices for fall detecting
cannot work in nightlight or low light conditions. In ad-
dition, in most of such solutions the privacy is not pre-
served adequately. On the other hand, video cameras
offer several advantages in fall detection over wear-
able devices-based technology, among others the abil-
ity to detect and recognize various daily activities. Ad-
ditional advantage is low intrusiveness and the possi-
bility of remote verification of fall events. However,
the lack of depth information may lead to many false
alarms. The existing technology permits reaching quite
high performance of fall detection. However, as men-
tioned above it does not meet the requirements of the
users with special needs.

Recently, Kinect sensor has been proposed to achieve
fall detection [20, 21, 22]. The Kinect is a revolutionary
motion-sensing technology that allows tracking a per-
son in real-time without having to carry sensors. It is
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the world’s first low-cost device that combines an RGB
camera and a depth sensor. Thus, if only depth images
are used it preserves the person’s privacy. Unlike 2D
cameras, it allows tracking the body movements in 3D.
Since the depth inference is done using an active light
source, the depth maps are independent of external
light conditions. Owing to using the infrared light, the
Kinect sensor is capable of extracting the depth maps
in dark rooms. In the context of reliable fall detection
systems, which should work 24 hours a day and 7 days
a week it is very important capability, as we already
demonstrated in [21].

1.3 Overview of the method
In order to achieve reliable and unobtrusive fall de-

tection, our system employs both the Kinect sensor
and a wearable motion-sensing device. When both de-
vices are used our system can reliably distinguish be-
tween falls and activities of daily living. In such a con-
figuration of the system the number of false alarms
is diminished. The smaller number of false alarms is
achieved owing to visual validation of the fall alert
generated on the basis of motion data only. The au-
thentication of the alert is done on the basis of depth
data and analysis of the features extracted on depth
maps. Owing to the determined in advance parame-
ters describing the floor the system analyses not only
the shape of the extracted person but also the distance
between the person’s center of gravity and the floor.
In situations in which the use of the wearable sensor
might not be comfortable, for instance during changing
clothes, bathing, washing oneself, etc., the system can
detect falls using depth data only. In the areas of the
room being outside of the Kinect field of view the sys-
tem can operate using data from motion-sensing device
consisting of an accelerometer and a gyroscope only.
Thanks to automatic extraction of the floor no calibra-
tion of the system is needed and Kinect can be placed
according to the user preferences at the height of about
0.8 − 1.2 m. Owing to using of depth maps only our
system preserves privacy of people undergoing moni-
toring as well as it can work at nighttime. The price of
the system along with working costs are low thanks to
the use of low-cost Kinect sensor and low-cost Pand-
aBoard ES, which is a low-power, single-board com-
puter development platform. The algorithms were de-
veloped with respect to both computational demands
as well as real-time processing requirements.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the main ingredients of
the system, together with the main motivations for
choosing the embedded platform. Section 3 is devoted

to short overview of the algorithm. A threshold-based
detection of the person fall is described in Section 4.
In Section 5 we give details about extraction of the
features representing the person in depth images. The
classifier responsible for detecting human falls is pre-
sented in Section 6. The experimental results are dis-
cussed in Section 7. Section 8 provides some concluding
remarks.

2 The embedded system for human fall
detection

This Section is devoted to presentation of the main
ingredients of the embedded system for human fall
detection. At the beginning, the architecture of the
embedded system for fall detection is outlined. Next,
the PandaBoard is drafted briefly. Following that, the
wearable device is presented in detail. Then, the Kinect
sensor and its usefulness for fall detection are discussed
shortly. Finally, data processing, feature extraction
along with classification modules are discussed briefly
in the context of the limited computational resources
of the utilized embedded platform.

2.1 Main ingredients of the embedded system
Our fall detection system uses both data from Kinect
and motion data from a wearable smart device contain-
ing accelerometer and gyroscope sensors. On the basis
of data from the inertial sensor the algorithm extracts
motion features, which are then used to decide if a fall
took place. In the case of the fall the features repre-
senting the person in the depth images are dispatched
to a classifier, see Fig. 1.

2.2 Embedded platform
The computer used to execute depth image analysis
and signal processing is the PandaBoard ES, which
is a mobile development platform, enabling software
developers access to an open OMAP4460 processor-
based development platform. It features a dual-core
1 GHz ARM Cortex-A9 MPcore processor with Sym-
metric Multiprocessing (SMP), a 304 MHz PowerVR
SGX540 integrated 3D graphics accelerator, a pro-
grammable C64x DSP, and 1 GB of DDR2 SDRAM.
The board contains wired 10/100 Ethernet along with
wireless Ethernet and Bluetooth connectivity. The
PandaBoard ES can support various Linux-based op-
erating systems such as Android, Chrome and Linux
Ubuntu. The booting of the operating system is from
SD memory card. Linux is well suited operating sys-
tem for real-time embedded platforms since it provides
various flexible inter-process communication methods,
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Figure 1 The architecture of the embedded system for fall detection.

among others message queues. Another advantage of
using Linux in an embedded device is rich availability
of tools and therefore it has been chosen for managing
the hardware and software of the selected embedded
platform.

The data acquired by x-IMU inertial device with
256 Hz are transmitted wirelessly via Bluetooth to the
processing device, whereas the Kinect sensor was con-
nected to the device via USB, see Fig. 1. The fall detec-
tion system runs under Linux operating system. The
application consists of five main concurrent processes
that communicate via message queues, see Fig. 1. Mes-
sage queues are appropriate choice for well structured
data and therefore they were selected as a communi-
cation mechanism between the concurrent processes.

They provide asynchronous communication that is
managed by Linux kernel. The first process is respon-
sible for acquiring data from the wearable device, the
second one acquires depth data from the Kinect, third
process continuously updates the depth reference im-
age, fourth one is responsible for data processing and
feature extraction, whereas the fifth process is ac-
countable for data classification and triggering the fall
alarm. The extraction of the person on the basis of
the depth reference maps has been chosen since the
segmentation can be done with relatively low compu-
tational costs. The dual-core processor allows parallel
execution of processes responsible for the data acqui-
sition and processing.

2.3 The inertial device
The person movement is sensed by an x-IMU [23],
which is a versatile motion sensing platform. Its host
of on-board sensors, algorithms, configurable auxil-
iary port and real-time communication via USB, Blue-
tooth or UART make it powerful smart motion sens-
ing sensor. The on-board SD card, USB-based battery
charger, real-time clock and motion trigger wake up

also allow on-board storage of data for later analy-
sis. The x-IMU consists of triple axis 16-bit gyroscope
and triple axis 12-bit accelerometer. The first sensor
measures acceleration, the rate of change in velocity
across time, whereas the gyroscope delivers us the rate
of change of the angular position over time (angular
velocity) with a unit of [deg/s]. The acceleration is
measured in units of [g].

The measured acceleration components were median
filtered with a window length of three samples to sup-
press the sensor noise. The accelerometric data were
utilized to calculate the acceleration’s vector length.
Figure 2 shows a sample plot of acceleration vector
length vs. time for a person walking up and down the
stairs, and after that sitting down. The plot depicts
motion data of a person older than 65 years of age.
As illustrated on the discussed plot, for typical daily
activities of an elderly the acceleration assumes quite
considerable values. As we can observe, during a rapid
sitting down the acceleration value equal to 3.5 has
been exceeded. Such a value is assumed very often as
a decision threshold in simple threshold-based algo-
rithms for fall detection [10, 8]. Therefore, in order
to reduce the number of false alarms, in addition to
the measurements from the inertial sensor we employ
the Kinect sensor whenever it is only possible. The
depicted plots were obtained for the IMU device that
was worn near the pelvis region. It is worth noting that
the attachment of the wearable sensor near the pelvis
region or lower back is recommended in the literature
[11] because such a body part represents the major
component of body mass and undergoes movement in
most activities.

2.4 Kinect sensor
The Kinect sensor simultaneously captures depth and
color images at a frame rate of about 30 fps. The
device consists of an infrared laser-based IR emitter,



Kwolek and Kepski Page 5 of 14

Figure 2 Acceleration over time for typical ADLs performed
by an elderly.

an infrared camera and an RGB camera. The depth
sensor consists of an infrared laser emitter combined
with a monochrome CMOS sensor, which captures 3D
data streams under any ambient light conditions. The
CMOS sensor and the IR projector form a stereo pair
with a baseline of approximately 75 mm. The sensor
has an angular field of view of fifty-seven degrees hor-
izontally and forty-three degrees vertically. The mini-
mum range for the Kinect is about 0.6 m and the max-
imum range is somewhere between 4-5 m. The device
projects a speckle pattern onto the scene and infers
the depth from the deformation of that pattern. In
order to determine the depth it combines such a struc-
tured light technique with two classic computer vision
techniques, namely depth from focus and depth from
stereo. Pixels in the provided depth images indicate
the calibrated depth in the scene. The depth resolu-
tion is about 1 cm at 2 m distance. The depth map is
supplied in VGA resolution (640 × 480 pixels) on 11
bits (2048 levels of sensitivity). Figure 3 depicts sam-
ple color images and the corresponding depth maps,
which were shot by the Kinect in various lighting con-
ditions, ranging from day lighting to late evening one.
As we can observe, owing to the Kinect’s ability to
extract the depth images in unlit rooms the system is
able to detect falls in the late evening or even in the
nighttime.

2.5 The system for fall detection
The system detects falls using Support Vector Machine
(SVM), which has been trained off-line, see Fig. 4. The
system acquires depth images using OpenNI (Open
Natural Interaction) library. OpenNI framework sup-
plies an application programming interface (API) as

Figure 3 Color images (top row) and the corresponding depth
images (bottom row) shot by Kinect in various lighting
conditions, ranging from day lighting to late evening lighting.

well as it provides the interface for physical devices and
for middleware components. The acceleration compo-
nents were median filtered with a window length of
three samples. The size of the window has been deter-
mined experimentally with regard to noise supression
as well as computing power of the utilized platform. A
nearest neighbor-based interpolation was executed on
the depth maps in order to fill the holes in the depth
map and to get the map with meaningful values for
all pixels. The median filter with a 5 × 5 window on
the depth array has been executed to make the data
smooth. Afterwards, the features are extracted both
on motion data and the depth maps, see Feature Ex-
traction block on Fig. 4. The depth features were then
forwarded to the SVM classifier responsible for distin-
guishing between ADLs and falls.

3 Overview of the algorithm

At the beginning, motion data from IMU along with
depth data from the Kinect sensor are acquired. The
data is then median filtered to suppress the noise. Af-
ter such a preprocessing the depth maps are stored in
circular buffer see Fig. 5. The storage of the data in a
circular buffer is needed for the extraction of the depth
reference image, which in turn allows us extraction of
the person. In the next step the algorithm verifies if
the person is motion. This operation is carried out on
the basis of the accelerometric data and thus it is real-
ized with low computational cost. When the person is
at rest, the algorithm acquires new data. In particular,
no update of the depth reference map takes place if no
movement of the person has been detected in one sec-
ond period. If a movement of the person takes place,
the algorithm extracts the foreground. The foreground
is determined through subtraction of the current depth
map from the depth reference image.

Given the extracted foreground, the algorithm de-
termines the connected components. In the case of the



Kwolek and Kepski Page 6 of 14

Figure 4 An overview of fall detection process.

Figure 5 Flow chart of the algorithm for fall detection.

scene change, for example, if a new object appears
in the scene, the algorithm updates the depth refer-
ence image. We assume that the scene change takes
place, when two or more blobs of sufficient area ap-
pear in the foreground image. Subsequently, given the
accelerometric data, the algorithm examines whether
a fall took place. In the case of possible fall the al-
gorithm extracts the person along with his/her fea-
tures in the depth map. The extraction of the fore-
ground is done through differencing the current depth
map from the depth reference map. Next, the algo-
rithm removes from the binary image all connected
components (objects) that consist of fewer pixels than
assumed number of pixels. After that, the person is
segmented through extracting the largest connected
component in the thresholded difference map. Finally,
the classifier is executed to acknowledge the occurrence
of the fall.

4 Threshold-based fall detection

On the basis of the data acquired by the IMU device
the algorithm indicates a potential fall. In the flow
chart of the algorithm, see Fig. 5, a block Potential

fall represents the recognition of the fall using data
from the inertial device. Figure 6 represents sample
plots of the acceleration and angular velocities for
falling along with daily activities like going down the
stairs, picking up an object, and sitting down – stand-
ing up.

The x-IMU inertial device consists of triple-axis 12-
bit accelerometer and triple-axis 16-bit gyroscope. The
sampled acceleration components were used to calcu-
late the total sum vector SVTotal(t) as follows:

SVTotal(t) =
√
A2

x(t) +A2
y(t) +A2

z(t) (1)

where Ax(t), Ay(t), Az(t) is the acceleration in the x−,
y−, and z−axes at time t, respectively. The SVTotal
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Figure 6 Acceleration (top row) and angular velocity (bottom row) over time for walking downstairs and upstairs, picking up an
object, sitting down - standing up and falling.

contains both the dynamic and static acceleration
components, and thus it is equal to 1 g for standing,
see plots of acceleration change curves in upper row
of Fig. 6. As we can observe on the discussed plots,
during the process of falling the acceleration attained
the value of 6 g, whereas during walking downstairs
and upstairs it attained the value of 2.7 g. It is worth
noting that the data were acquired by x-IMU, which
was worn by a middle aged person (60+). The plots
shown in the bottom row illustrate the corresponding
change of angular velocities. As we can see, the change
of the angular velocities during the process of falling
is the most significant in comparison to non-fall activ-
ities. However, in practice, it is not easy to construct a
reliable fall detector with almost null false alarms ratio
using the inertial data only. Thus, our system employs
a simple threshold-based detection of falls, which are
then verified on the basis of analysis of the depth im-
ages. If the value of SVTotal is greater than 3 g then
the system starts the extraction of the person and then
executes the classifier responsible for the final decision
about the fall, see also Fig. 5.

5 Extraction of the features representing
person in depth images

In this Section we demonstrate how the features rep-
resenting the person undergoing monitoring are ex-
tracted. At the beginning we discuss the algorithm for
person delineation in the depth images. Then, we ex-
plain how to automatically estimate the parameters of
the equation describing the floor. Finally, we discuss
the features representing the lying person, given the
extracted equation of the floor.

5.1 Extraction of the object of interest in depth maps
In order to make the system applicable in a wide

range of scenarios we elaborated a fast method for up-
dating the depth reference image. The person was de-
tected on the basis of a scene reference image, which
was extracted in advance and then updated on-line.
In the depth reference image each pixel assumes the
median value of several pixels values from the past im-
ages, see Fig. 7. In the set-up stage we collect a number
of the depth images, and for each pixel we assemble a
list of the pixel values from the former images, which is
then sorted in order to extract the median. Given the
sorted lists of pixels the depth reference image can be
updated quickly by removing the oldest pixels and up-
dating the sorted lists with the pixels from the current
depth image and then extracting the median value. We
found that for typical human motions, satisfactory re-
sults can be obtained using 13 depth images. For the
Kinect acquiring the images at 30 Hz we take every
fifteenth image.

The images shown in the 3rd row of Figure 8 are the
binary images with the foreground objects, which were
obtained using the discussed technique. In the middle
row there are the raw depth images, whereas in the
upper one there are the corresponding RGB images.
The RGB images are not processed by our system and
they are only depicted for illustrative purposes. In the
image #410 the person closed the door, which then
appears on the binary image being a difference map
between the current depth image and the depth ref-
erence image. As we can see, in frame 610, owing to
adaptation of the depth reference image, the door dis-
appears on the binary image and the person under-
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Figure 7 Extraction of depth reference image.

going monitoring is properly separated from the back-
ground. Having on regard that the images are acquired
with 25 frames per second as well as the number of
frames that were needed to update of the depth refer-
ence image, the time required for removing the moved
or moving objects in the scene is about six seconds. In
the binary image corresponding to the frame 810 we
can see a chair, which has been previously moved, and
which disappears in the binary image corresponding
to frame 1010. Once again, the update of the depth
reference image has been achieved in about six sec-
onds. As we can observe, the updated depth reference
image allows us to extract the person’s silhouette in
the depth images. In order to eliminate small objects
the depth connected components were extracted. Af-
terwards, small artifacts were removed. Otherwise, the
depth images can be cleaned using morphological ero-
sion.

In the detection mode the foreground objects are ex-
tracted through differencing the current image from
such a reference depth map. Subsequently, the fore-
ground object is determined through extracting the
largest connected component in the thresholded dif-
ference map.

The images shown in the middle row of Fig. 8 are the
raw depth images. As we already mentioned, the near-
est neighbor-based interpolation is executed on the
depth maps in order to fill the holes in the maps and
to get the maps with meaningful values for all pixels.
Thanks to such an interpolation the delineated persons
contain a smaller amount of artefacts.

5.2 V-disparity based ground plane extraction

In [24] a method based on v-disparity maps between
two stereo images has been proposed to achieve reliable
obstacle detection. Given a depth map provided by the

#210 410 610 810 1010

Figure 8 Delineation of person using depth reference image. RGB images (upper row), depth (middle row) and binary images
depicting the delineated person (bottom row).
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Kinect sensor, the disparity d can be determined in the
following manner:

d =
b · f
z

(2)

where z is the depth (in meters), b stands for the
horizontal baseline between the cameras (in meters),
whereas f stands for the (common) focal length of the
cameras (in pixels). The IR camera and the IR projec-
tor form a stereo pair with a baseline of approximately
b = 7.5 cm, whereas the focal length f is equal to 580
pixels.

Let H be a function of the disparities d such that
H(d) = Id. The Id is the v-disparity image and H
accumulates the pixels with the same disparity from
a given line of the disparity image. Thus, in the v-
disparity image each point in the line i represents the
number of points with the same disparity occurring in
the i-th line of the disparity image. Figure 9c illustrates
the v-disparity image that corresponds to the depth
image acquired by the Kinect sensor and depicted on
Fig. 9b.

a) b) c)

Figure 9 V-disparity map extracted on depth images from
Kinect sensor: RGB image a), corresponding depth image b),
v-disparity map c).

The line corresponding to the floor pixels in the v-
disparity map was extracted using the Hough trans-
form (HT). The Hough transform finds lines by a vot-
ing that is carried out in a parameter space, from which
line candidates are obtained as local maxima in a so-
called accumulator space. Assuming that the Kinect
is placed at height about 1 m from the floor, the line
representing the floor should begin in the disparities
ranging from 15 to 25 depending on the tilt angle of
the Kinect sensor. As we can observe on Fig. 9c the line
corresponding to the floor begins at disparity equal to
twenty four.

The line corresponding to the floor was extracted us-
ing HT operating o v-disparity values and a predefined
range of the parameters. Figure 10 depicts the accu-
mulator of the HT, that has been extracted on the
v-disparity image shown on Fig. 9c. The accumulator
was incremented by the v-disparity values. It is worth

noting that ordinary HT operating on thresholded v-
disparity images often gives incorrect results. For visu-
alization purposes the accumulator values were divided
by 1000. As we can see on Fig. 10, the highest peak
of the accumulator is for a line with Θ approximately
equal to zero degrees. This means that it corresponds
to a vertical line, i.e. line corresponding to the room
walls, see Fig. 9c. In order to simplify the extraction of
the peak corresponding to the floor, only the bottom
half of the v-disparity maps is subjected to processing
by HT, see also Fig. 9c. Thanks to such an approach
as well as executing the HT on a predefined range of Θ
and ρ, the line corresponding to floor can be estimated
reliably.

Figure 10 Accumulator of the Hough transform operating on
v-disparity values from the image shown on Fig. 9c.

Given the extracted line in such a way, the pixels
belonging to the floor areas were determined. Due to
the measurement inaccuracies, pixels falling into some
disparity extent dt were also considered as belonging to
the ground. Assuming that dy is a disparity in the line
y, which represents the pixels belonging to the ground
plane, we take into account the disparities from the
range d ∈ (dy − dt, dy + dt) as a representation of the
ground plane. Given the line extracted by the Hough
transform, the points on the v-disparity image with
the corresponding depth pixels were selected, and then
transformed to the point cloud.

After the transformation of the pixels representing
the floor to the 3D points cloud, the plane described
by the equation ax + by + cx + d = 0 was recovered.
The parameters a, b, c and d were estimated using the
RANdom SAmple Consensus (RANSAC) algorithm.
RANSAC is an iterative algorithm for estimating the
parameters of a mathematical model from a set of ob-
served data, which contains outliers [25]. The distance
to the ground plane from the 3D centroid of points
cloud corresponding to the segmented person was de-
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termined on the basis of the following equation:

D =
|aXc + bYc + cZc + d|√

a2 + b2 + c2
(3)

where Xc, Yc, Zc stand for the coordinates of the per-
son’s centroid. The parameters should be re-estimated
subsequent to each change of the Kinect location or
orientation. A relevant method for estimating 3D cam-
era extrinsic parameters has been proposed in [26]. It
operates on three sets of points, which are known to
be orthogonal. These sets can either be identified us-
ing a user interface or by a semi-automatic plane fitting
method.

5.3 Depth features for person detection
The following features were extracted in a collection
of the depth images in order to acknowledge the fall
hypothesis, which is signaled by the threshold-based
procedure:
• h/w - a ratio of width to height of the person’s

bounding box
• h/hmax - a ratio expressing the height of the per-

son’s surrounding box in the current frame to the
physical height of the person

• D - the distance of the person’s centroid to the
floor

• max(σx, σz) - standard deviation from the cen-
troid for the abscissa and the applicate, respec-
tively.

Given the delineated person in the depth image along
with the automatically extracted parameters of the
equation describing the floor, the aforementioned fea-
tures are easy to calculate.

6 The classifier for fall detection

At the beginning of this Section we discuss the dataset
that was recorded in order to extract the features for
training as well as evaluating of the classifier. After
that, we overview the SVM-based classifier.

6.1 The training dataset
A dataset consisting of images with normal activi-
ties like walking, sitting down, crouching down and
lying has been composed in order to train the classi-
fier responsible for examination whether a person is
lying on the floor and to evaluate its detection per-
formance. In total 612 images were selected from UR
Fall Detection Dataset (URFD)[1] and another image
sequences, which were recorded in typical rooms, like
office, classroom, etc. The selected image set consists
of 402 images with typical ADLs, whereas 210 images
depict a person lying on the floor. The aforementioned
depth images were utilized to extract the features dis-
cussed in Subsection 5.3. The whole UR Fall Detec-
tion dataset consists of 30 image sequences with 30
falls. Two types of falls were performed by five per-
sons, namely from standing position and from sitting

[1]http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html

Figure 11 Multivariate classification scatter plot for features utilized for training of the fall classifier.

http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
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on the chair. All RGB and depth images are synchro-
nized with motion data, which were acquired by the
x-IMU inertial device.

Figure 11 depicts the scatter plot, in which a collec-
tion of scatter plots is organized in a two-dimensional
matrix simultaneously to provide correlation informa-
tion among the attributes. As we can observe, the
overlaps in the attribute space are not too significant.
Thus, a linear SVM was utilized for classifying lying
poses and typical ADLs. Although the non-linear SVM
has usually better effectiveness in classification of non-
linear data than its linear counterpart, it has much
higher computational demands for prediction.

6.2 Support Vector Machines (SVM)
The basic idea of the SVM classification is to find a
separating hyperplane that corresponds to the largest
possible margin between the points of different classes
[27]. The optimal hyperplane for an SVM means
the one with the largest margin between the two
classes, so that the distance to the nearest data
point of both classes is maximized. Such a largest
margin means the maximal width of the tile paral-
lel to the hyperplane that contains no interior data
points and thus incorporating robustness into deci-
sion making process. Given a set of datapoints D:
D = {(xi, yi)|xi ∈ Rp, yi ∈ {−1, 1}}ni=1 where each ex-
ample xi is a point in p-dimensional space and yi is the
corresponding class label, we search for vector ω ∈ Rp

and bias b ∈ R, forming the hyperplane H: ωTx+b = 0
that seperates both classes so that: yi(ω

Txi + b) ≥ 1.
The optimization problem that needs to be solved is:
minω,b

1
2ω

Tω subject to: yi(ω
Txi+b) ≥ 1. The problem

consists in optimizing a quadratic function subject to
linear constraints, and can be solved with an off-the-
shelf Quadratic programming (QP) solver. The linear
SVM can perform prediction with p summations and
multiplications, and the classification time is indepen-
dent of the number of support vectors. We executed
LIBSVM software [28] on a PC computer to train the
fall detector.

7 Experimental results

We evaluated the SVM-based classifier and compared
it with a k-NN classifier (5 neighbors). The classifiers
were evaluated in 10-fold cross-validation. To exam-
ine the classification performances we calculated the
sensitivity, specificity, precision and classification ac-
curacy. The sensitivity is the number of true positive
(TP) responses divided by the number of actual pos-
itive cases (number of true positives plus number of
false negatives). It is the probability of fall, given that

a fall occurred, and thus it is the classifier’s ability to
identify a condition correctly.

The specificity is the number of true negative (TN)
decisions divided by the number of actual negative
cases (number of true negatives plus number of false
positives). It is the probability of non-fall, given that a
non-fall ADL took place, and thus it shows how good
a classifier is at avoiding false alarms. The accuracy
is the number of correct decisions divided by the total
number of cases, i.e. the sum of true positives plus sum
of true negatives divided by total instances in popu-
lation. That is, the accuracy is the proportion of true
results (both true positives and true negatives) in the
population. The precision or positive predictive value
(PPV) is equal to true positives divided by sum of
true positives and false positives. Thus, it shows how
many of the positively classified falls were relevant. In
Tab. 1 are shown results that were obtained in 10-fold
cross-validation by the classifier responsible for the ly-
ing pose detection and the aforementioned dataset. As
we can see, both specificity and precision are equal
to 100%, i.e. the ability of the classifier to avoid false
alarms and its exactness assume perfect values.

Table 2 shows results of experimental evaluation of
the system for fall detection, which were obtained on
depth image sequences from URFD dataset. They were
obtained on thirty image/acceleration sequences with
falls and thirty image/acceleration sequences with typ-
ical ADLs like sitting down, crouching down, picking-
up an object from the floor and lying on the sofa. The
number of images in the sequences with falls is equal
to 3000, whereas the number of images with sequences
with ADLs is equal to 9000. All images have corre-
sponding motion data. In the case of incorrect response
of the system the remaining part of the sequence has
been omitted. This means that the detection scores
were determined on the basis of the number of the cor-
rectly/incorrectly classified sequences. As we can ob-
serve, the Threshold UFT method [10] achieves good
results. The results obtained by SVM-classifier oper-
ating on only depth features are slightly worse than
results of Threshold UFT method. The reason is that
the update of the depth reference image was realized
without the support of the motion information. This
means that a simplified system has been built using
only blocks, which are indicated in Fig. 5 as numer-
als in circles. In particular, in such a configuration of
the system all images are processed in order to ex-
tract the depth reference image. The algorithm using
both motion data from accelerometer and depth maps
for verification of IMU-based alarms achieves the best
performance. Moreover, owing to the use of the IMU
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Table 1 Performance of lying pose classification.

True

Fall No Fall

E
st

im
a

te
d

SVM
Fall 208 0

Accuracy=99.67%
Precision=100%No fall 2 402

Sens.=99.05% Spec.=100%

k-NN
Fall 208 0

Accuracy=99.67%
Precision=100%No fall 2 402

Sens.=99.05% Spec.=100%

device the computational efforts associated with the
detection of the person in the depth maps are much
smaller.

Five volunteers with age over 26 years attended in
evaluation of our developed algorithm and the embed-
ded system for fall detection. Intentional falls were per-
formed in an office by five persons towards a carpet
with thickness of about 2 cm. The x-IMU device was
worn near the pelvis. Each individual performed three
types of falls, namely forward, backward and lateral
at least three times. Each individual performed also
ADLs like walking, sitting, crouching down, leaning
down/picking up objects from the floor, as well as ly-
ing on a settee. All intentional falls have been detected
correctly. In particular, quick sitting down, which is
not easily distinguishable ADL from an intentional fall
when only an accelerometer or even both an accelerom-
eter and a gyroscope are used, has been classified as
an ADL.

It is well known that the precision of Kinect measure-
ments decreases in strong sunlight. In order to investi-
gate the influence of sunlight on the performance of fall
detection we analyzed the person extraction in depth
maps acquired in strong sunlight, see sample images
on Fig. 12. As noted in [29], the in-home depth mea-
surements on a person being in sunlight, i.e. in sunlight
that passes a closed window can be made with limited
complications. Some body parts of a person in sun-
light may not return measurements, see images d-e in
Fig. 12. As we can see, the measurements in image f)
are better in comparison to the measurements shown
in image e) due to smaller sunlight intensity. In order
to assess the influence of such strong sunlight on the
performance of fall detection we calculated the per-
son depth features in a collection of such depths maps
with missing measurements. As expected, the change
of the features in comparison to the features extracted
on manually segmented persons is not significant, i.e.
within several percent. Such change of the values of
the features does not degrade the high performance of
fall detection given the algorithms used here.

a) b) c)

d) e) f)

Figure 12 Color images (top row) and the corresponding
depth images (bottom row) acquired by Kinect in sunlight.

The system that was evaluated in such a way has
been implemented on PandaBoard-ES platform. In
particular, we trained off-line the SVM classifier, and
then used the parameters that were obtained in such
a way in a fall predictor, executed on the Pand-
aBoard. Prior the implementation of the system on
the PandaBoard we compared processor performances
using Dhrystone 2 and Double-Precision Whetstone
benchmarks. Our experimental results show that the
Dhrystone 2 score on Intel i7-3610QM 2.30 GHz and
PandaBoard ES OMAP4460 is equal to 37423845 and
4214871 [lps], respectively, whereas Double-Precision
Whetstone is equal to 4373 and 836 [MWIPS], respec-
tively. This means that PandaBoard offers consider-
able computational power. Finally, the whole system
was implemented and evaluated on PandaBoard. The
code profiler reported about 50% CPU usage by the
module responsible for update of the depth reference
map.

8 Conclusions

In this paper we demonstrated an embedded system for
reliable fall detection with very low false alarm. The
detection of the fall is done on the basis of acceleromet-
ric data and depth maps. A tri-axial accelerometer is
used to indicate the potential fall as well as to indicate
if the person is in motion. If the measured acceleration
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Table 2 Performance of fall detection.

Method

SVM - depth only SVM - depth + acc. Threshold UFT [10] Threshold LFT [10]
R

es
u

lt
s

Accuracy 90.00% 98.33% 95.00% 86.67%

Precision 83.30% 96.77% 90.91% 82.35%

Sensitivity 100.00% 100.00% 100.00% 93.33%

Specificity 80.00% 96.67% 90.00% 80.00%

is higher than an assumed threshold value, the algo-
rithm extracts the person, calculates the features and
then executes the SVM-based classifier to authenticate
the fall alarm. We demonstrate that person surround-
ing features together with the distance between the
person center of gravity and floor lead to reliable fall
detection. The parameters of the floor equation are
determined automatically. The extraction of the per-
son is only executed if the accelerometer indicates that
he/she is in motion. The person is extracted through
the differencing the current depth map from the on-line
updated depth reference map. The system permits un-
obtrusive fall detection as well as preserves privacy of
the user. However, a limitation of the Kinect sensor
is that sunlight interferes with the pattern-projecting
laser, so the proposed fall detection system is most
suitable for indoor use.
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