
Plane Object-based High-Level Map
Representation for SLAM

Pavel Gritsenko2, Igor Gritsenko2, Askar Seidakhmet2, and Bogdan Kwolek1

1 AGH University of Science and Technology, 30 Mickiewicza, 30-059 Krakow, Poland
http://home.agh.edu.pl/~bkw/contact.html

2 Al-Farabi Kazakh National University, Prospect al-Farabi 71, Almaty, Kazakhstan
lickro@mail.ru

Abstract. High-level map representation providing object-based under-
standing of the environment is an important component for SLAM. We
present a novel algorithm to build plane object-based map representation
upon point cloud that is obtained in real–time from RGB-D sensors such
as Kinect. On the basis of segmented planes in point cloud we construct a
graph, where a node and edge represent a plane and its real intersection
with other plane, respectively. After that, we extract all trihedral an-
gles (corners) represented by 3rd order cycles in the graph. Afterwards,
we execute systematic aggregation of trihedral angles into object such
as trihedral angles of the same plane-based object have common edges.
Finally, we classify objects using simple subgraph patterns and deter-
mine their physical sizes. Our experiments figured out that the proposed
algorithm reliably extracts objects, determines their physical sizes and
classifies them with a promising performance.

1 Introduction

Recent progress in development of robotics has increased capabilities such as
mobility and autonomy. Navigating in unknown environments requires a SLAM
(Simultaneous Localization and Mapping) system or module. The SLAM prob-
lem can be posed as the metaphorical chicken-and-egg dilemma: a robot in order
to determine its current location needs an accurate map. However, in order to in-
crementally build a map, it should have estimate of its position within the map.
The SLAM problem is related to two questions: ”where am I?” (localization),
and ”what does the environment look like?” (mapping). The currently utilized
formulation of SLAM has its origins in the seminal work [1].

A robust SLAM algorithm is an essential component for any mobile robot to
navigate through an unstructured environment. The SLAM problem has been
one of the most popular research topics in mobile robotics for the last two decades
and several approaches have been proposed [2]. In [3], authors argue that devel-
opments in the area of SLAM are entering the third era - ”robust–perception
age”. The key requirements for the new age SLAM system are as follows: 1)
Robust Performance; 2) High-Level Understanding; 3) Resource Awareness; 4)
Task-Driven Perception.
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In this paper, we propose an algorithm to build high-level map representation
in order to extend capabilities of state-of-the-art SLAM algorithms to match
the requirements mentioned above. At present, most of RGB-D SLAM systems
relies on point clouds or truncated signed distance function (TSDF). The first
crucial drawback is that these representations require substantial amount of
memory. Even in case of mapping a simple environment, like an empty room, in
both mentioned representations the memory requirements grow very fast with
scene complexity and time, which makes impossible to use them in long-term
operation and leads to noncompliance with the key requirements of third era
SLAM systems – robust performance and resource awareness.

2 Relevant Work and Our Contribution

2.1 Relevant Work

Compact map requiring small amount of memory is an essential component of
any SLAM system for long term operation and operation in a large environment.
There are number of works that were devoted to constructing compact maps on
the basis of geometric primitives like points, lines, and planes [4,5,6,7,8]. SLAM
system using plane-to-plane correspondences was presented in [4], whereas the
problem of unknown correspondences was investigated in [5]. One of the ma-
jor shortcomings of plane-based methods [7,6,4,5] is insufficient number of non-
parallel planes. This problem is partially solved in [8] by using additional laser
scanner with large FOV, but with an additional cost and system complexity. In
line-based SLAM it is hard to obtain line correspondences because the RGB-D
data from 3D sensors like Kinect is noisy and includes missing depth values [6].
An exemplar point-based RGB-D mapping system is presented in [1]. It is based
on seeking for three point-to-point correspondences using RGB and depth map
stream to find an initial estimate of the pose using RANSAC, which is further
handled and improved by ICP algorithm.

It is worth noting that despite remarkable progress in constructing a compact
map, almost all SLAM systems include little semantic information to the map
[3]. There are three main ways to construct high-level map representation and
to provide semantics to a mobile robot [3]. The first kind of solutions treat the
SLAM as a first step and then add semantics to produced map. The first attempt
consisted in building classical geometric map using a 2D laser scanner [9]. Then
associative Markov network was used to fuse the classified semantic places from
each robot pose. A later work was quite similar, but it concentrated on 3D
maps that were constructed off-line from RGB-D sequences [10]. The first on-
line version was developed by Pronobis et al. [11]. After that, object recognition
in videos has been supported by a monocular SLAM system [12]. The second
group of approaches extract semantics in advance and then take advantage of
prior knowledge including semantic classes or objects, their geometry, in order
to improve the mapping quality. The first attempts focused on monocular SLAM
with sparse features [13] and a dense map representation [14]. The first successful
RGB-D SLAM was developed by Salas-Moreno et al. [15]. The third kind of



approaches combine extraction of semantics and SLAM and do it simultaneously.
The first successful approach was achieved by Flint et al. [16], where a model
leveraging the Manhattan world assumption has been utilized. In a later work,
estimation of camera parameters and objects using both geometric and semantic
information has been investigated [17]. Despite achieving improvement in the
performance of object recognition, this approach is considered to be impractical
for on-line robot operation because of execution time (about 20 minutes per
image pair) and limited number of objects that can be processed. The complexity
of the algorithm was gradually reduced in [18] using late fusion of semantic
information and metric map. However, the system still works only in off-line.
The first success in constructing on-line system with object recognition and
adding semantic information to the scene has been achieved in [19] through the
use of stereo cameras and a dense map representation.

2.2 Differences with Relevant Approaches

Our approach differs in several aspects from the relevant work. The first key
difference is that our system does not decompose point cloud into set of separate
primitives, but it aggregates planes into objects and builds a complex represen-
tation consisting of plane-based objects and point clouds representing objects of
complex shapes, see Fig. 1. The second difference is that our algorithm recon-

Fig. 1: Plane object-based high-level map representation on the point cloud re-
constructed from 907 frames, represented by open TUM RGB-D dataset [20]
(rgbd dataset freiburg3 structure texture far).

structs plane-based objects of any type consisting of any number of faces, and
thus it differs from RANSAC, which extracts only objects of predefined shape.
The third difference is that our high-level map representation is capable of re-
constructing plane-based object of any size (room, floor, building) from sequence
of frames, i.e. it adds object parts frame-by-frame. We will show that our map
representation gradually reduces memory consumption by dozens of times with



respect to point cloud-based representation. The fourth difference is that our al-
gorithm allows to use all state-of-the-art closed-form solutions [21,22,23,24,25,26]
to determine the robot pose. Closed form solutions do not assume any motion
model and are more reliable comparatively to the most popular state-of-the-art
ICP algorithm [27]. The use of trihedral angles (corners) to represent plane-
based objects stands for this ability. The trihedral angle allows to use all three
types of primitives: point, line, plane, see also Fig. 1, as well as point-to-point
[23], line-to-line [22], plane-to-plane [21], point-to-line [25], point-to-plane [26],
and line-to-plane [24] correspondences and their closed-form solutions. From
one hand any of such solutions can be used at a time. From the other hand,
any combination of several solutions can be used [28]. This gradually increases
the robustness of the proposed algorithm. Additionally, closed-form solutions
are obtained in one iteration and require less computational resources than ICP.
Therefore, the fourth difference refers to resource awareness.

It is worth noting that the fifth difference lies in classification of plane-based
objects using a graph. The algorithm is based on graph patterns instead of
ANN, RANSAC or other complex and computationally expensive algorithm. It
is simple, fast and computationally very cheap, which makes possible real-time
or close to real-time execution on ARM processors.

Another crucial point is that none of state-of-the-art representations provide
high-level information about the environment to allow a robot to distinguish be-
tween objects, their sizes and types [3]. With the ability to extract objects and
their physical sizes, our high-level map representation provides great amount of
additional information, and provides additional opportunities for place recog-
nition, loop closure, higher level of geometry understanding, i.e. semantics to
achieve more user-friendly interaction between human and robot. In summary,
this paper makes the following contributions:

– We present a novel plane object-based high-level map representation.
– We present an efficient algorithm to find real intersections (edges) between

planes and to determine their sizes.
– We present an efficient algorithm to classify plane-based objects using sub-

graph patterns, which is fast and computationally effective.
– We demonstrate that the algorithm achieves real-time performance with

mapping accuracy comparable to state-of-the-art algorithms.

3 Algorithm overview

Figure 2 shows step–by–step transition from simple point cloud to classified
plane–based object representation with sizes (edge lengths). Actually the whole
algorithm consists of seven major steps. In the first step, it acquires RGB-D data
stream consisting of a pair of a color image and a depth map. After that, on the
basis of the RGB-D stream and intrinsic calibration parameters we reconstruct
colored point cloud. Such a colored point cloud becomes an initial map represen-
tation of the perceived scene. In the next step a plane segmentation from initial
point cloud on the basis of M-estimator SAmple Consensus (MSAC) is executed.



Then, real planes intersections as well as their lengths are determined. On the
basis of the segmented planes and their intersections a graph is constructed. This
results in the second map representation, which consists of plane equations and
point clouds representing objects of complex shape (not plane-based objects).
Due to the substitution of point clouds representing plane equations the map
representation becomes compact. The next step comprises extraction of trihe-
dral angles that are represented by 3rd order cycles from the constructed graph
(Fig. 3). After extracting the trihedral angles, their aggregation can be achieved
assuming that trihedral angles of the same plane-based object have common
edges. Finding common edges for trihedral angles is done using the constructed
graph, which is fast and computationally effective. Through aggregating all tri-
hedral angles having common edges we obtain abstract plane-based objects. This
means that in this step we have a structure describing which planes belong to
which object, the number of such objects, theirs sizes, but no types. Therefore,
we call this representation as abstract plane-based objects, see Fig. 2. In the
last step the classification is executed. The classification algorithm is based on
matching graph patterns with a subgraph from the extracted graph. The result-
ing algorithm is simple, fast and effective.

Fig. 2: Diagram representing transition from colored point cloud to classified
plane object-based high-level map representation.

4 Proposed Algorithm

4.1 Determining physical object size

Let’s consider how to extract real intersection of two planes and its length.
Let’s assume that we have planes: P1 = A1x + B1y + C1z + D1 and P2 =
A2x + B2y + C2z + D2. According to the algorithm presented in Fig. 2, af-
ter point cloud segmentation we determine the plane intersections. Therefore,
after this step we have planes and their inliers, i.e. array of points represent-
ing them. Let’s denote P1 inliers as {pplane1,1 . . . pplane1,i} and P2 inliers as
{pplane2,1 . . . pplane2,i}. According to the definition of intersection that states
that if planes P1 and P2 have real intersection then they should have common



inliers {pedge,1 . . . pedge,i}, i.e. array of points belonging to P1 and P2 simultane-
ously, see (1):

{pedge,1 . . . pedge,i} = {pplane1,1 . . . pplane1,i} ∩ {pplane2,1 . . . pplane2,i} (1)

However, pedge,1 . . . pedge,i = ∅, because a point can be among inliers of only sin-
gle plane. Thus, we reformulate definition and state that the points representing
real intersection pedge,1 . . . pedge,i will be simultaneously close to planes P1 and
P2. Therefore, we calculate point-to-plane distance for both sets of inliers to
both planes on the basis of (2)–(5).

{dplane1−plane1,1 . . . dplane1−plane1,i} = |A1pplane1,i,x + B1pplane1,i,y

+ C1pplane1,i,z + D1|∗(A2
1 + B2

1 + C2
1 )1/2 (2)

{dplane1−plane2,1 . . . dplane1−plane2,i} = |A2pplane1,i,x + B2pplane1,i,y

+ C2pplane1,i,z + D2|∗(A2
2 + B2

2 + C2
2 )1/2 (3)

{dplane2−plane2,1 . . . dplane2−plane2,i} = |A2pplane2,i,x + B2pplane2,i,y

+ C2pplane2,i,z + D2|∗(A2
2 + B2

2 + C2
2 )1/2 (4)

{dplane2−plane1,1 . . . dplane2−plane1,i} = |A1pplane2,i,x + B1pplane2,i,y

+ C1pplane2,i,z + D1|∗(A2
1 + B2

1 + C2
1 )1/2 (5)

After that we determine all points that have the distance to both planes smaller
than dthresh and grater than dmin. dmin is used to deal with noise.

In order to define edge length dedge we took two points from pedge,1 . . . pedge,i
with maximum distance to each other. Actually, the distance between the points
represents diagonal length ddiagonal of the cylinder of radius dthresh. Thus, the
edge length is determined according to (6):

4 ∗ d2tresh + d2edge = d2diagonal (6)

4.2 Aggregation of planes into object

After determining the plane intersections we can construct a graph whose node
and edge represent a plane and its real intersection with other plane, respectively.
This graph allows us to find in a fast manner all trihedral angles as 3rd order
cycles in the graph, see Fig. 3. Afterwards, we make assumption that all trihedral
angles of the same plane-based object have common edges.

This assumption allow us to extract plane-based objects. Trihedral angle is
represented by three planes, see Fig. 3, so let’s denote it by indexes of planes.
For example, trihedral angle 2-3-7 has common faces with 2-9-7, 2-6-3, 3-7-5.
Therefore, they belong to the same plane-based object. In the same time, the
trihedral angle 2-9-7 has common edge with 2-9-6, and 5-9-7 so that all these
(2-3-7, 2-6-3, 2-9-7, 3-7-5, 2-9-6, 5-9-7) trihedral angles belong to the same plane-
based object. This way the aggregation is capable of adding trihedral angles,
angle-by-angle.



Fig. 3: The graph representing scene of the sequence 2 – a box in a simple room
with four walls, which are observed by Nao humanoid robot.

4.3 Classification of objects

After all plane-based objects are extracted, a classification step can be executed.
It is based on splitting the graph into sub-graphs (for instance plane two in
Fig. 3), and then matching the predefined patterns, see Fig. 4.

Fig. 4: Predefined patterns to match objects in the graph representation.

4.4 Merging plane object-based high-level map representation

Merging a pair of plane object-based high-level map representation is done using
a graph representation. At first, data association is done and plane-to-plane
correspondence is found on the basis of matching normals as well as distances
between the considered planes. After that, a transformation matrix between
frames is computed using closed-form solution for plane-to-plane correspondence
[29]. The transformation matrix is further refined by a ICP algorithm. After that,
the frames are aligned. Then using the plane-to-plane correspondence we merge
graph representations. We assume that each edge length is the longest one from
corresponding edges in pair of frames. This way the graph is reconstructed.
Finally, we reinitialize the plane-based object structure and the classification,
see Fig. 5.

5 Experimental Results

Our system is conceived to work with any RGB-D sensor. In the experiments we
utilized Kinect 1 and ASUS Xtion sensors. They work at a frame rate of 30 Hz



Fig. 5: Algorithm of merging plane object-based high-level map representations.

and provide color stream and depth map at a resolution of 640×480 pixels. The
system has been tested on two sequences. The first sequence is available in open
collection of Kinect (RGB+D) datasets with 6D ground truth recorded by the
TUM CV group [20], (rgbd dataset freiburg3 structure texture far). It includes
907 frames with synchronized color image, depth map, accelerometer data and
ground-truth for each step. The dataset has been recorded with frame–rate of
30 Hz and sensor resolution of 640×480 pixels. The ground-truth trajectory was
obtained using high-accuracy motion-capture system consisting of eight high-
speed tracking cameras (100 Hz). Figure 6 depicts results that were achieved
in constructing plane object-based high-level map representation using hand-
held Kinect. Figure 6a shows results of reconstruction of point cloud using color
image, depth map and intrinsic calibration data that are provided with the
dataset. Figure 6b depicts extraction of planes from the reconstructed point
cloud using MSAC. Figure 6c shows results of systematic aggregation of trihedral
angles into objects.

We merged point clouds that were reconstructed step-by-step from color im-
ages and depth map, using ground–truth trajectory. We determined the merged
point clouds for frames number 200, 400 and 907.

As can be seen in Fig. 6a, there is substantial level of noise in the point
cloud. Despite this the segmentation step is successful, see Fig. 6b. As can be
seen in Fig 6b–c, the proposed algorithm for extraction of real intersections of
planes from point cloud generated satisfactory results. Its is worth noting that
the poster stands on the floor and its planes have real intersections with it.
Despite that the floor has also intersections with the room planes, the system
correctly extracted two different plane-based objects (poster and room) that are
represented on Fig. 6c by different colors (green and red, respectively). However,
we have no ability to estimate edge length error because there is no data in the
TUM dataset for object sizes. We have determined object sizes for our dataset.

The second RGB-D sequence1 has been recorded using the ASUS Xtion Pro
Live that has been mounted on the Nao humanoid robot. In the discussed sce-
nario the Nao robot made a circle of the radius 0.7 m in 24 steps. In each step,
RGB, depth and ground-truth data were recorded, see Fig. 8. Ground-truth po-
sition has been determined using 2D LIDAR (SICK LMS 200 laser scanner), see
Fig. 3. This dataset has been utilized in an experiment comprising constructing

1 Available at: http://bit.ly/ICCVG2018

http://bit.ly/ICCVG2018


Fig. 6: An example of constructing plane object-based high-level map represen-
tation using hand-held Kinect. (a) Reconstructed point cloud using color im-
age, depth map and intrinsic calibration data of the Kinect from TUM RGB-D
dataset. (b) Results of extracting planes from reconstructed point cloud using
MSAC. (c) Results of systematic aggregation of trihedral angles into objects.
Green points of the graph stand for centers of trihedral angles. Edges of trihe-
dral angles are represented by black line segments.

high-level map representations for each frame and merging them frame-by-frame.
Figure 7 compares point cloud that was reconstructed frame-by-frame using
state-of-the-art ICP algorithm with plane object-based high-level map represen-
tation that was reconstructed frame-by-frame on the basis of direct-estimate of
plane-to-plane correspondence [29], see Fig. 7b.

It is worth noting that trihedral angle allows us to use all three types of basic
geometric primitives: point, line and plane (Fig. 1). However, it is an open prob-
lem how to combine transformation matrices that are obtained on the basis of
different closed form solutions for our high-level map representation. Actually, in
the discussed experiment we have employed plane-to-plane [21] correspondence
to find the transformation matrix between frames. Our system consumes about
60 times less amount of memory than state-of-the-art point cloud, see high level-
map representation on Fig. 8a. The discussed figure depicts also the estimated
object sizes as well as the estimated path with respect to ground-truth path.

Comparing estimated object sizes for box and walls (see Fig. 8) to its ground
truth values (box height = 0.19 m, box width = 0.29 m, box length=0.38 m,
room width=room length=1.88 m ) we obtained the average error of 0.02 m.



Fig. 7: Comparison of merging plane object-based high-level map representation
using 6 DoF plane-to-plane correspondence (b) with merging point clouds recon-
structed from color images and depth maps on each step using state-of-the-art
ICP algorithm (a).

Fig. 8: Comparison of memory consumption of plane object-based high-level map
representation for SLAM with point cloud. High-level map representation with
estimated object sizes and errors (a). Ground truth trajectory (green points) in
(b) has been determined using LMS 200 SICK laser scanner while the path (red
points) has been estimated on the basis of visual odometry and our high level
map representation.

6 Conclusions

We presented a novel algorithm for constructing plane object-based high-level
map representation for SLAM. It achieves promising performance on point clouds
acquired by Kinect and ASUS Xtion sensors and provides reliable extraction of
plane-based objects, their dimensions and types. In future work we plan to extend



the system and use all combinations of primitives for calculating 6 DoF robot
pose.
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