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Abstract. This paper presents our approach to 3D model-based hu-
man motion tracking using a GPU-accelerated particle swarm optimiza-
tion. The tracking involves configuring the 3D human model in the pose
described by each particle and then rasterizing it in each particle’s 2D
plane. In our implementation, we launch one independent thread for each
column of each 2D plane. Such a parallel algorithm exhibits the level of
parallelism that allows us to effectively utilize the GPU resources. Owing
to such task decomposition the tracking of the full human body can be
performed at rates of 15 frames per second. The GPU achieves an aver-
age speedup of 7.5 over the CPU. The speedup that achieves the GPU
over CPU grows with the number of the particles. For marker-less motion
capture system consisting of four calibrated and synchronized cameras,
the efficiency comparisons were conducted on four CPU cores and four
GTX GPUs on two cards.
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1 Introduction

In the early years of computer graphics, the GPU could only be programmed
through a graphics rendering interface. Over the years, the GPU has evolved from
a highly specialized graphics processor to a versatile and highly programmable
architecture that can perform a wide range of data-parallel operations. The GPU
architectures benefit from massive fine-grained parallelization, as they are able to
execute as many as thousands of threads concurrently. Recently, many research
papers reported that general purpose GPUs (GPGPUs) are capable to obtain
significant speedups compared to current homogeneous multicore systems in the
same price range. These scientific reports initiated a passionate debate on the
limits of GPU-supported acceleration for various classes of applications [1]. A
comparison of 14 various implementations showed speedups from 0.5x to 15x
(GPU over CPU). The experiment was made with Intel Core i7 and NVidia
GTX 280. There is a common agreement that in order to achieve satisfactory
performance the algorithms to be executed on GPU should be carefully designed.



CPUs are still the most frequently used hardware for image processing. On
the other hand, image processing algorithms are good candidates for GPU imple-
mentation, since the parallelization is naturally provided by per-pixel operations.
Many research studies confirmed this by showing GPU acceleration of many im-
age processing algorithms [2]. A recent study [3] reports a speedup of 30 times
for low-level algorithms and up to 10 times for high-level functions.

Non intrusive human body tracking is a key issue in user-friendly human-
computer communication. This is one of the most challenging problems in com-
puter vision being at the same time one of the most computationally demanding
tasks. Particle filters are typically employed to achieve articulated motion track-
ing. Several improvements of ordinary particle filter were done to achieve fast
and reliable articulated motion tracking [4] as well as to obtain the initialization
of the tracking [5]. 3D motion tracking can be perceived as dynamic optimization
problem. Recently, particle swarm optimization (PSO) [6] has been successfully
applied to achieve human motion tracking [7, 8]. The motion tracking is achieved
by a sequence of static PSO-based optimizations, followed by re-diversification
of the particles to cover the possible poses in the next time step.

There are only a few publications that discuss the implementation details
of the PSO on GPU. In [9], an approach that restricts the communication of a
particle to its two closest neighbors and thus limits the communication between
threads was proposed. The authors of [10] compared three different variants of
the PSO on GPU, but only parallelized the cost function. In [11], a multi-swarm
PSO algorithm was used to achieve a high degree of parallelism. In [7] an ap-
proach to PSO-based full body human motion tracking on GPU and using single
camera has been proposed. The 3D model with 26 DOF was constructed using
cuboids, which were projected into 2D plane and then rendered in parallel. A sin-
gle thread was responsible for comparing images containing the projected model
and the extracted person. The tracking of the full human body was performed
with 5 frames per second, whereas the speedup of GTX280 over a CPU was
about 15. A common approach to parallelize the PSO consists in executing a lo-
cal swarm on every processor while optimizing the communication between the
swarms. Mussi et al. [8] proposed an approach to articulated human body track-
ing from multi-view video using PSO running on GPU. Their implementation is
far from real-time and roughly requires 7 seconds per frame. Recently, in [12] a
framework for 3D model-based visual tracking using a GPU-accelerated parti-
cle filter has been presented. A hand was tracked using both synthetic and real
videos. The authors reported a speedup of 9.5 and 14.1 against a CPU for image
resolution of 96 x 72 and 128 x 96 using 900 and 1296 particles, respectively.

In this work we present an approach that effectively utilizes the advantages
of modern graphics card hardware to achieve real-time full body tracking using
a 3D human model. The motion tracking was accomplished by a PSO algorithm
running on a GPU. The presented approach to 3D articulated human tracking
follows the Black Box Optimization paradigm [13], according to which the search
processes/particles investigate the hypothesis space of a model state in order to
identify the hypothesis that optimally fit a set of observations.



2 GPU Computing

CUDA is a parallel computing platform and programming model invented by
NVIDIA. Each function that is executed on the device is called a kernel. A
CUDA kernel is executed by an array of threads. Blocks of threads are organized
into one, two or three dimensional grid of thread blocks. Blocks are mapped
to multiprocessors and each thread is mapped to a single core. A warp is a
group of threads within a block that are launched together and usually execute
together. When a warp is selected for execution, all active threads execute the
same instruction but operate on different data. A unique set of indices is assigned
to each thread to determine to which block it belongs and its location inside it.

GPUs offer best performance gains when all processing cores are utilized and
memory latency is hidden. In order to achieve this aim, it is common to launch
a CUDA kernel with hundreds or thousands of threads to keep the GPU busy.
The benefit of having multiple blocks per multiprocessor is that the scheduling
hardware is capable to swap out a block that is waiting on a high-latency in-
struction and replace it with a block that has threads ready to execute. The
context switch is very fast because the GPU does not have to store the state, as
the CPU does when switching threads between being active and inactive. Thus,
it is advantageous to have both high density of arithmetic instructions per mem-
ory access as well many more resident threads than GPU cores so that memory
latency can be hidden. This permits the GPU to execute arithmetic instructions
while certain threads are waiting for access to the global memory.

Memory latency can be hidden by careful design of control flow as well as
adequate design of kernels. The kernels can employ not only the global memory
that resides off chip, but also they can use shared memory that resides on chip.
This memory is shared between all the cores of stream multiprocessor. Its latency
is several times shorter than the latency of the global memory. Threads that
are executing within the same block can cooperate using it, but threads from
different block cannot cooperate via shared memory.

3 Parallel PSO for Object Tracking

Particle Swarm Optimization (PSO) [6] is a bio-inspired meta-heuristic for solv-
ing complex optimization problems. The PSO is initialized with a group of ran-
dom particles (hypothetical solutions) and then searches for optima by updating
all particles locations. The particles move through the solution space and undergo
evaluation according to some fitness function. Each particle iteratively evaluates
the candidate solutions and remembers the personal best location with the best
objective value found so far, making this information available to its neighbors.
Particles communicate good positions to each other and adjust their own veloc-
ities and positions taking into account such good locations. Additionally each
particle utilizes a best value, which can be:

e a global best that is immediately updated when a new best position is found
by any particle in the swarm



e neighborhood best where only a specific number of particles is affected if a
new best position is found by any particle in the sub-population

Typically, a swarm topology with the global best converges faster since all par-
ticles are attracted simultaneously to the best part of the search space. Neigh-
borhood best permits parallel exploration of the search space and decreases the
susceptibility of falling into local minima. However, such a topology slows down
the convergence speed. Taking into account the faster convergence the topology
with the global best has been selected for parallel implementation.

In the ordinary PSO algorithm the update of particle’s velocity and position
can be expressed by the following equations:
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where w is the positive inertia weight, v](-i) is the velocity of particle ¢ in dimen-
sion 7, rﬁz; and rézz are uniquely generated random numbers with the uniform

distribution in the interval [0.0, 1.0], ¢1, c2 are positive constants, p( is the best
position that the particle 4 has found, p, denotes best position that is found by
any particle in the swarm.

The velocity update equation (1) has three main components. The first com-
ponent, which is often referred to as inertia models the particle’s tendency to
continue the moving in the same direction. In effect it controls the exploration
of the search space. The second component, called cognitive, attracts towards
the best position p(® previously found by the particle. The last component is
referred to as social and attracts towards the best position p, found by any par-

ticle. The fitness value that corresponds p'® is called local best p,(fgst, whereas
the fitness value corresponding to pg is referred to as gnest. The ordinary PSO
algorithm can be expressed by the following pseudo-code:

1. Assign each particle a random position in the problem hyperspace.

2. Evaluate the fitness function for each particle.

3. For each particle ¢ compare the particle’s fitness value with its pggst.
If the current value is better than the value pggst, then set this value as the
pggst and the current particle’s position z(?) as p(?.

4. Find the particle that has the best fitness value gpest-

. Update the velocities and positions of all particles according to (1) and (2).

6. Repeat steps 2 — 5 until a stopping criterion is not satisfied (e.g. maximum

number of iterations or a sufficiently good fitness value is not attained).

ot

Our parallel PSO algorithm for object tracking consists of five main phases,
namely initialization, evaluation, p_best, g_best, update and motion. At the be-
ginning of each frame, in the initialization stage an initial position z(9 «
N (pg, X) is assigned to each particle, given the location p, that has been es-
timated in the previous frame. In the evaluation phase the fitness value of each



particle is calculated using a cost function. The calculation of the matching score
is the most time consuming operation of the tracking algorithm. The calculation
of the matching score is discussed in Section 4.2, whereas the decomposition of
this task into kernels is presented in Section 4.3. In the p_best stage the deter-
mining of p,g’e)st as well as p( takes place. This stage corresponds to operations
from the point 3. of the presented above pseudo-code. The operations mentioned
above are computed in parallel using available GPU resources, see Fig. 1. Af-
terwards, the gnest and its corresponding p, are calculated in a sequential task.
Finally, the update stage that corresponds to point 5. in the pseudo-code is done
in parallel. That means that in our implementation we employ the parallel syn-
chronous particle swarm optimization. The synchronous PSO algorithm updates
all particle velocities and positions at the end of each optimization iteration.
In contrast to synchronous PSO the asynchronous algorithm updates particle
positions and velocities continuously using currently accessible information.
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Fig. 1. Decomposition of synchronous particle swarm optimization algorithm on GPU.

In order to decompose an algorithm into GPU we should identify data-parallel
portions of the program and isolate them as CUDA kernels. In the initialization
kernel we generate pseudo-random numbers using the curand library provided by
the CUDA™ SDK. On the basis of the uniform random numbers we generate
normally distributed pseudorandom numbers using Box Mueller transform based
on trigonometric functions [14]. The normally distributed random numbers are
generated at the beginning of each frame to re-distribute the particles around
the pose in time ¢ — 1 and to calculate their velocities. Then the uniform random
numbers rq, 79 for the optimal pose seeking are generated. This means that for
every particle we generate 2 x D x K uniformly distributed random numbers,



where D is dimension and K denotes the maximum number of iterations. They
are stored in the memory and then used in the update kernel, see Fig. 1. At
this stage the computations are done in [N/(2 x W)] blocks and W threads
on each of them, where W denotes the number of cores per multiprocessor. In
the compute prest kernel and the update kernel the number of blocks is equal
to [N/W7, whereas the number of threads in each block is equal to W. In the
update kernel we constrain the velocities of the particles to the assumed maximal
velocity values. In the motion stage the model’s bone hierarchy is recursively
traversed and the internal transformation matrices are updated according to the
state vector of the particle.

4 Implementation of Articulated Body Tracking on GPU

At the beginning of this section we detail our approach to 3D model based visual
tracking of human motion. Afterwards, we present the cost function. Finally, we
discuss the parallelization of the calculations of the cost function.

4.1 3D Model-Based Visual Tracking

The articulated model of the human body has a form of kinematic chain con-
sisting of 11 segments. The 3D model is constructed using truncated cones (frus-
tums) that model the pelvis, torso, head, upper and lower arm and legs.

The model has 26 DOF and its configuration is determined by position and
orientation of the pelvis in the global coordinate system and the relative angles
between the limbs. Each truncated cone is parameterized by the center of base
circle A, center of top circle B, bottom radius r1, and top radius r2. Given the
3D camera location C' and 3D coordinates A and B, the plane passing through
the points A, B, C is determined. Since the vectors AB and AC lie in the plane,
their cross product, which is perpendicular to the plane of AB and AC, is the
normal. The normal is used to determine the angular orientation of the trapezoid
to be projected into 2D plane. Each trapezoid of the model is projected into 2D
image of each camera via modified Tsai’s camera model. The projected image
of the trapezoid is obtained by projecting the corners and then a rasterization
of the triangles composing the trapezoid. Though projecting all truncated cones
we obtain the image representing the 3D model in a given configuration.

In each frame the 3D human pose is reconstructed through matching the
projection of the human body model with the current image observations. In
most of the approaches to articulated object tracking a background subtraction
algorithms are employed to extract the subject undergoing tracking. Addition-
ally, image cues such as edges, ridges and color are often employed to improve
the extraction of the person. In the presented approach the human silhouette is
extracted via background subtraction. Afterwards, the edges are located within
the extracted silhouette. Finally, the edge distance map is extracted [15]. The
matching score reflects (i) matching ratio between the extracted silhouette and
the projected 3D model and (ii) the normalized distance between the model’s



projected edges and the closest edges in the image. The objective function of all
cameras is the sum of such matching scores. Sample images from the utilized
test sequences as well as details of camera setup can be found in [15].

The motion tracking can by attained by dynamic optimization and incorpo-
rating the temporal continuity information into the ordinary PSO. Consequently,
it can be achieved by a sequence of static PSO-based optimizations, followed by
re-diversification of the particles to cover the potential poses that can arise in
the next time step. The re-diversification of the particle i can be obtained on
the basis of normal distribution concentrated around the best particle location
Dy in time ¢ — 1, which can be expressed as: 2 — N(pg, X), where z(® stands
for particle’s location in time ¢, X' denotes the covariance matrix of the Gaussian
distribution, whose diagonal elements are proportional to the expected velocity.

4.2 Cost Function

The most computationally demanding operation in 3D model based human mo-
tion tracking is calculation of the objective function. In PSO-based approach
each particle represents a hypothesis about possible person pose. In the eval-
uation of the particle’s fitness score the projected model is matched with the
current image observation. The fitness score depends on the amount of overlap-
ping between the extracted silhouette in the current image and the projected
and rasterized 3D model in the hypothesized pose. The amount of overlapping is
calculated through checking the overlap degree from the silhouette to the raster-
ized model as well as from the rasterized model to the silhouette. The larger the
overlap is, the larger is the fitness value. The objective function reflects also the
normalized distance between the model’s projected edges and the closest edges
in the image. It is calculated on the basis of the edge distance map [15].

The fitness score for i-th camera’s view is calculated on the basis of fol-
lowing expression: f(V(z) = 1 — ((fl(l)(ac))“’1 - ( éz)(x))“”), where w denotes
weighting coefficients that were determined experimentally. The function fl(” (2)
reflects the degree of overlap between the extracted body and the projected 3D
model into 2D image corresponding to camera i. The function fé” () reflects
the edge distance map-based fitness in the image from the camera i. The objec-
tive function for all cameras is determined according to the following expression:
flz) = %Z?Zl f@(x). Since we use synchronous PSO the fitness values are
transmitted once in every iteration. The images acquired from the cameras are
processed on CPU and then transferred onto the device. They are then utilized
in the PSO running on the GPU.

4.3 Parallelization of the Cost Function

In the evaluation phase, see Fig. 1 we employ two kernels. In the first one the
3D models are projected into 2D image of each camera. In the second one we
rasterize the models and evaluate the objective functions. In our approach, in
every block we rasterize the model in the pose represented by a single particle



as well as we calculate its fitness score. Thus, the number of blocks is equal to
the number of the particles, see Fig. 2. Each thread is responsible for rasterizing
the model in single column and summing the fitness values of the pixels in
that column. The number of threads in each block is equal to the image width,
whereas the number of running threads in each block is equal to the number of
cores per multiprocessor, see Fig. 2.
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Fig. 2. Parallelization of the cost function.

The cost values of the objective function are summed using parallel reduction.
The results from each column of the threaded block are stored in the shared
memory. In the next stage, W /2 consecutive threads determine the sums of the
two adjacent memory cells of the shared memory and then store the results in
the shared memory. The next iteration employs W/4 threads to add the results
of the previous iteration, and so on.

5 Experiments

The experiments were conducted on a PC computer equipped with Intel Xeon
X5690 3.46 GHz CPU (6 cores), with 8 GB RAM, and two NVidia GTX 590
graphics cards, each with 16 multiprocessors and 32 cores per multiprocessor.
Each card has two GTX GPUs, each equipped with 1536 MB RAM and 48 KB
shared memory per multiprocessor.

Table 1 shows computation time that has been obtained on CPU and GPU
for 1,2, and 4 cameras and PSO executing 10 iterations. For two cameras the
computations were conducted on two CPU cores and two GPUs on single card,
whereas for four cameras we employed 4 CPU cores and four GPUs. The images
acquired from calibrated and synchronized cameras were preprocessed off-line
and transferred frame by frame to the GPU. As we can observe, for a system



consisting of 2 cameras the speedup that achieves the GPU over the CPU is
between 5.0 and 9.9. For 4 cameras the speed up is slightly smaller due to addi-
tional transmission overhead between two cards. For MoCap system consisting
of 4 cameras and using the PSO algorithm with 300 particles and 10 iterations
we can process 16 frames per second. In [15] we demonstrated that for such a
PSO configuration the average error on images of size 960 x 540 is below 75
mm. In this work we employed the images scaled to 480 x 270 resolution and
the average error was about 5 mm larger. Another reason for a slightly larger
error is the use of synchronous PSO that achieves worse tracking accuracy in
comparison to asynchronous PSO.

Table 1. Computation time [ms] for single frame of size 480 x 270.

# part. (10 it.) | CPU [ms] | GPU [ms] | speedup
100 131.1 24.6 5.3
1 camera 300 352.7 44.9 7.9
1000 1134.7 106.4 10.7
100 132.8 26.8 5.0
2 cameras 300 352.4 474 7.5
1000 1117.4 113.5 9.9
100 170.3 37.3 4.6
4 cameras 300 442.3 62.8 7.1
1000 1391.9 144.7 9.6

The processing times on the CPU were obtained using an implementation
presented in [15]. In [16] we showed that a modified PSO algorithm, i.e. annealed
particle swarm optimization (APSO) [15], with 300 particles and executing 10
iterations, can be successfully used in 3D gait-based person identification.

6 Conclusions

In this paper we presented an algorithm for articulated human motion tracking
on GPU. The tracking has been achieved in real-time using a parallel PSO
algorithm. The tracking of full human body can be performed at frame-rates of
16 frames per second using a two high-end graphics cards and images acquired by
four cameras. The speedup of the algorithm running on GPU over CPU grows
with the number of evaluations of the cost function, i.e. with number of the
particles or with the number of iterations. In consequence, on the GPU we can
obtain more precise tracking.
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