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Abstract— This paper presents an embedded system for 

fall detection using accelerometric data and depth maps. A 

real-time processing of motion data and depth maps is realized 

on a low-cost PandaBoard platform. In order to achieve 

detection of human falls with low computational cost the system 

performs a depth-based inferring about the fall event when 

person’s movement is above some preset threshold. The 

performance of the system has been evaluated on our publicly 

available dataset consisting of synchronized depth maps and 

motion data. To investigate the detection accuracy in depth 

maps from different camera views the image sequences were 

simultaneously recorded by two Kinect sensors, where one 

of them was placed in the front of the scene, whereas the 

second one was located on the ceiling. The motion data were 

acquired by a body-worn accelerometer and transmitted 

wirelessly to the processing unit, responsible for both 

synchronization and recording or processing of the data.  

 

Keywords—Embedded Systems, Assistive Technologies, 

Fall Detection. 

I. INTRODUCTION  

Falls are a well-known cause of morbidity from injury 
and mortality in the elderly. They are the leading reason 
of injury-related hospitalisation in persons aged 65 years 
and over and account for significant fraction of all hospital 
admissions in this age-group [1]. Even falls that do not 
lead to physical injuries can result in the so called post-
fall syndrome, which typically manifests itself in a loss of 
confidence, wobble, tentativeness with resultant loss of 
mobility and independence. The reason for this is that the 
elderly fear of lying after the fall on the floor in solitude 
and without help for a long time [2]. Therefore, falls 
should be detected as early as possible. In consequence, 
the development of low cost and reliable fall detection 
system has received considerable attention in recent years 
[3]. Thanks to automatic fall detection, the system can 
issue an alert without needing to press the emergency 
button. As a result, the injured person can be delivered to 
a hospital in order to receive timely medical care.  
Fall detection methods can be divided into two major 

groups depending on how the information is acquired, 
that is, methods using vision sensors and methods based 
on non-visual sensors. The main limitation of systems 
based on typical RGB cameras [4] is that they cannot 

achieve satisfactory fall detection accuracy in poor 
illumination conditions. Besides the privacy issues, the 
lack of depth information may lead to poor fall detection 
performance. Moreover, typically such systems have 
considerable computational demands. In the second 
groups of the fall detectors the inertial sensors are used 
most frequently. Usually, they use a body-worn 
accelerometer and a threshold based algorithm to 
examine if a person’s movement is above some preset 
threshold [5]. However, as demonstrated in [6], such 
systems generate a large number of false alarms, which in 
turn lead to frustration of the seniors. Recently, Kinect's 
depth camera has been proposed to be utilized in fall 
detection systems [7, 8]. In the discussed work it has also 
been demonstrated that the depth maps are sufficient to 
detect the person being monitored. Since the Kinect uses 
infrared light sensors to illuminate the viewed scene and 
an infrared camera to observe them in invisible light, the 
fall detection can be done any time. A recent survey on 
the use of Kinect in fall detection systems can be found in 
[9]. Although these solutions are promising, they still 
have insufficient accuracy of fall detection as well as 
generate too large number of false alarms [10].  
In this work we present an embedded system for fall 

detection on the basis of accelerometric data and depth 
maps. We show how motion data and depth maps are 
processed in real-time on a low-cost PandaBoard 
platform to achieve reliable fall detection. To attain the 
fall detection with low computational cost the system 
performs depth map-based inferring about the fall event 
only when person’s movement is above some preset 
threshold. The detection accuracy has been evaluated on 
our publicly available dataset consisting of synchronized 
depth maps and motion data. In order to investigate the 
detection accuracy in depth maps from different camera 
views the image sequences were simultaneously recorded 
by two Kinect sensors, where one of them was placed in 
the front of the scene, whereas the second one was 
mounted on the ceiling. The motion data were acquired 
by a body-worn accelerometer and transmitted wirelessly 
to the processing unit, responsible for both 
synchronization and recording of the data.  



II. PERSON DETECTION IN DEPTH MAPS 

In this Section we discuss algorithms for person 
detection in depth map sequences. In the below 
Subsection we explain how person is detected in depth 
images acquired by a Kinect facing the scene, whereas in 
subsequent Subsection we describe a method for person 
detection in depth maps acquired by a Kinect mounted on 
the ceiling, i.e. providing the top view of the scene.  

 
A. Person Detection in Frontal Depth Maps 

The frontal maps were acquired by a static Kinect that 
was placed at the height of 1 m from the floor. The 
person has been detected through differencing the current 
depth image from a depth reference image. The depth 
reference image represents the scene depth and it is 
accommodated on-line to reflect the scene changes. Each 
pixel in the depth reference map is a temporal median of 
the fifteen depth pixels. For each depth pixel a fifteen 
element circular buffer is utilized to store continuously 
the acquired depth values. Every fifteen depth map 
acquired by the Kinect is stored in the depth circular 
buffers.  In practical terms this means that for Kinect 
sensor acquiring the images at 30 Hz, the depth reference 
image is entirely refreshed in 7.5 seconds. The person can 
be delineated with 30 fps through differencing the current 
depth image from the depth reference image 
accommodated in such a way. Figure 1. demonstrates 
delineation of the person in an example depth image. 
 

 
Fig. 1. Person extraction in frontal depth maps. Depth reference 

image (left), current image (middle), image with the extracted 
person (right).  

 
B. Person Detection in Overhead Depth Maps 

The observation area for an overhead Kinect mounted 
on the height of 2.6 m is about 5.5 m2. In order to 
increase the field of observation we utilized a homemade 
pan-tilt head to rotate the Kinect sensor. Thanks to the 
use of such a pan-tilt head the field of the covered view is 
far larger and in effect the Kinect can observe a typical 
room. During the person movement the controller rotates 
the camera in order to keep his/her in the central part of 
the image. The person is detected in real-time on the basis 
of depth region growing [11]. The person’s position is 
expressed as the centroid of the delineated area. The 
algorithm detects the floor with low computational cost in 
order to decrease the number of pixels that can be 
potentially included into the person blob. Figure 2 
demonstrates the extracted person blob by the discussed 
algorithm together with the corresponding depth map.  

 

 
 

Fig. 2. Person extraction in overhead depth maps, the extracted 

blob (left) and the corresponding depth map (right). 

III. EMBEDDED SYSTEM FOR FALL DETECTION 

At the beginning of this Section we discuss two modes 
of work of the system. Afterwards, we outline the 
steering of the pan-tilt head. Finally, we shortly overview 
the PandaBoard.  
 
A. Modes of Operation of the System 

The system detects falls on the basis of motion data 
from a body-worn accelerometer and features, which are 
extracted on the basis of depth map sequences. There are 
two modes of work of the system. In the first one the 
system utilizes acceleration data to signal a potential fall 
event. Such a fall hypothesis is then validated on the basis 
of features extracted from depth maps. The final decision 
about the fall is taken on the basis of features describing 
both lying pose and features reflecting body movements 
in map sequences. In order to reduce the computational 
costs the person is not detected frame-by-frame but 
instead a circular buffer is utilized to hold a collection of 
the preceding depth maps. In case of the potential fall, the 
stored frames are utilized to detect a person and then to 
calculate both static and dynamic features. Thanks to such 
an approach the fall can be detected reliably with low 
computational cost. In the second operation mode the 
system detects the person in each frame to extract his/her 
centroid, which is required by the controller of the active 
head to keep the target in the central part of the current 
depth map. The decision about the fall can be undertaken  
on the basis the depth map only or using both 
accelerometric data and depth maps.  
The accelerometric data are acquired by x-IMU device 

and then transmitted wirelessly to the PandaBoard, which 
executes a selected fall detection algorithm. The Kinect 
Xbox sensor is connected to the board via USB. The 
microcontroller of the active head is connected with the 
PandaBoard through I2C bus.  
 

B. Pan-Tilt Head 

The homemade active head consist of a microcontroller 
(MCU) and two servomechanisms to rotate the camera in 
two axes, see Fig. 3. The microcontroller board is based 
on the 8-bit ATmega328 chip with 16 MHz clock and 
2 KB RAM. It is equipped with 6 analog inputs, 14 
digital I/O pins, where six of them can be used to perform 
pulse width modulation (PWM). The utilized MCU has a 
number of facilities for communication with other 



devices: UART TTL serial, I2C or SPI. To obtain smooth 
camera rotations, two PID controllers (one for each 
degree-of-freedom) are employed. After the actuator 
outputs are calculated, the motor servos are controlled 
using PWM.  
 

 

Fig. 3. Depth sensor (Asus Xtion PRO) and our pan-tilt unit. 
 

C. PandaBoard 

PandaBoard is a low cost, mobile software development 
platform based on the Texas Instruments OMAP4430 
system on a chip (SoC). It is driven by the dual-core 
ARM Cortex-A9 OMAP4430, with each core running at 
1 GHz, a 304 MHz PowerVR SGX540 integrated 3D 
graphics accelerator, a programmable C64x DSP, and 
1 GB of DDR2 SDRAM. Our experimental evaluation of 
the processing performance shows that the Dhrystone 2 
score is equal to 4214871 [lps], the Double-Precision 
Whetstone is equal to 836 [MWIPS], whereas the number 
of iterations/sec in CoreMark benchmark is equal to 
2858. The board also contains wired 10/100 Ethernet 
along with wireless Ethernet and Bluetooth connectivity. 
The PandaBoard ES can support various Linux-based 
operating systems such as Android and Linux Ubuntu. 
A block diagram of the board is shown on Fig. 4.  
 

 

Fig. 4. Block diagram of the PandaBoard ES. 

IV. REAL-TIME DATA ACQUISITION AND PROCESSING 

The human fall detection system runs under Linux 
operating system. The fall detection application executes 
five main concurrent processes that communicate via 
message queues, see Fig. 5. The message queues provide 
asynchronous communication between processes. The 
messages placed onto the queue are stored until the 
receiver retrieves them. This means that the sender and 
the recipient of the message do not need to interact with 
the queue at the same time. The first process is 
accountable for acquiring motion data from the wearable 
device, the second one acquires depth maps from the 
depth sensor, third process continuously updates the 
reference depth map, fourth one is responsible for data 
processing and feature extraction, whereas the fifth 
process is accountable for data classification and 
triggering the fall alarm. The dual-core processor of the 
utilized PandaBoard allows parallel execution of 
acquisition and processing processes.  

 

 

 

Fig. 5. Data acquisition, processing and communication 

between the main processes. 
 

The following features are extracted from the frontal 
depth maps to recognize the lying pose:  

• H/W - a ratio of height to width of the person's 
bounding box in the depth maps 

• H/Hmax - a proportion expressing the height of the 
person's surrounding box in the current frame to the 
physical height of the person, projected onto the 
depth map 

• D - the distance of the person's centroid to the floor  

• ),max(
zx
σσ  - standard deviation from the centroid 

for the abscissa and the applicate, respectively. 



In addition to the above features the algorithm calculates 

also the ratio )(/)( TtHtH ∆− , where t  denotes the time 

in which the impact took place, and T∆  is equal to 600 
ms. Owing to the use of the body-worn accelerometer to 
sense the motion of the person undergoing monitoring, 

time moment of the impact, i.e. time t , can be determined 

precisely and with low computational cost. The discussed 
features were utilized by a classifier responsible for fall 
detection on the basis of the frontal depth maps.  
The detection of the fall in the overhead depth maps is 

done on the basis of the following features:  

• H/Hmax - a ratio of head-floor distance to the height 
of the person 

• A - a ratio expressing the person’s area in the image 
to the area at assumed distance to the camera 

• l/w - a ratio of major length to major width of a blob 
representing the person on the depth image. 

The ratio )(/)( TtHtH ∆− , where )(tH  denotes the 

distance between the head and the floor is calculated as 
well to express the speed of the person movement in the 
depth maps [11].  
Figure 5. depicts the UML diagram of data processing 

for the Kinect mounted at the ceiling. The diagram for the 
system configured for processing the frontal depth maps 
does not have the block responsible for camera control.  
 

 
 

Fig 5. Data processing (UML diagram) 

 

V. FALL DETECTION DATASET 

The UR Fall Detection (URFD) dataset consists of 
depth map sequences acquired by Kinect sensors with the 
corresponding motion data, which were acquired by a 
body-worn accelerometer. The sensing unit was worn 
near the spine on the lower back. The motion data 
contains the acceleration over time in the x, y , and z axes 

together with the precalculated )(tSV
Total

. They were 

calculated in the following manner:  

 )()()()( tAtAtAtSV zyxTotal ++=   (1) 

where )(tA
x

, )(tA
y

, )(tA
z

 stand for the acceleration in 

reference to the local x, y, and z axes at time t, 
respectively. The frontal depth maps with the 
corresponding RGB images were acquired by a static 
Kinect that was placed at the height of 1 m from the floor, 
whereas the top view RGB-D maps were acquired by a 
second Kinect, which has been mounted at a ceiling at the 
height of 3 m. Figure 6. depicts sample RGB and depth 
images from the discussed dataset. In the top row are 
RGB and depth images acquired by the frontal Kinect, 
whereas in the second row are RGB and depth images 
acquired the overhead sensor. The plot depicts the  

Total
SV  values vs. time, i.e. frame number. 

 

 

Fig 6. Sample images from the UR Fall Detection dataset with 
corresponding plot of the acceleration vs. time.  

 
The dataset consists of thirty image sequences with 

falls, thirty image sequences with typical ADLs like 
crouching down, picking-up an object from the floor, 
sitting down, and ten sequences with fall-like activities as 
fast lying on the floor and lying on the bed/couch. Two 
kinds of falls were performed by five persons: from 
standing position and from sitting on the chair. All RGB 
and depth images are synchronized with the motion data. 
They were recorded at 30 Hz frame rate. The dataset is 
available for download via the following link:  
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html.  



VI. EVALUATION OF THE SYSTEM 

The fall detection system has been evaluated on the 
URFD dataset. Table 1. shows the performance of the 
system that has been achieved on frontal URFD data 
sequences. As we can notice,  slightly better results were 
obtained by the k-NN classifier (with three neighbors) 
in comparison to the linear SVM. The SVM classifier 
has been trained on a PC using LIBSVM software [12].  

 
Table 1. Performance of fall detection on frontal URFD data 

sequences [%]. 

 k-NN  SVM  

Accuracy 95.71 94.28 

Precision 90.90 88.24 

Sensitivity 100.00 100.00 

Specificity 92.50 90.00 

 
Table 2. presents the performance of fall detection on 

overhead data sequences from the UR Fall Detection 
dataset. The discussed results were obtained by a linear 
SVM. As we can notice, the results are better in 
comparison to results obtained on the frontal sequences.  

 
Table 2. Performance of fall detection on overhead URFD data 

sequences [%]. 

 Accuracy Precision Sensitivity Specificity 

SVM 99.45 98.21 100.0 99.22 

 
Table 3. presents times needed for update of the depth 

reference images and person extraction using region 
growing. The discussed processing times were obtained 
on PandaBoard ES and a personal computer equipped with 
Intel i7-3610QM 2.3 GHz 8 GB RAM. Having on regard 
that the depth reference image is updated every 15th frame 
acquired by the depth sensor, the whole depth map to be 
updated can be divided into blocks and each of them can 
be accommodated in time shorter than 15~ms. The subtraction 
of the current depth image from the depth reference image 
can be realized in about 7~ms. The region growing time 
is average time that was obtained on the sequence available 
on: http://fenix.univ.rzeszow.pl/~mkepski/demo/act.mp4. 
The board was powered by Linaro 12.11 operating system, 
whereas the code C++ code was compiled using GCC~4.6.3. 

 
Table 3. Processing times [ms]. 

 PandaBoard ES Intel i7 

Depth reference 
image update 

182.86  24.61 

Region  
growing 

16.70  3.80  

 
Ten volunteers with age over 26 years attended in an 

evaluation of the developed algorithm and the embedded 
system for fall detection in real-time. Intentional falls 
were performed in an office by six persons towards a 

carpet with thickness of about 2 cm. Each individual 
performed three types of falls, namely forward, backward 
and lateral at least three times. Each individual performed 
also ADLs like walking, sitting, crouching down, leaning 
down/picking up objects from the floor as well as lying 
on the floor. The acceleration threshold has been set to 
2.6~g to filter the fall events from the ADls. All 
intentional falls have been detected appropriately. 

VII. CONCLUSIONS 

Most of the image-based systems require time for installation, 
camera calibration and they are not cheap since a considerable 
computational power is needed to execute in real-time the 
time consuming algorithms. Moreover, the false alarm of 
systems known from the literature is unacceptable for 
practical applications. In this work we have presented a 
low-cost embedded system for fall detection. The system 
has been evaluated on publicly available dataset. The 
presented system permits reliable and unobtrusive fall 
detection as well as preserves privacy of the user. We 
reduced the number of the false alarms through combining 
the features extracted from motion data and depth maps.  
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