Mixing Graphics and Compute for Real-Time
Multiview Human Body Tracking

Boguslaw Rymut? and Bogdan Kwolek!

! AGH University of Science and Technology
30 Mickiewicza Av., 30-059 Krakow, Poland
bkw@agh.edu.pl
2 Rzeszéw University of Technology
Al Powst. Warszawy 12, 35-959 Rzeszéw, Poland
brymut@prz.edu.pl

Abstract. This paper presents an effective algorithm for 3D model-
based human motion tracking using a GPU-accelerated particle swarm
optimization. The tracking involves configuring the 3D human model in
the pose described by each particle and then rasterizing it in each camera
view. In order to accelerate the calculation of the fitness function, which
is the most computationally demanding operation of the algorithm, the
rendering of the 3D model has been realized using CUDA-OpenGL in-
teroperability. Since CUDA and OpenGL both run on GPU and share
data through common memory the CUDA-OpenGL interoperability is
very fast. We demonstrate that thanks to GPU hardware rendering the
time needed for calculation of the objective function is shorter. Owing
to more precise rendering of the 3D model as well as better extraction
of its edges the human motion tracing is more accurate.

1 Introduction

In the last decade, GPU computing has considerably evolved to deliver ter-
aflops of floating-point compute power. Many real-time applications require a
mix of compute and graphics capabilities, in addition to efficiently processing
large amounts of data. Such applications include physically-based simulations,
computer vision, augmented and virtual reality, motion capture and visualiza-
tion, etc. In order to maximize performance, the applications must be designed
to allow data to be passed efficiently between compute and graphics contexts.
Owing to the CUDA-OpenGL interoperability we can avoid the back and forth
data transfer between the host and device memories, and carry out all process-
ing required for 3D rendering and display [I0]. CUDA is a parallel computing
platform and programming model, which interfaces CPU and of the graphics
processing unit, whereas the OpenGL is well known programmer’s interface to
graphics hardware.

Model-based pose estimation algorithms aim at recovering human motion
from one or more camera views and a 3D model representing the human body.
An articulated human body can be perceived as a kinematic chain consisting

of at least eleven parts corresponding to key parts of the human body. The
human pose is typically represented by a vector of joint angles. Typically such
a 3D human model consists of very simple geometric primitives like cylinders
or truncated cones. The 3D articulated model is projected into each camera
view. The majority of 3D motion tracking algorithms are based on minimizing
an error function, which measures how well the 3D model projections fit the
images. The model - image matching for pose estimation is usually formulated
as an optimization of an error/likelihood function. The 3D model rasterization
in the cameras’ views is the most computationally demanding operation. As
demonstrated in [5], a considerable speedup of the tracking can be achieved
thanks to parallel computations on GPU, and particularly owing to GPU-based
rendering of the 3D model.

Although the general purpose computing on GPU are becoming more pop-
ular because of its promise of massive parallel computation, achieving a good
performance is still not a simple task. In order to achieve desired performance
we have to keep all processors occupied and hide the memory latency. To attain
such aim, CUDA supports running hundred or thousands of lightweight threads
in parallel. The context switch is very fast because everything is stored in the
registers and thus there is almost no data movement.

In general, the image processing and analysis algorithms are good candi-
dates for GPU implementation, since the parallelization is naturally provided
by per-pixel operations. Many research studies confirmed this by showing GPU
acceleration of many image processing algorithms [TI3I8]. A recent study [7] re-
ports a speedup of 30 times for low-level algorithms and up to 10 times for
high-level functions, which contain more overhead and many steps that are not
easy to parallelize.

Non intrusive human body tracking is a key issue in user-friendly human-
computer communication. This is one of the most challenging problems in com-
puter vision being at the same time one of the most computationally demanding
tasks. Particle filters are typically employed to achieve articulated motion track-
ing. Several improvements of ordinary particle filter were done to achieve fast and
reliable tracking of articulated motion [2] as well as to obtain the initialization of
the tracking [IT]. 3D motion tracking can be perceived as dynamic optimization
problem. Recently, particle swarm optimization (PSO) [4] has been successfully
applied to achieve human motion tracking [5]. The motion tracking is achieved
by a sequence of static PSO-based optimizations, followed by re-diversification
of the particles to cover the possible poses in the next time step. The calcula-
tion of the matching score is the most time consuming operation of the tracking
algorithm. In turn, the rasterization of the 3D model in the cameras’ views is
the most computationally demanding operation in the evaluation of the fitness
function. This motivated us to investigate the feasibility of mixing graphics and
compute to speed-up the rasterization of the 3D model, i.e. by the use of CUDA-
OpenGL interoperability.

2 Overview of CUDA-OpenGL Interoperability

A GPU is a dedicated processor that offloads 3D graphics rendering workload
from the CPU. The synthesis of the image is traditionally implemented as a
pipeline of specialized stages, which is called the graphics pipeline. The input to
the graphics pipeline is a wireframe consisting of a set of primitives, which are
defined by a group of one or more vertices. The basic graphics pipeline stages
have evolved from fixed function graphics pipeline into powerful programmable
co-processing units capable of performing general purpose computing. One such
evolution was introduction of programmable processors consisting of:

— Vertex processor, which aim is to transform each input vertex to data re-
quired by the next graphics pipeline stages.

— Geometry processor, which processes a mesh at primitive level and produces
vertices and attributes to define new primitives.

— Fragment processor, which determines the color of each fragment.

Such processors could be programmed with programs called shader programs.
The three different shader types were merged into one unified shader model with
a consistent instruction set across all three processor types. Thus, vertex, geom-
etry, and pixel/fragment shaders became threads, running different programs
on the programmable cores. These cores on NVidia platform are called CUDA
Cores, and a streaming multiprocessor (SM) is composed of many CUDA cores.

In the CUDA programming model the GPU is treated as a coprocessor that
executes data-parallel kernel functions. The kernel is typically executed in paral-
lel through a set of parallel threads, which are grouped into parallel thread blocks
and in each block the threads are scheduled for execution in groups containing
32 threads called warps. Each thread block consists of multiple concurrently
running threads that can cooperate through shared memory and barrier syn-
chronization. Blocks are mapped to streaming multiprocessors and each thread
is mapped to a single core. The SM can issue and execute concurrently two
warps.

The GPU consists of an array of SM multiprocessors, each of which is capa-
ble of supporting thousands co-resident concurrent threads. At each clock cycle,
a multiprocessor executes the same instruction on a group of threads within a
warp. Programming of SMs is based on SIMD paradigm, where the same instruc-
tion is utilized to process different data. In comparison to traditional multicore
processors, GPGPUs have distinctly higher degrees of hardware multithread-
ing (hundreds of hardware thread contexts vs. tens), memory architectures that
deliver higher peak memory bandwidth (hundreds of gigabytes per second vs.
tens), and smaller cache memories.

By using CUDA we can turn a GPU into a powerful image processor, by using
OpenGL we can use the same GPU hardware to generate new images. Because
CUDA and OpenGL both run on GPU and share data through common memory,
the CUDA-OpenGL interoperability is very fast in practice.

3 GPU-accelerated 3D Motion Tracking Using PSO

The motion tracking can by attained by dynamic optimization and incorporating
the temporal continuity information into the ordinary PSO [5]. Consequently,
it can be achieved by a sequence of static PSO-based optimizations, followed
by re-diversification of the particles to cover the potential poses that can arise
in the next frame. The re-diversification of the particles can be obtained on
the basis of normal distribution concentrated around the best particle location
found in the previous frame. The decomposition of the PSO on the available GPU
resources has been discussed in [5]. In the following subsection we focus on the
evaluation of the cost function since the time needed for the evaluation of the cost
function is far larger in comparison time required by PSO-based optimization
as well as time needed changing the configuration of the 3D articulated human
model. Afterwards, we discuss how to accelerate the computation of the objective
function using CUDA-OpenGL interoperability.

3.1 3D Human Body Model

The human body can be represented by a 3D articulated model formed by 11
rigid segments representing the key parts of the body. The 3D model specifies
a kinematic chain, where the connections of body parts comprise a parent-child
relationship, see Fig. |1} The pelvis is the root node in the kinematic chain and at
the same time it is the parent of the upper legs, which are in turn the parents of
the lower legs. In consequence, the position of a particular body limb is partially
determined by the position of its parent body part and partially by its own
pose parameters. In this way, the pose parameters of a body part are described
with respect to the local coordinate frame determined by its parent. The 3D
geometric model is utilized to simulate the human motion and to recover the
persons’s position, orientation and joint angles. To account for different body
part sizes, limb lengths, and different ranges of motion we employ a set of pre-
specified parameters, which express typical postures. For each degree of freedom
there are constraints beyond which the movement is not allowed. The model is
constructed from truncated square pyramids and is used to generate contours,

Pelvis (0) - 6 DoF

|2 - Spine (1) - 3 DoF
i Head (2) - 3 DoF
7| |1 |9 i--e Right Upper Arm (7) - 3 DoF
8 J& 10 -e Right Forearm (8) - 1 DoF
/ \ i---9 Left Upper Arm (9) - 3 DoF
3\ /5 i...e Left Forearm (10) - 1 DoF
-9 Left Upper Leg (3) - 2 DoF
4 J ls i..-e Left Lower Leg (4) - 1 DoF
--# Right Upper Leg (5) - 2 DoF
i..-e Right Lower Leg (6) - 1 DoF

Fig. 1. 3D body model consisting of 11 segments (left), hierarchical structure (right).

which are then matched with the image contours. The configuration of the body
is parameterized by the position and the orientation of the pelvis in the global
coordinate system and the angles between the connected limbs. The rotation of
the limb is done on the basis of the joint transformation matrix. The matrices
are calculated on the basis of the joint rotation angles.

3.2 Cost Function

The most computationally demanding operation in 3D model-based human mo-
tion tracking is calculation of the objective function. In PSO-based approach
each particle represents a hypothesis about possible person pose. In the eval-
uation of the particle’s fitness score the projected model is matched with the
current image observations. The fitness score depends on the amount of overlap
between the extracted silhouette in the current image and the projected and ras-
terized 3D model in the hypothesized pose. The amount of overlap is calculated
through checking the overlap degree from the silhouette to the rasterized model
as well as from the rasterized model to the silhouette. The larger the overlap is,
the larger is the fitness value. The objective function reflects also the normalized
distance between the model’s projected edges and the closest edges in the image.
It is calculated on the basis of the edge distance map [9].

The fitness score for i-th camera’s view is calculated on the basis of follow-
ing expression: f)(z) = 1 — ((fl(l)(a:))“’1 . (fz(z)(x))"’?), where w1, wy denote
weighting coefficients that were determined experimentally. The function fl(l) (x)
reflects the degree of overlap between the extracted body and the projected 3D
model into 2D image corresponding to camera i. The function fz(l)(sc) reflects
the edge distance map-based fitness in the image from the camera i. The objec-
tive function for all cameras is determined according to the following expression:
F(x) = iZ?Zl f@(z). The images acquired from the cameras are processed
on CPU. The extracted foreground image and the distance map are then trans-
ferred onto the device [9]. Afterwards, they are mapped to the textures and then
utilized by the PSO running on the GPU.

3.3 Computing the Cost Function on CUDA-OpenGL

In the phase of the evaluation of the objective function of the PSO running on the
GPU we employ two kernels. In the first one, for each individual particle, the 3D
model state is converted into global transformation matrix of the hierarchical
body model. Each model is projected to the image of each camera, and the
total number of the projected models is equal to the number of cameras times
the number of the particles. The rasterization of the model is completed by
OpenGL hardware on an off-screen frame-buffer. The color components of frame-
buffer pixels are mapped to the CUDA texture for the use by the next CUDA
kernel. The second kernel calculates the objective function for all particles. In
our approach, in every thread block we calculate the fitness score F'(z) of single
particle. Thus, the number of blocks is equal to the number of the particles, see

Fig.[2] The threads perform the summing of the fitness values of pixels belonging
to the image region containing the rasterized model. Taking into account the
available number of registers, in each block we run up to 512 threads and each
thread is in charge of processing single or several columns of the image depending
on the number of the running threads and the image width.

The partial results from each thread of the threaded block are stored in
the shared memory and summed using parallel reduction. In each iteration we
evaluate and store the sum of two consucitive shared memory cells and thus
reduce the number of particpatitng threads by half. The loop is repeated down
to complete thread reduction.

Evaluated F(x) Write — Red - camera 0 |
Global . ¢ || [reen —camers 1 I
— =5 ¥ e e]
memo Blue - 2
o candidate reference |, 1024 i o g |: s :amera |
3 image image 5O L Alpha - camera 3
S N N OpenGL | &£ g [model || model || model ([model
R) NN | resource S < [0 ! ELl
: : : Texture mapping E ‘_g [mggel mgge\ m?geu m‘?ﬁe\
IEENEE SRR Fetch memory E © mD.t.iell model m?(-jel| model
y)
T Block 0 Block 1 Block 15 Block 16 Block N
aaa saa
O |swwssens v | st d e W ey

block of code that runs in parallel on available processors

Fig. 2. Evaluation of the cost function using CUDA-OpenGL.

The joint transformation matrices are stored in the Shader Storage Buffer
Object (SSBO), whereas the indexes determining the order of painting of the
triangles are stored in Index Buffer Object (IBO). The vertices are stored in the
Vertex Buffer Object (VBO). The SSBO can be read and written by shaders
programs written in GLSL language. The vertex attributes stored in VBO can
be accessed by shaders programs. In addition to rendering of the model the
programmable processors extract also the edges of the projected models. The
OpenGL pipeline is executed twice for each camera, where in the first run the
vertex shader projects the vertices from 3D to 2D plane using the Tsai camera
model, and the fragment shader draws the visible triangles. In the second run
the geometry shader extracts the edges of the projected models, which are then
rendered in the frame-buffer. Thus, it stores the model edges in the frame-buffer.
All models are rendered simultaneously for a given camera. The rendered images
together with the extracted edges of a given camera are stored in one of RGBA
components of Frame Buffer Object (FBO). The maximum size of the FBO on
the utilized graphics card is 16384 x 16384 and this in turn allows us to put 32
images in one row of the FBO. The rendered image, which is stored in FBO is
mapped to CUDA texture and is employed by a kernel responsible for calculating
of the objective function. The SSBO, which is mapped to the linear memory, is
used by the first kernel to store the model transformation matrixes, which in
turn are used in OpenGL-based rendering.

4 Experimental Results

The experiments were conducted on a PC with Intel 3.46 GHz CPU, 8 GB RAM,
and NVidia GeForce GTX 590 graphics card consisting of two CUDA devices.
Each CUDA device has 16 multiprocessors and 32 cores per multiprocessor. The
card is equipped with 3072 MB VRAM and 48 KB shared memory per multi-
processor. The OpenGL context was created by GLFW and GLEW libraries.

The performance of the algorithm has been evaluated on sequences with
walking persons, which were used in our previous work [6]. In particular, in
the discussed work above we demonstrated that the average speed-up of GPU
over CPU is about 7.5. The images acquired from calibrated and synchronized
cameras were preprocessed off-line and transferred frame by frame to the GPU.
The input images were rescaled to images of size 480 x 270. Table [1] shows the
average times needed for estimation of the human pose in single frame, obtained
by CUDA and CUDA-OpenGL. As we can observe, the time for evaluation of the
fitness score using CUDA-OpenGL is far shorter in comparison to time achieved
by fitness function implemented in CUDA. It is worth noting that time taken by
PSO searching for the best matching is far shorter in comparison to time needed
for evaluation of the fitness function and is about 0.9 ms.

Table 1. The average time [ms] of PSO for single frame of size 480 x 270 (Seq. P1
straight [6]).

10 it. 20 it.
7 part. CUDA CUDA-OpenGL CUDA CUDA-OpenGL
64 69.5+3.6 49.4+1.7 135.2+6.9 92.9+3.7
128 67.5+3.5 56.7+2.1 147.6+6.9 119.94+4.9
192 86.6+3.2 70.2+3.0 173.2+7.0 137.64+6.1
256 90.3+£3.8 82.6+4.0 179.94+7.0 163.7+8.0

Figure[3]depicts the accuracy of the 3D motion tracking for PSO with various
number of particles and iterations, which was obtained on the sequence with a
walking person [9]. As we can see, for PSO with the number of particles greater
or equal to 128 and the number of iterations equal to 15 or 20 the average
error of 3D motion recovery is about 55 mm. The accuracy is slightly better
in comparison to accuracy obtained in [9]. In particular, it is better for small
number of particles. The results are better due to more precise rendering and
different 3D model, since in [9] the model was built on truncated cones.

5 Conclusions

In this work we presented an algorithm for articulated human motion tracking.
The tracking has been done in real-time using a parallel PSO that is executed

Seq. P1 (straight) Seq. P2 (straight)

70, 70, :
10 iter. 10 iter.
65 ~-15 iter. 65 ~-15 iter.
— 20 iter. — 20 iter.
£ €
£ 60| £ 60
8 55 S 855
5] Ay o 5] N
50 M 50 o
g S SR A AP
45 45 :
50 100 150 200 250 50 100 150 200 250
particles # particles

Fig. 3. Tracking errors [mm)] versus particles number for CUDA-OpenGL PSO.

on GPU. To accelerate the evaluation of the fitness function, which is the most
computationally intensive operation of the tracking algorithm, the rendering of
the 3D model has been realized using CUDA-OpenGL. We showed that thanks
to rendering of the 3D model using GPU hardware the rendering time is shorter.

Acknowledgment. This work has been partially supported by the Polish Min-
istry of Science and Higher Education within a grant for young researchers (U-
530/DS/M) and the National Science Center within the project N N516 483240.

References

1.

10.

11.

Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S.:
Performance evaluation of image processing algorithms on the GPU. Journal of
Structural Biology 164(1), 153 — 160 (2008)

Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: IEEE Int. Conf. on Pattern Recognition. pp. 126-133 (2000)
Fung, J., Mann, S.: Using graphics devices in reverse: GPU-based image processing
and computer vision. In: IEEE Int. Conf. on Multimedia and Expo. pp. 9-12 (2008)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks. pp. 1942-1948. IEEE Press, Piscataway, NJ (1995)
Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the
motion of 3D articulated figure. LNCS, vol. 6374, pp. 155-162. Springer (2010)
Kwolek, B., Krzeszowski, T., Gagalowicz, A., Wojciechowski, K., Josinski, H.: Real-
time multi-view human motion tracking using particle swarm optimization with
resampling. In: AMDO’2012, LNCS, vol. 7378, pp. 92-101. Springer (2012)

Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision
with OpenCV. Comm. ACM 55(6), 61-69 (Jun 2012)

Rymut, B., Kwolek, B.: GPU-supported object tracking using adaptive appearance
models and Particle Swarm Optimization. In: Computer Vision and Graphics,
LNCS, vol. 6375, pp. 227-234. Springer (2010)

. Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated human motion tracking

using particle filter combined with PSO. In: Advanced Concepts for Intelligent
Vision Systems, LNCS, vol. 8192, pp. 426-437. Springer Int. Publ. (2013)

Stam, J.: What every CUDA programmer should know about OpenGL. In: GPU
Technology Conference (2009)

Wu, C., Aghajan, H.: Real-time human pose estimation: A case study in algorithm
design for smart camera networks. Proc. of the IEEE 96(10), 17151732 (2008)

	Mixing Graphics and Compute for Real-Time Multiview Human Body Tracking

