
Marker-Less 3D Human Motion Capture in
Real-Time Using Particle Swarm Optimization

with GPU-Accelerated Fitness Function

Bogdan Kwolek1 and Boguslaw Rymut2

1 AGH University of Science and Technology,
30 Mickiewicza Av., 30-059 Krakow, Poland, bkw@agh.edu.pl

2 Rzeszow University of Technology, 12 Powst. Warszawy, 35-959 Rzeszów, Poland

Abstract. In model-based 3D motion tracking the most computation-
ally demanding operation is evaluation of the objective function, which
expresses similarity between the projected 3D model and image obser-
vations. In this work, marker-less tracking of full body has been realized
in a multi-camera system using Particle Swarm Optimization. In order
to accelerate the calculation of the fitness function the rendering of the
3D model in the requested poses has been realized using OpenGL. The
experimental results show that the calculation of the fitness score with
CUDA-OpenGL is up to 40 times faster in comparison to calculation
it on a multi-core CPU using OpenGL-based model rendering. Thanks
to CUDA-OpenGL acceleration of calculation of the fitness function the
reconstruction of the full body motion can be achieved in real-time.

1 Introduction

Recovery of 3D human motion from images is an important problem in computer
vision with many potential applications in areas such as interactive entertain-
ment industry, sport or rehabilitation, interfaces for human-computer interac-
tion, surveillance or augmented reality [14]. In general, the aim of 3D human
motion recovery is to estimate the 3D joint locations of a human body from
visual data. Marker-less motion tracking is one of the most challenging problems
in computer vision being at the same time one of the most computationally de-
manding tasks. In recent years there has been a rapid progress in marker-less hu-
man pose recovery. Despite all these advances, 3D human motion reconstruction
remains basically unsolved, particularly for unconstrained movement in dynamic
and cluttered environments [16]. The challenge is not only to attain sufficient
tracking accuracy, but also to develop solutions for real-time tracking [22,10].

The existing approaches for 3D motion reconstruction can either be described
as part-based bottom-up approaches or model-based generative top-down meth-
ods. The appearance based approaches rely on image features and a regressor
responsible for determining the corresponding pose within a set of predefined
poses. Model based approaches define a parametric 3D model and search for the
optimal solution in the model’s continuous parameter space. The 3D pose recon-
struction is achieved by local optimization around the previous pose estimate



or by Bayesian filtering. Bottom–up approaches require big amount of training
data to capture the large appearance variation that arises due to the highly
articulated structure of the human pose. Top–down approaches provide a more
accurate estimation of the human pose. Such approaches typically utilize a 3D
articulated human body model. They render the body model and then compare
the rendered images with the acquired images to calculate the fitness score. The
key challenge is to cope with high-dimensionality of the search space as a result
of large number of degrees of freedom (DOF). Hierarchical [22] or global-local
approaches divide the searching for the best fitness into multiple stages, where
a subset of the parameters is optimized, whereas the rest of them are fixed.

In recent years, many methods have been proposed for model-based motion
tracking. Most work is based on particle filtering (PF) and its variants [2]. How-
ever, classical PF can be inefficient in high-dimensional state spaces since a large
number of particles is needed to represent the posterior. More recently, stochas-
tic global optimization methods such as Particle Swarm Optimization (PSO)
have been gaining popularity in motion tracking [11] [14]. In PSO, unlike in PF,
the particles interact with one another, and as they interact, a collective behav-
ior arises, which leads to emergence of global and collective search capabilities
allowing the particles to gravitate towards the global extremum.

To date, relatively little work has focused on accelerating 3D model based
motion tracking, and particularly on accelerating the objective function being
the most computationally intensive operation. As shown in [20], the computa-
tion time per frame of the most methods is from a few to several seconds. As
recently demonstrated, considerable gains in number of frames per second in
object tracking can be obtained through GPU-based accelerating the evaluation
of the objective function or accelerating the evaluation of particle weights [9,4].
Indeed, thanks to substantial shortening of time needed for evaluation of the ob-
jective function on a GPU, and particularly accelerating the rendering that can
account more than 75% of total tracking time [3], the 3D motion reconstruction
can be done in real-time with a frequency of several frames per second [10,22].

This work is motivated by the need for acceleration of marker-less 3D motion
reconstruction to achieve the tracking in real-time at high frame-rates. Our goal
is to accelerate the 3D motion tracking through mixing graphics and compute.
We present computation times of OpenGL-accelerated calculation of the fitness
function on a multi-core CPU and a GPU. Computation times of the main
ingredients of the fitness function are shown as well. We show that CUDA-
OpenGL interoperability allows us to reconstruct the 3D motion of the full body
in a four camera setup with more than 12 Hz. We demonstrate accuracy of the
human motion tracking on freely available datasets.

2 CUDA-OpenGL Interoperability

General-purpose computation on the GPU (GPGPU) is a term denoting the em-
ployment of the GPU for calculations other than rendering. CUDA is scalable
parallel programming model and a parallel programming platform for GPUs.



It enables efficient use of the massive parallelism of NVidia GPUs. The CUDA
architecture is built around a scalable array of multithreaded Streaming Multi-
processors (SMs). In this model, the host program launches a sequence of kernels,
which are parallel portions of an application. A CUDA kernel is executed by an
array of threads. All threads run the same code. The threads are organized into a
grid of thread blocks. When a CUDA program on the host CPU invokes a kernel
grid, the blocks of the grid are enumerated and distributed to multiprocessors.
The threads of a thread block run concurrently on one multiprocessor, and multi-
ple thread blocks can execute concurrently on one multiprocessor. As one thread
blocks terminates, new blocks are launched on the available multiprocessors.

All threads within a single thread block are allowed to synchronize with each
other via barriers and have access to a highspeed, per-block shared memory,
which allows an inter–thread communication. Threads from different blocks in
the same grid can coordinate only via operations in a global memory visible to
all threads. In Kepler GK110 microarchitecture, each SMx contains 192 CUDA
cores (CCs), and at any one time they can execute up to six wraps of 32 threads.
GK110 also supports up to 64 resident warps per SM. In CUDA memory model,
the global, constant, and texture memory spaces are persistent across kernel
launches by the same application.

CUDA offers OpenGL interoperability features that allow to map OpenGL
textures and buffers to be used inside a CUDA kernel without copying the whole
content. The CUDA-OpenGL memory operations are described in [19].

3 Approach to Real-Time 3D Motion Tracking

The 3D model consists of truncated cones and each truncated cone is described
by the center of top circle A, center of base circle B, top radius r1, and bottom
radius r2. Figure 1 illustrates extraction of trapezoid representing the truncated
cone in a given camera view. Having in disposal the 3D camera location C, 3D
coordinates of the bottom circle center A and 3D coordinates of the top circle
center B, and, we can determine the plane passing through the points A,B,C.
Since the vectors AB and AC are in the same plane, their cross product being
perpendicular to the plane, is the normal. The normal is used to calculate the
angular orientation of the trapezoid. The projection of the trapezoid onto 2D
image is performed on the basis of the camera model. The trapezoid image is
generated by projecting the corners and then rasterizing the triangles composing
the trapezoid. Though projecting every truncated cones composing of the 3D
model we obtain the rendered image, which represents the 3D model in a given
pose. In relevant literature the discussed technique is called billboarding [1].

In this work we also employed a more detailed 3D surface mesh model con-
sisting of a surface representing the person skin and an underlying skeleton. Its
surface has been deformed using a rigid skinning technique, in which the skele-
ton acts as a deformer transferring its motion to the skin, and where each skin
vertex has assigned one joint as a driver.

The pose of the model is described by position and orientation of the pelvis
in the global coordinate system and the relative angles between the limbs. The



Fig. 1: Trapezoid representing truncated cone.

geometrical transformations of each body part are represented by a local trans-
form matrix and a global transform matrix. The local transform matrixes de-
scribe geometrical transforms of model parts in their local coordinate systems,
whereas the global transform matrixes represent geometrical transformations in
the global coordinate system [13]. The beginnings of the local coordinate systems
are in joints, whereas the beginning of the global coordinate system is the center
of scene. Transformation of each body part is performed on the basis of rotation
matrices describing global and local transformation of the body part [21,13]. The
matrices are calculated on the basis of the joint Euler rotation angles stored in a
state vector. In this paper, we formulate the 3D human pose tracking problem as
a discrete optimization problem based on image matching in a calibrated multi-
camera system and solve this problem using PSO [8]. Each particle of the swarm
represents a hypothesized pose. The goal of the PSO is to find the best matching
between the projected 3D model on the basis of the camera models and the im-
ages acquired by the calibrated and synchronized cameras. The evaluation of the
system performance has been carried out on publicly available LeeWalk [2] and
HumanEva I [17] image sequences. Both image sequences contain the parame-
ters of the Tsai camera model [18] as well as ground-truth data. The LeeWalk
image dataset consists of images of size 640 × 480 from four monochrome cam-
eras, whereas HumanEva I dataset contains images of size 640×480 from 3 color
cameras and images of the same size from 4 monochrome cameras. Both datasets
were recorded with 60 fps.

Particle swarm optimization is a meta-heuristic that has been applied success-
fully to many optimization problems, including 3D human body pose tracking.
In this meta-heuristic each individual is called particle and moves through a mul-
tidimensional space in order to find the best fitness score. The PSO algorithm
seeks for a best fitness by iteratively trying to improve a candidate solution with
regard to a given measure of quality. It optimizes a fitness function by main-
taining a population of candidate solutions and moving these particles around
in the search-space according to simple mathematical formulae over the parti-
cle’s position and velocity. Each particle’s movement is influenced by its local
best known position, and is also guided toward the best known positions in the
search-space. The best local and global positions are updated on the basis of
the fitness function. The ordinary PSO algorithm can be used for human pose
estimation in a single frame.

The 3D motion tracking over a sequence of frames can by attained by in-
corporating the temporal continuity information into the ordinary PSO. Thus,
it can be achieved by a series of static PSO-based optimizations, followed by
re-diversification of the particles to predict the body poses in the next frame.



The re-diversification of the particles can be achieved on the basis of normal
distribution concentrated around the best pose found by the swarm.

Figure 2 illustrates how the synchronous PSO has been decomposed for a
parallel execution on the GPU. The algorithm is executed in the six steps: swarm
initialization, update of particle velocity, update of particle position, update
of particle best position, update of swarm best position and fitness function
evaluation. Each stage of the algorithm has been parallelized and then executed
on the GPU. The most time consuming part of the motion tracking is rendering of
the 3D model and matching of such a projected model with image observations.

Fig. 2: Decomposition of synchronous PSO on GPU.

In this work, in order to speed-up the calculation of the fitness function
the rendering of the 3D model is accelerated by OpenGL. The matching of the
projected 3D models with the image observations is implemented in CUDA,
whereas the transformation of the model to the requested poses as well as the
rendering of the 3D model in the predicted poses is realized by OpenGL, see
Fig. 3. The discussed framework is general and can be used in particle swarm
optimization-based [14] or particle filtering-based [2] 3D pose inferring. The pro-
cessing performance of CUDA-OpenGL based fitness function has been com-
pared with performance of fitness function, which was determined on the basis
of software CUDA-based rendering of the 3D model.

Fig. 3: Mixing graphics and compute to speed-up human body tracking.

4 Evaluation of the Fitness Function Using OpenGL API

At the beginning of this Section we present the objective function. Then, we
discuss main steps in evaluation of the fitness score. Afterwards, we explain how
OpenGL is used to accelerate the rendering of the 3D model. Then, we discuss
the evaluation of the fitness score given the 3D models rendered by OpenGL.



4.1 Objective Function

The vision systems used in this work consist of two pairs of calibrated cameras,
which are roughly oriented perpendicularly to each other. The objective function
has been calculated in the following manner:

F (x) =

2∏
i=1

(fi(x))wi (1)

where wi denotes a smoothing coefficient. The function f1(x) reflects degree
of overlap between the projected 3D model into 2D images and the extracted
silhouettes on the images acquired by the cameras. It has been calculated as:

f1(x) = β

∑4
c=1 oc∑4
c=1 ôc

+ (1 − β)

∑4
c=1 oc∑4
c=1 r̂c

(2)

where oc expresses the overlap degree between the silhouette of the projected 3D
model and the silhouette extracted in the image from the camera c, ôc stands
for the number of pixels belonging to the rendered silhouette for the camera c,
r̂c denotes the area of the silhouette extracted in the image from the camera
c, whereas the β coefficient has been set to 0.5 to equally weight the overlap
degree from the rasterized silhouette to the image silhouette and from the image
silhouette to the rasterized silhouette. The function f2(x) expressing the distance
map-based fitness between the edges has been calculated as follows:

f2(x) =

∑4
c=1 dc∑4
c=1 ec

(3)

where ec denotes the number of edge pixels in the rendered image for the camera
c, whereas dc reflects the sum of the distances from the edges extracted on the
image from the camera c to the edges of the rendered model. The distances were
calculated using the edge distance maps determined on the camera images.

The fitness score expressed by (1) is determined through matching the fea-
tures on a pair of images. The first image contains the rendered silhouette and
edges of the model, whereas the second one contains the silhouette and the dis-
tance to the edges, which have been extracted on the images acquired by the
calibrated cameras. The first image is a subimage of the frame-buffer, which
contains images corresponding to all particles. As aforementioned, information
about the silhouette and the edge is stored in a single byte, where the first bit
represents the presence of the silhouette, whereas the last one represents the oc-
currence of the edge of the projected model. In the second image the information
is also stored in a single byte, where the first bit expresses the occurrence of the
silhouette, whereas the seven remaining bits encode the distance of the pixels to
the nearest edge. Given the extracted person silhouettes on the images acquired
by the cameras a region of interest (ROI) is extracted. Each ROI is composed by
enlarging the rectangle surrounding the extracted person about ten pixels both
horizontally and vertically. Then, in order to permit 128-bit words transactions
the left-upper coordinates of ROIs are shifted to be a multiple of four pixels.
Finally, the width of every ROI is modified to be a multiple of four pixels.



4.2 Evaluation of Fitness Using Mixing Graphics and Compute

The evaluation of the fitness score is realized in three main steps:

– calculation of the global transformation matrixes
– 3D model rendering using OpenGL API
– Calculation of the fitness function value

In the first and third step, depending on the choice, CUDA or OpenGL or CPU
is used to determine the global transformation matrixes needed by the OpenGL
and to evaluate the fitness function given the rendered images by the OpenGL.

4.3 OpenGL-based Rendering of the 3D Model

The rendering result is stored as the color attachment in the frame-buffer con-
sisting of 32-bits RGBA pixel values, where each component is represented by
single byte. This means that in a single RGBA pixel we can store the pixel
values of the rendered model onto images of four cameras or the values of four
models in different hypothetical poses. Having on regard that in the second case
the rendered models are rather in similar poses in comparison to pose estimated
in the last frame, we selected this method to store the all rendered models. In
consequence, the rendered models, which are stored in four components of an
RGBA image, are of similar size and shape.

In the rendering of the 3D model, three programmable pipelines were exe-
cuted: (i) vertices calculation, (ii) silhouette rendering and (iii) outline (edge)
rendering. The pipelines were programmed by shader programs written in the
GLSL language.

The Vertex calculation pipeline uses geometry instancing [15] for creating in-
stances of model vertices. The number of created instances is equal to number of
particles multiplied by number of cameras used in the tracking. Each generated
model instance is transformed using the world/global transformation matrices
of a corresponding particle, which is stored in SSBO [15]. After calculating the
model transformation, all vertices of an instance are projected into image co-
ordinates using Tsai camera model. To render more than one model image on
a frame-buffer each vertice of the model instance is shifted in different frame-
buffer region, using a method commonly known as image tiling [12]. Finally the
computed vertices are stored in vertex feedback buffer object [15]. The vertices
stored in this buffer are then used in the silhouette rendering and edge rendering
pipelines. Vertex calculation pipeline uses vertex shader program and geometry
shader program for creating instances, projecting model onto image and tiling
model images (subimages) into frame-buffer.

The silhouette rendering pipeline uses vertices stored in the vertex feedback
buffer object (VFBO) to render particle models using triangles primitive on a
frame-buffer. In this pipeline the element array buffer object (EABO) containing
indexes of vertices stored in the VFBO is used to pull vertices in proper order
and to render model appearance using triangles primitive. Silhouette rendering
pipeline uses dummy vertex shader program and fragment shader program to
pass the input vertices to hardware rasterization stage.



Outline (edge) rendering pipeline is almost identical to silhouette rendering
pipeline. The only notable difference is the use of adjusted triangle primitive
as an input and geometry shader program. Geometry shader program processes
adjusted each triangle primitive to detect edge between adjusted triangles by
simplified streamlined method [6]. The geometry shader emits new line primitive
when an edge between two triangles is detected. The emitted line primitive
vertices are then passed to the next rendering stage and drawn on frame-buffer.
Hence, the number of the rendered subimages is equal to the number of the
particles and the size of each subimage is equal to the size of the camera image.

The painting of the silhouettes is realized using color blending. The informa-
tion about the silhouette and the edge is stored in a single byte, where the first
bit represents the presence of the silhouette, whereas the last one represents the
occurrence of the edge of the projected model. After the OpenGL synchroniza-
tion, the frame-buffer is mapped to CUDA memory and then used by CUDA in
computation of the fitness score.

4.4 Fitness Evaluation Given the 3D Models Rendered by OpenGL

The value of the fitness score (1) is determined in two kernels, where the first one
calculates components oc, ôc of function (2) and components dc, ec of function
(3), whereas the second kernel uses the values of the components to determine the
value of function (1). The main computational load is connected with calculation
of the components oc, ôc, dc and ec. Moreover, the size of ROIs changes as the
person undergoing tracking moves on the scene, which in turn can lead to unequal
computational burden. The first kernel is far more computationally demanding
than the second one.

5 Experiments

The experiments were conducted on a PC computer equipped with Intel Xeon
X5690 3.46 GHz CPU (6 cores), with 8 GB RAM, and NVidia GTX 780 Ti
graphics card consisting of 15 multiprocessors and 192 cores per multiprocessor.
The card is equipped with 3072 MB RAM and 64 KB on-chip memory per
multiprocessor. In the Kepler GK110 architecture, the on-chip memory can be
configured as 48 KB of shared memory with 16 KB of L1 cache, or as 16 KB of
shared memory with 48 KB of L1 cache.

Table 1 presents execution times needed for determining the objective func-
tion values in the single iteration of PSO. The presented times were obtained by
averaging times for determining the objective functions values during 3D pose
estimation in all 450 frames of the LeeWalk sequence. In the discussed test the
PSO executed 10 iterations and consisted of 96, 304 and 512 particles, respec-
tively. As we already mentioned, the images in this four-camera test sequence
are 480 pixels high and 640 pixels wide.

The bottom part of Tab. 1 presents the overall processing time together with
the compute time. The software rendering algorithms, which are responsible



Table 1: Execution times [ms] of the main components of the fitness function.

#particles
CPU CUDA CPU-

OpenGL
CPU SSE-
OpenGL

CUDA-
OpenGL

[ms] [ms] [ms] [ms] [ms]

World transformation
matrixes

96 0.21 0.85 0.21 0.17 0.83

304 0.52 0.92 0.52 0.45 0.77

512 0.91 0.93 0.91 0.76 0.82

Sending world transf.
matrixes to OpenGL

96 - - 0.26 0.25 0.26

304 - - 0.31 0.30 0.28

512 - - 0.34 0.31 0.30

OpenGL rendering
96 - - 1.48 1.48 1.40

304 - - 2.81 2.74 2.71

512 - - 3.92 3.89 3.81

Acquire rendering
result from OpenGL

96 - - 63.37 62.88 -

304 - - 201.47 212.91 -

512 - - 309.53 318.27 -

Mapping render-
ing result (memory
mapping)

96 - - - - 0.40

304 - - - - 0.34

512 - - - - 0.38

Evaluate fitness value

96 26.13 13.87 14.86 6.72 1.50

304 92.03 22.44 50.06 18.96 2.22

512 176.32 36.98 79.23 30.40 2.92

Overall time

96 26.34 14.72 80.18 71.50 4.40

304 92.55 23.36 255.17 235.36 6.30

512 177.23 37.91 393.93 353.63 8.23
Compute time
(without acquisition,
mapping and
transmission)

96 26.34 14.72 16.55 8.37 3.73

304 92.55 23.36 53.39 22.15 5.70

512 177.23 37.91 84.06 35.05 7.55

for rendering of triangles and edges, perform point inclusion tests for simple
polygons [5]. The visible surfaces are determined using painter’s algorithm [7].
The processing on the CPU has been realized on four cores using OpenMP. As
we can notice, the processing times obtained on the GPU are far shorter than
processing times achieved on the CPU. As we can observe, the compute time on
the CPU can be considerably reduced through the use of the SSE instructions.
By comparing the overall times and compute times presented in the table, we can
observe that CPU-OpenGL and CPU SSE-OpenGL have considerable overheads
for data acquisition, mapping and transmission. Having on regard that the 3D
model rendering is the most time consuming operation in model-based 3D motion
reconstruction, the use of OpenGL leads to far more larger number of processed
frames per second (fps). Thanks to effective utilization of the rendering power
of OpenGL to render the 3D models in the predicted poses the motion tracking
can be done in real-time at high frame-rates.

The use of OpenGL-based 3D model rendering makes shorter the tracking
time in comparison to software (CUDA) rendering, see also Fig. 4. It is also
worth noting that for the small number of the particles, say up to 300, the
tracking time of the algorithm with OpenGL-based rendering does not change
considerably with the growing particle population.

The fitness functions discussed above were utilized in a PSO-based algo-
rithm for marker-less motion tracking. Its accuracy has been evaluated on the



Fig. 4: 3D Motion tracking time for OpenGL and soft (CUDA) rendering.

mentioned above LeeWalk test sequence. Figure 5 illustrates the tracking er-
rors versus frame number. The tracking accuracy on LeeWalk image sequence is
comparable to accuracy reported in [22].

Fig. 5: Tracking error [mm] vs. frame number on LeeWalk dataset.

Figure 6 illustrates the tracking accuracy that was obtained on LeeWalk
image sequence. The larger the overlap between the projected model and the
person silhouette is, the better is the 3D humane pose estimate.

#20 40 60 80 100 120 140

Fig. 6: 3D human body tracking on LeeWalk sequence.



Table 2 presents the tracking accuracies, which were achieved on LeeWalk and
HumanEva I image sequences. The above mentioned results were achieved in ten
independent runs of the PSO-based motion tracker with unlike initializations.

Table 2: Avarage tracking errors [mm] on LeeWalk and HumaEva I.

Average tracking error using PSO (10 it.)

96 part. 304 part. 512 part.

LeeWalk 47.9 ± 12.5 43.3 ± 10.3 40.0 ± 11.7

HumanEva I 55.8 ± 21.3 53.5 ± 18.4 52.3 ± 19.1

The results presented in Tab. 3 show the average times that are needed to
estimate the pose in a single frame using the PSO. It presents the average times
that were obtained on LeeWalk image sequence. As we can observe, the method
relying on truncated cones and trapezoid has shorter times in comparison to
mesh-based method. Due to noisy images the mesh-based method did not give
noticeably better tracking accuracies.

Table 3: Tracking times [ms] for different 3D models.

Number of particles

Model type #vert. 96 304

trapezoid 60 75.7 ± 5.9 90.9 ± 7.2

250 79.1 ± 7.2 103.5 ± 5.3

mesh 500 86.7 ± 7.0 114.3 ± 4.9

1000 90.7 ± 6.0 128.8 ± 5.0

4000 131.6 ± 7.6 237.4 ± 5.8

6 Conclusions

In this work we demonstrated a framework for marker-less 3D human motion
tracking in real-time using PSO with GPU-accelerated fitness function. We
demonstrated that OpenGL-based rendering of the 3D model in marker-less hu-
man motion tracking allows us to considerably shorten the computation time of
the objective function, which is the most computationally demanding operation.
We evaluated the interoperability between CUDA and OpenGL, which permit-
ted mixed compute and rendering acceleration. Thanks to such an acceleration
the full-body tracking can be realized in real-time.

Acknowledgment. This work was supported by Polish Ministry of Science and
Higher Education under grant No. U-711/DS (B. Rymut) and Polish National
Science Center (NCN) under research grant 2014/15/B/ST6/02808 (B. Kwolek).

References

1. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd Edition.
A. Peters, Ltd., Natick, USA (2008)



2. Balan, A.O., Sigal, L., Black, M.J.: A quantitative evaluation of video-based 3D
person tracking. In: Int. Conf. on Comp. Comm. and Networks. pp. 349–356 (2005)

3. Cano, A., Yeguas-Bolivar, E., Munoz-Salinas, R., Medina-Carnicer, R., Ventura,
S.: Parallelization strategies for markerless human motion capture. Journal of Real-
Time Image Processing (2015)

4. Concha, D., Cabido, R., Pantrigo, J.J., Montemayor, A.: Performance evaluation
of a 3D multi-view-based particle filter for visual object tracking using GPUs and
multicore CPUs. Journal of Real-Time Image Processing (2015)

5. Feito, F., Torres, J.C., Urea-López, L.A.: Orientation, simplicity and inclusion test
for planar polygons. Computers & Graphics 19(4), 596–600 (1995)

6. Hajagos, B., Szécsi, L., Csébfalvi, B.: Fast silhouette and crease edge synthesis with
geometry shaders. In: Proc. Spring Conf. on Comp. Graphics. pp. 71–76 (2012)

7. Hughes, J., Van Dam, A., McGuire, M., Sklar, D., Foley, J., Feiner, S., Akeley, K.:
Computer Graphics: Principles and Practice. Addison-Wesley (2013)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks. pp. 1942–1948. IEEE Press, Piscataway, NJ (1995)

9. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the
motion of 3D articulated figure. In: Proc. ICCVG. pp. 155–162. LNCS, vol. 6374,
Springer (2010)

10. Kwolek, B., Krzeszowski, T., Gagalowicz, A., Wojciechowski, K., Josinski, H.: Real-
time multi-view human motion tracking using particle swarm optimization with
resampling. In: Int. Conf. AMDO, LNCS, vol. 7378, pp. 92–101. Springer (2012)

11. Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm intelligence based search-
ing schemes for articulated 3d body motion tracking. In: Proc. 13th Int. Conf. on
Adv. Concepts for Intell. Vision Syst. pp. 115–126. LNCS, vol. 6915 (2011)

12. McReynolds, T., Blythe, D.: Advanced Graphics Programming Using OpenGL.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2005)

13. Parent, R.: Advanced algorithms. In: Parent, R. (ed.) Computer Animation, pp.
173 – 270. Morgan Kaufmann, San Francisco (2002)

14. Saini, S., Rambli, D.R., Zakaria, M., Sulaiman, S.: A review on particle swarm
optimization algorithm and its variants to human motion tracking. Mathematical
Problems in Engineering (2014)

15. Segal, M., Akeley, K.: The OpenGL Graphics System. A Specification, Version 4.3.
Khronos Group (2013)

16. Shaheen, M., Gall, J., Strzodka, R., Van Gool, L., Seidel, H.P.: A comparison
of 3D model-based tracking approaches for human motion capture in uncontrolled
environments. In: Workshop on Appl. of Computer Vision (WACV). pp. 1–8 (2009)

17. Sigal, L., Black, M.J.: HumanEva: Synchronized video and motion capture dataset
for evaluation of articulated human motion. Tech. Rep. CS-06-08, Brown Univer-
sity, Department of Computer Science (2006)

18. Song, L., Wu, W., Guo, J., Li, X.: Survey on camera calibration technique. In: Int.
Conf. on Intel. Human-Machine Systems and Cyb. vol. 2, pp. 389–392 (2013)

19. Stam, J.: What every CUDA programmer should know about OpenGL. In: GPU
Technology Conference (2009)

20. Yao, A., Gall, J., Gool, L.: Coupled action recognition and pose estimation from
multiple views. Int. J. Comput. Vision 100(1), 16–37 (Oct 2012)

21. Zatsiorsky, V.: Kinematics of Human Motion. Human Kinetics (1998)
22. Zhang, Z., Seah, H.S., Quah, C.K., Sun, J.: GPU-accelerated real-time tracking

of full-body motion with multi-layer search. Multimedia, IEEE Trans. on 15(1),
106–119 (Jan 2013)


	Marker-Less 3D Human Motion Capture in Real-Time Using Particle Swarm Optimization with GPU-Accelerated Fitness Function

