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Abstract—This paper is devoted to real-time analysis of con-
tinuous footwork training routine in fencing. We propose a
model-based adaptive filtering algorithm for accurate selection
of segments of interest from a velocity signal acquired by the
Kinect motion sensor. We remove false positives from the selected
segments by extracting dedicated features and applying a SVM
classifier. Finally, we compute parameters of the identified lunge
actions, which constitute a feedback for the fencers. The proposed
methods are evaluated on a dedicated dataset consisting of actions
of eight fencers.
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I. INTRODUCTION

Improving skills in sports requires not only motivation
and hard work of athletes, but efficient training methods
as well. Current technology supports analysis of actions in
many sport disciplines. Information gathered with various
sensors can provide a valuable feedback for both coaches
and athletes. Methods proposed in [1] allow for recognition
of karate techniques using the Kinect depth sensor. Detection
of swimming strokes with accelerometers is discussed in [2].
Stereo camera and inertial sensors are employed in [3] for golf
swing motion tracking.

A common approach to analysis of sports actions is to
work on pre-segmented data, where each action is a separate
sample [1], [3], [4]. Several state-of-the-art general action
recognition algorithms [5], [6] were developed and evaluated
on datasets with pre-segmented actions [7], [8]. Detection of
selected actions in a continuous sequence is more challenging
and rarely discussed in the literature. In sports, analysis of
continuous movement has been recently addressed in [2], [9]
for detection of cyclic events, namely swimming strokes and
pommel horse circles, respectively.

In this paper, we address the problem of detection and real-
time analysis of specific actions in fencing footwork training,
which is a continuous and non-cyclic movement. In a typical
scenario fencers move in a sideway position (see Fig. 1 left).
Basic footwork in fencing includes forward and backward
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steps as well as lunges (see Fig. 1 right), which are used in
offensive actions. A proper performance of the lunge action is
one of crucial skills for a fencer. Therefore, in this work we
focus on detection and analysis of the lunge actions.

For the analysis of fencing footwork we employ the Kinect
sensor. It provides both RGB and depth data, as well as
automatically detects persons and fits a skeleton model. In
our setup the Kinect sensor is located approximately 3 meters
from the observed person. The footwork training routine for a
fencer includes moving forward and backward with steps and
performing the lunge action every few steps. In this paper, we
propose methods to detect time segments with potential lunge,
verify if the selected time segment is an actual lunge or not,
and finally analyze the performed lunge (see Fig. 2).

Detection of lunge candidates is achieved by analysis of
the fencer‘s velocity, using the skeleton data provided by the
Kinect. Since the Kinect data are noisy and performance of
the lunge action differs between fencers, we propose a model-
based adaptive filtering method, which allows to accurately
extract the interesting time segments. Verification of the can-
didates includes extraction of specifically designed features,
based on the skeleton data, as well as classification of the
segments on the basis of the Support Vector Machine (SVM).
Analysis of the lunge performance includes computation of
various parameters, such as lunge length or acceleration, by
employing the skeleton data.

The methods proposed in this paper are verified on a ded-
icated dataset, consisting of recordings of continuous fencing
footwork of eight fencers. A feedback from fencing coaches is
provided with respect to the usefulness of the proposed system.
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Fig. 1. Fencing position (left) and lunge (right).
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Fig. 2. Scheme of the proposed system.

II. PROPOSED METHODS
A. Detection of the Lunge Candidates

In order to detect the lunge action we need to consider
the characteristics of this movement. A lunge is performed
by slightly lifting the front leg and then dynamically pushing
off the back leg. During the first stage the fencer accelerates
rapidly, then the front leg touches the ground and the fencer
slows down and finally comes to a short halt. The return to
the basic position is done by bending the back leg and moving
the front leg backwards. Therefore, the plots of the horizontal
velocity over time of a fencer performing a lunge usually
have two peaks. The first peak is a maximum, that indicates
the moment at which the front leg touches the ground. The
second peak is a minimum, that indicates the return to the
basic position. Based on these observations, it is evident
that detecting lunge candidates can be achieved by finding
a sequence of two peaks — a maximum and the following
minimum.

Although this criteria is not sufficient, we can easily limit
the number of lunge candidates by including another evidence
— the maxima must be greater than zero, as the fencer is
moving forwards in the first phase of the lunge, and the minima
must be lower than zero, as the fencer is moving backwards
during the return phase. There are actually only two actions,
which meet these criteria — one is the lunge action and the
other is a sequence consisting of a step forward and a step
backward (see Fig. 3). The proposed method for distinguishing
between these two actions is described in the next subsection.

Fig. 3. Example plot of fencer‘s velocity over time. The red line represents
raw signal and the green line represents the filtered values. Detection of
maximum greater than zero (red dot) and a following minimum lower than
zero provides lunge candidates. Left and right candidates are actual lunges
(blue background) and middle candidate is a step forward and backward action
(grey background).

We propose a method for estimating the velocity of the
fencer by employing the skeleton data provided by the Kinect

sensor, which contains the positions of 20 joints. In order to
measure the velocity of a fencer we consider a joint that is
located close to the center of the body, namely the spine base
joint [10]. Velocity is determined as the difference of the joint
positions in the consecutive frames. Since the Kinect data are
noisy, we need to apply a filtering in order to obtain a smooth
signal, which would allow analysis of the peaks. Our aim is
to provide feedback for the athletes in real-time, therefore
we considered filters, which provide local smoothing, with
relatively low filter delay. We considered the following filters:

e Moving Average (MA), which computes a simple arith-
metic average of velocities v; over a moving window of

length n:
a:vl + v + ...+, 1)
n
A single smoothing with moving average proved

to be insufficient, however, double smoothing, with
shorter window in the second iteration provided much
better results. Therefore, when referring to the moving
average filter we will consider a filter with two iterations.

o Locally Weighted Scatterplot Smooth (Loess) [11],
which is computed in the following steps:

First, given a window of length n, weights w; are
extracted on the basis of the following equation:
w; = (1 - d;°)?, ©)

1=1..n

where d; is the distance between the data point located
in the center of the window and the i-th data point,
divided by half of the window size.

Next, a second degree polynomial is fitted using a

weighted linear least-squares regression, which mini-
mizes the fit error s given as:

n
S = ZUM(’U, — 61)2
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where ¥; is the fitted value.

3)

The smoothed value of the signal velocity is the value
of the fitted polynomial at the center of the window.

In order to properly detect and analyze the lunge actions we
need the filters that (i) preserve peaks and (ii) handle outliers.
Preserving the peaks is crucial for detecting the exact start
of the lunge, which is very important for the further analysis.
When the fencer performs lunge after step forward, he/she
slows down only temporarily, which generates a small, easy
to miss minimum. On the other hand, the Kinect skeleton
tracking is unstable, and sometimes the tracked joints positions
‘jump‘ between consecutive frames and thus produce outliers
in the velocity data, which can be misidentified as peaks.



Using multiple window sizes we verified how both filters
(MA and Loess) were able to preserve peaks and handle
outliers. Generally, MA was better suited for the outliers,
while Loess was better at preserving the peaks, mainly due
to employing the second order polynomial. There is actually a
robust version of the Loess filter, dedicated to remove outliers
[11], although we found that it works well only when provided
with relatively large parts of the signal and is not well suited
for real-time signal smoothing. Therefore, we consider only
the basic Loess filter.

Fig. 4 illustrates difficulties arising during selecting proper
filter type. We can observe that averaging can cause missing
the lunge start moment, and preserving the peaks can generate
an incorrect peak in the decelerating stage of the lunge. In
order to address such problems we propose a model-based
adaptive filtering, which allows to combine and take advantage
of both filtering methods.

A

o = N W

v [m/s]

-2
4 45 5 4 45 5 4 45 5
t[s]

Fig. 4. Effects of different filters on the same signal (velocity over time)
with lunge. The red line represents raw signal and the green line represents
the filtered values. Left: Moving Average filter, which does not preserve the
peak on the rising slope; Middle: Loess filter, which produces an incorrect
peak on the falling slope due to an outlier; Right: proposed method.

The main idea is to employ a model of the analyzed
movement and based on that knowledge to adapt the filter
during the smoothing in order to both preserve the peaks and
remove the outliers. In our model, we assume that we need to
preserve the peaks when the signal (velocity) is rising and
remove the outliers when the signal is falling. Adaptation
is achieved by combining filtered values from both filters,
according to the current direction (rising/falling) of the signal.

We determine the slope direction parameter dp by taking
the mean value of the first derivative of the filtered signal in
a window of size equal to the filter window size:

n—1 . ~
Vi41 — U;
dp = —_ 4
p ;:1 — “4)

where n equals to window size.
The direction parameter dp is then cut to range (-1, 1):

dp = Max(Min(dp,1),—1) ®)
and normalized to range (0,1):

dp+1
== (©)

Therefore, when dp = 1 the slope is rising with 45 (or
more) degrees, and when dp = 0 the slope is falling with 45

dp

(or more) degrees. We can now use the direction parameter
directly for the weights for combining the filters:

Wmovingavg = 1- dp (7N
Wioess = dp (8)

It is worth mentioning, that the filtered slope does not
change rapidly, therefore the transition between the two filters
is smooth as well. By combining the filters we can achieve
proper filtering of the velocity signal (see Fig. 4 right).

B. Classification of the Lunge Candidates

As discussed in the previous section and presented in Fig. 3,
we need to verify the lunge candidates by distinguishing
between the lunge action and an action consisting of a step
forward and a step backward. Although the horizontal velocity
pattern of the spine base joint is similar in both cases, the
overall motion is quite different. Therefore, we decided to
employ features based on the velocities of all joints.

The feature extraction scheme is as follows. Once the
lunge candidate segment is found we compute velocities (both
horizontal and vertical) for each joint. We then interpolate the
signal to a common length. Since the average duration of an
extracted lunge segment is approximately 1 sec and the Kinect
operates with 30 Hz, we interpolate the signal to 32 sample
points. We then transform the signal to the frequency domain
by applying the Fast Fourier Transform (FFT). By taking first
3 coefficients of the FFT for each of the 20 joints, in both x
and y directions, we obtain a feature vector with 120 features.

Given a feature vector with a constant length we can apply
the Support Vector Machine (SVM) classifier. We consider
both a linear SVM as well as a non-linear, with Radial Basis
Function (RBF) kernel.

C. Lunge analysis

Once the lunge segment is identified we can analyze the
motion of this action. Based on consultations with fencing
coaches we analyze the following parameters:

o Hand delay - in offensive actions it is crucial to first
straighten the armed hand and then move forward with
the lunge. Therefore we compute the time difference
between straightening the arm and the beginning of
moving forward. We consider the arm to be straighten
when the angle formed by the joints: shoulder, elbow and
wrist is higher than 160 degrees. This parameter requires
determining the exact start of the lunge.

o Lunge length - computed as the difference between the
extreme positions of the spine base joint during the lunge.

o Acceleration - computed as the average change of veloc-
ity of the rising slope.

o Time - from the start of the lunge to the end of the
returning phase (determined by the minimum peak).

During training the fencer can decide to improve any of
these parameters in his/her lunge action performance. Pro-
fessional fencers may decide to work on multiple parameters



simultaneously, which is more difficult, as some of them are
mutually dependent (e.g. longer lunge requires more time).

III. EXPERIMENTS
A. Dataset

For evaluation of the proposed methods we recorded a
dedicated dataset, which includes data from eight fencers, with
different skills level (from intermediate to advanced). In each
recorded sample a fencer was asked to perform the footwork
training routine, including approximately five lunge actions.
For each fencer we collected from two to seven samples.
In some cases the recordings were done in two sessions (on
different days). We acquired totally 31 samples, which include
total of 149 lunge actions. The segments with lunge actions
were manually labeled in each recording and used as ground-
truth in the evaluation.

B. Detection

In order to verify the lunge detection we compared the lunge
segments found by the proposed method with the manually
labeled segments. We considered two parameters: (i) how
many of the lunges were found, (ii) how accurately was the
start of the lunge determined. Here we did not consider falsely
detected lunges (this will be discussed in the next subsection).
A lunge was considered as found when at least 50% of
the manually labeled segment was determined as the lunge
segment by the algorithm. The accuracy of finding the lunge
start frame was computed as difference between the manually
labeled and the detected starting points.

Table I presents results for the Moving Average, Loess and
the proposed model-based adaptive filter. As we can observe,
our method is superior both in terms of finding the lunges and
minimizing the error of finding the starting point. It allows to
find all lunge segments, with average starting point error equal
to 1.91 frame, which corresponds to 63 ms. Such accuracy is
sufficient in this scenario.

TABLE 1. RESULTS OF THE LUNGE SEGMENTS DETECTION, USING
DIFFERENT FILTERS
. . Avg (with std dev)
Filter Wln(.low(s) Missed lunge starting point err.
size segments . A

(given in frames)
Moving Average 7;5 5 3.65 + 443
Moving Average 9; 7 7 5.63 £+ 6.04
Loess 15 11 3.14 + 474
Loess 17 4 2.50 £+ 3.69
Proposed method 15 191 + 1.82
Proposed method 17 2.15 £2.27

C. Classification and Analysis

Experiments with the lunge segment candidates classifi-
cation were conducted using leave-one-out cross-validation.
Having on regard that the dataset consisted of eight persons
we performed eight folds cross-validation — in each fold one
person was used as the test set and the other ones as the

training set. The dataset consisted of total of 149 actual lunges.
In all folds the proposed filtering method (with window size
set to 15) produced 205 lunge segment candidates. Both linear
and RBF kernel SVM were used and a grid search for the best
parameters was conducted. In both cases the classifier correctly
recognized all but one sample, resulting in 99.51% accuracy.

The parameters of the proposed lunge analysis were dis-
cussed with fencing coaches, who found them to be sufficiently
accurate to provide a useful feedback.

IV. CONCLUSIONS

In this paper we addressed the problem of real-time analysis
of continuous, non-cyclic movement in the fencing footwork
training routine. We developed a method for finding the action
of interest (lunge), by analyzing the fencer‘s velocity based
on the Kinect skeleton data. We proposed a model-based
adaptive filtering algorithm, which allows to find the lunge
segment candidates accurately in real-time. Applying an SVM
with the proposed features allowed to remove almost all false
candidates. Finally, we investigated a useful analysis of the
lunge action, by computing a set of dedicated parameters.

Based on the opinions gathered from the fencing coaches,
the discussed methods can constitute a valuable tool in fencing
training for two reasons. First, it can provide feedback for a
fencer without supervision from the coach. Secondly, provid-
ing numerical values for the lunge performance parameters is
a motivational factor, as the fencers can track their progress
and compete with others.
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