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Abstract

In this work we present an algorithm for severe (un-
known) blur detection on RGB images. On salient CNN-
based regional representations we calculate local features
that are then fed to calibrated classifiers in order to esti-
mate blur intensity. We perform scene classification and
show that considerable gain in classification performance
can be obtained owing to information on blur presence. We
calculate global descriptors of the scene that are then fed to
image retrieval engine that uses blur detection, scene cate-
gory and minimum spanning tree to decide if current query
image is relevant or irrelevant in context of place recogni-
tion. We show that information about blur and scene cate-
gory improves mean average performance. We introduce a
freely available challenging dataset both for blur detection
and place recognition. It contains both images with severe
blurs and sharp images with 6-DOF viewpoint variations,
which were recorded using a humanoid robot.

1. Introduction
Visual Place Recognition (VPR) refers to capability of

recalling a previously visited place using visual input, under
changing viewpoint, varying illumination conditions, while
requiring as less as possible computational power and mem-
ory storage [17]. In the last decade, several methods for
visual place recognition have been proposed [17, 6]. Varia-
tions in viewpoint and appearance due to motion blur, shad-
ows, occlusions and illumination changes render VPR as
challenging problem for autonomous robots. For humanoid
robots, due to different poses while taking images the dif-
ferences between image content can be considerable even
when passing the same route. The degree of viewpoint vari-
ation that arises during scene perception by a humanoid
robot is appreciably more complex than viewpoint varia-

tions experienced by mobile robots [27]. When a humanoid
robot is walking, squatting or turning its head moves in a
jerky and sometimes unpredictable way [29].

Motion blur, one of the major problems for feature-based
SLAM systems, might cause location losses and inaccura-
cies during map formation. Most of benchmark data for
visual place recognition include lateral or 3D variations
of viewpoint. 6-DOF viewpoint variations are included in
outdoor images of 24/7 Query dataset [38]. Recently, 6-
DOF viewpoint change has been included in the Shopping
street dataset [18] that is targeted for aerial place recogni-
tion. Having on regard long-term operation, aside of motion
blur the appearance variations caused by day-night cycles
can have considerable impact on place recognition perfor-
mance. In this context it is worth noting that most of VPR
benchmark data can be categorized as time-based, which
means that frames have been acquired and stored at a fixed
FPS (frames per second) rate of utilized video camera. Usu-
ally, they are acquired under assumption of non-zero speed
of the moving camera. For instance, in [12] a frame is ac-
quired and then stored every few meters to obtain a rep-
resentation of a new place. One of disadvantages of both
time- and distance-based systems are vast requirements for
image storage and retrieval. Thus, such approaches can be
fragile for long-term robot missions with day-night cycles.

The problem of qualitative robot localization consists in
recognizing the place where the robot is located [15]. Ide-
ally, during exploration of the environment the robot should
learn from experience and then recognize previously ob-
served places in known environment(s) and optionally cat-
egorize previously not visited places into new rooms. Such
a task is closely related to semantic localization that aims at
determining by a robot its location semantically in relation
to objects or regions in the scene rather than estimating and
reporting 6-DOF pose or position [4].

A typical approach to VPR consists in extracting single



frame or a few frames from the image-stream and then pro-
viding such data to an image retrieval engine. An approach
proposed in [9] operates on sequences of non-overlapping
images and decides if each one belongs to already visited
place. To enhance topological place discovery and reduce
the search space a clustering of images on the basis of place
topics has been proposed in [24]. Instead of using individ-
ual images or image descriptors a correlation-based match-
ing on entire sequences was introduced in [22]. In a recent
work [11], multilevel descriptors have been used in VPR
for the visually impaired people. Several handcrafted local
and global feature descriptors were proposed to represent
places [17]. Since seminal work on using CNNs for place
recognition [7], more and more data-driven image descrip-
tion approaches are developed. Performance of such algo-
rithms has been studied in [33]. Recently, in [1] a VLAD
[2] layer that can be trained in end-to-end fashion, specifi-
cally for place recognition has been introduced. Consider-
able potential of VLAD has recently been proved in [41],
where a versatile comparison of ten VPR systems revealed
the NetVLAD as the best overall performing technique.

Recently, Intel developed a AI-powered backpack [20]
that is breakthrough technology for visually impaired to
navigate world around them. This user-friendly interactive
device helps detecting common objects such as traffic signs,
crosswalks, hanging obstacles, moving objects, and chang-
ing elevations, all while running on a low-power device. As
the user moves through the environment, this versatile and
powerful AI device audibly communicates him/her about
common obstacles. User localization is a vital component
of indoor blind navigation. To the best of our knowledge,
there are no previous studies addressing place recognition
on sequences of images acquired by body-worn cameras,
including quantitative analysis on a dedicated dataset with
images contaminated by unknown motion blur.

Motivated by lack of adequate dataset including images
with variations arising during locomotion of walking robots
and visually impaired equipped with body-worn cameras,
especially comprising images with severe blurs we used a
camera mounted on head of humanoid robot for recording a
dataset. In order to fulfill the existing gap as well as fulfill
requirements regarding deep learning, considerable efforts
were devoted for manual classification of images as sharp
and blurry. Moreover, query images with relevant and irrel-
evant images were selected to benchmark the algorithms for
place recognition. In order to cope with place recognition
on images with unknown blur we propose an effective al-
gorithm for blur detection. We develop effective approach
for scene classification and demonstrate its usefulness for
visual place inference. We propose an algorithm for place
recognition that on the basis of two most relevant images,
which are selected by two best methods established dynam-
ically, determines the final most relevant image.

2. Relevant work
Indoor scene recognition is a challenging open prob-

lem [43, 16] and range of approaches have been proposed
in the last decade. The most commonly employed hand-
crafted global descriptor is GIST [26]. With the devel-
opment and advancement of deep learning there has been
a major paradigm shift consisting in focusing on neural
network activations-based descriptors for scene as well as
place recognition. As demonstrated in [39], features ex-
tracted from CNN layers and used as global descriptors
hold considerable potential. Geometric features like vertical
lines can also be very valuable representations of buildings
or objects like doors in outdoor/indoor environments [3].

Recent research demonstrated that high level features
like object proposals have high potential in VPR [13]. In or-
der to extract ROIs, max-pooling on cropped areas in CNN
layers’ features has been utilized in [36]. Multi-scale, non-
rigid, pyramidal fusion of local features to improve VPR has
been studied in [21]. In a recently proposed approach [5], a
global matching-based, less-intensive place candidates se-
lection is followed by local feature-based, more-intensive
final candidate collection with focus on spatial constraints.
On challenging Places-365 dataset [43] deep CNNs such as
VGG-16 and DenseNet-161 are capable of achieving clas-
sification accuracies within 55% and 56%, respectively. It
is worth noting that the classification performance is lower
than performances achieved by those networks on the Ima-
geNet dataset. In this context it is worth mentioning that im-
ages acquired by humanoid robots, and in particular drones
or body-worn cameras are even more harder to classify.

3. Algorithm and Experimental Setup
At the beginning we propose an algorithm for blur de-

tection. Next, we present minimum spanning tree for image
retrieval and distance-based one-class classification. Then,
in next Subsection we describe our dataset for learning im-
age deblurring and place recognition. In last Subsection we
present the whole algorithm for place recognition.

3.1. Algorithm for Blur Detection

Image representation is the major part of a visual place
recognition system. At the same time, it is very similar to
image representations in systems such as image retrieval,
object detection, image classification, and so on. The VPR
methods to a large extent draw on the best practice that have
been developed in the area of image retrieval. Differences
and similarities between VPR and the image retrieval are
outlined in a recent review [42]. The main difference is that
in VPR the camera position should be taken into account
such that images with changes induced by, for instance, dif-
ferent views should be returned as irrelevant. Despite con-
siderable research efforts, robust place recognition in indoor



environments on the basis of a body-worn camera or robot’s
on-board camera is an unsolved problem. On challenging
Places-365 dataset the classification accuracies achieved by
deep CNNs are lower than accuracies achieved by those net-
works on ImageNet dataset. The accuracies on real images
acquired by moving/rotating cameras are either too low for
applications for the visually impaired or are obtained with
a computational cost that prevents real-time applications.
The most common approach to VPR relies on learning or
embedding image features. A recent approach [5] is an ex-
ample of a different approach, where a global matching-
based, less-intensive place selection of candidates is exe-
cuted first, and then a local feature-based, more-intensive
final selection of candidates selection with focus on spa-
tial constraints is executed afterwards. From recent surveys
[6, 42] it follows that vast VPR algorithms do not include
scenarios with motion blur, including ones when the robot
or camera makes considerable inter-frame rotations. More-
over, most of the recent approaches are based on features
extracted by AlexNet (AlexNet365) and VGG16 CNNs,
which have 60M and 138M parameters, respectively, and
VGG-M architectures that have which have several times
less parameters were not of wider interest.

First, we generated a dataset with images contaminated
by motion blur. We used MIT Indoor scene database [30]
that comprises 15620 images with 67 indoor categories.
The number of examples varies across categories, but there
are at least 100 images per category. A Matlab function
fspecial was used to approximate the linear motion of a
camera with provided lengths and directions. Motivated
by recent research findings showing that CNN-based de-
scription of places or images using only regions of interest
(ROI) leads to enhanced performance compared to whole-
image description [37] we based our algorithm on such an
approach. In [37] the ROI-based vector representation is
proposed to encode several image regions with simple ag-
gregation. An approach proposed in [8] employs a late con-
volutional layer as a landmark detector and a prior one in or-
der to calculate local descriptors for matching such detected
landmarks. For such a regions-based feature encoding a 10k
bag-of-words (BoW) [32] codebook has been utilized.

The proposed approach to blur detection is based on
salient CNN-based regional representations. We used a
VGG-M neural network trained on ImageNet dataset. The
network consists of five convolutional layers. Just over
3.5G MAC (multiply-accumulate) operations is needed to
classify a single RGB image of size 224 × 224 × 3 from
the ImageNet dataset. The image classification is done in
almost five times shorter time in comparison to time needed
by frequently used VGG-16, which requires more than
15.4G MAC operations. We employed only convolutional
layers, i.e. we discarded the fully connected layers. The fif-
teenth layer has been leveraged for discovering meaningful

regions in the image, on the basis of which the local image
features from the lower (thirteenth) layer have been deter-
mined. The features extracted from discussed layers were
defined as C13, C15 ∈ R13×13×512, respectively. At the be-
ginning, we perform averaging of activations belonging to
clusters determined in advance, and which group non-zero
and spatially proximal 8-connected activations. Then, we
determine a predefined number of clusters with the high-
est averaged values and identify the corresponding image
ROIs, which are the silent regions. This means that in our
approach we perform blur detection not on the whole im-
age but instead we employ only salient CNN-based regional
representations of the image. As in [8] we use a higher con-
volutional layer to guide extraction of local features and to
create multiple region descriptors representing each image.
For each ROI from the predefined number of ROIs we de-
termined a pooled feature vector as its representation.

At the training stage for each image with and without
blur we extracted ten descriptors of size equal to 512. We
trained a neural network with one hidden layer to classify
images into two categories. The number of neurons in the
hidden layer was equal to 20. In order to obtain probabili-
ties of respective label the classifier’s output has been cal-
ibrated. This way the probability determined by the neu-
ral network provides a kind of confidence on the predic-
tion. The calibration has been done using algorithm pro-
posed in [40]. The trained neural network has then been
utilized to detect (unknown) blurs. For blur detection on
each image we determined 200 descriptors. The response
of the trained classifier was averaged over the regions and
the image patches were classified as blurred or sharp. For
visualization purposes they have also been projected onto
the input images, see Fig. 1 that depicts example images.
The averaged classifier outputs are equal to 0.056, 0.120,
0.330 and 0.585, respectively.

Figure 1: Heat maps of images with increasing blur inten-
sity (top: input images, bottom: corresponding heat maps).

We considered various approaches to quantifying the
quality of predictions. We compared the proposed detec-
tor with a Support Vector Machine (SVM) with calibrated
output as well as Logistic Regression (LR), which returns
well calibrated predictions by default as it directly opti-
mizes the logistic regression loss. We experimented with
various numbers of descriptor vectors extracted on the test



images. Figure 2 depicts sample images with example num-
ber of descriptors that were considered during experiments
and evaluations. As we can see, the heat maps vary depend-
ing on number of descriptor vectors. Thus, we experimen-
tally determined the number of descriptors leading to best
blur detections and then determined the threshold to decide
on the basis of averaged predictors of the calibrated classi-
fier if the input image is blurred or sharp one.

Figure 2: Estimated blur intensity vs. number of descriptor
vectors (50, 100, 300 and 400) extracted on blurred image
(from 3rd column on Fig. 1).

3.2. Minimum Spanning Tree for Image Retrieval
and Distance-based One-class Classification

Many machine learning algorithms have obtained
promising results through describing data by graphs such
as minimum spanning trees (MSTs). Several clustering al-
gorithms rely on graphs. In our approach, aside of k-NN
we investigate also a minimum spanning tree as a class de-
scriptor and for image retrieval. A minimum spanning tree
is a subset of edges of undirected graph, which connects all
vertices jointly, without any cycles and with the minimum
total edge weight. Determining the MST is a well-known
problem of combinatorial optimization. Conventional min-
imum spanning tree-based clustering algorithms are known
to be capable of detecting clusters with irregular boundaries
and overcome many of the problems faced by the classical
algorithms [23]. The property that there are no cycles in
the tree means that there is only one path among any two
nodes. In this work we pre-compute the MST for connect-
ing all images in the training set. The nodes of the tree are
connected by the edges and weights express distances be-
tween them. They are computed using cosine similarity be-
tween global image descriptors. If the sum of the weights of
the edges connected by a node is smaller, it means that the
redundancy between the corresponding descriptor and rele-
vant image descriptors is lower, and thus the resulting dis-
criminative power of this descriptor is higher, which means
that the descriptor is more informative. The classification of
test images relies on their distances to the closest edges in
the tree and the final decision is taken by a distance-based
one-class classifier [14].

3.3. Dataset for Learning Image Deblurring, Blur
Recognition and Place Recognition

The past work on VPR focused on developing algorithms
operating on images with planar viewpoint changes. Maffra

et al. recorded an OldCity dataset [19] that contains walking
sequences from the old city of Zurich. More recently, they
presented a new dataset as well as an algorithm combin-
ing 2D and 3D information for UAV navigation. The dis-
cussed datasets were recorded outdoor and do not contain
images with unknown blur that can arise during movement
of a body-worn camera or even a humanoid robot making
rotations about its axis with considerable angular velocity.
Moreover, they do not contain information about category
or class of visited places. Motivated by lack of datasets
with manually labeled blurry images as well as data permit-
ting investigation of approaches based on similarity propa-
gation/diffusion or region manifolds, to name a few promis-
ing research directions, we decided to record a new dataset
that could fill the existing gap and meet the demand for this
type of data. Recently, a real-world blur dataset for learning
and benchmarking deblurring algorithms has been proposed
[31]. Although the mentioned above dataset meets the real
demand for such a real-world data, it does not fill the gap
and the need for datasets not only for benchmarking deblur-
ring algorithms, but also for place recognition on images
with 6DoF motion. The dataset has been recorded using
an RGB camera mounted on the head of a humanoid robot.
The dataset includes 10800 RGB images that were acquired
by an autonomous robot in nine indoor rooms. Each im-
age has been manually assigned to one of three classes,
namely: sharp, blurry and considerably blurry. The train-
ing sequence contains 5287 blurry images and 1913 sharp
images. Given that images are of size 640 × 480, image
patches can be extracted on such images and then used for
training deep neural networks. Two test sequences contain
1366 and 1440 blurred images as well as 434 and 360 sharp
images, respectively. We also manually determined twenty
four reference images with corresponding relevant and ir-
relevant images for place recognition. For each place and
corresponding query image, several relevant and minimum
five irrelevant images were designated, that is, images very
similar to the query image as well as relevant images, but
differing enough to be considered as relevant. Consider-
able amount of work of several annotators results in dataset
posing several research challenges and opportunities. The
dataset can be downloaded from authors’ webpages1 .

3.4. Algorithm

We trained calibrated classifiers to estimate the blur in-
tensity and then use it do detect if the input image is blurry
or sharp one. Having on regard that the NetVLAD delivers
a powerful pooling mechanism with learnable parameters
that can be readily plugged into any other CNN architecture
or classifier we trained and then evaluated a set of classi-
fiers for room category recognition. A selected classifier

1http://home.agh.edu.pl/˜bkw/data/BD-PR/,
http://pwozniak.kia.prz.edu.pl

http://home.agh.edu.pl/~bkw/data/BD-PR/
http://pwozniak.kia.prz.edu.pl


is then used to recognize the room category. We utilized
VGG16 and added the NetVLAD layer after the conv 5
layer in order to extract the VLAD features. Given this and
other selected features we precalculated the minimum span-
ning trees and evaluated them for place recognition. At this
stage of the research we experimented with various con-
figurations of the algorithm to evaluate the usefulness of
blur detection as well as robustness of room classification
on the performance of place recognition. We observed that
knowledge about motion blur and room category has con-
siderable influence on the final decision because in rooms
like corridors the place recognition performance and abil-
ity do precisely determine the previously visited place is
lower. Finally, a image retrieval engine for determining the
most similar image and deciding if it is relevant or irrele-
vant with the current query image has been developed. In
option of the algorithm using the minimum spanning tree,
the place recognition can be achieved using high-level in-
formation from noise detector, room recognition and infor-
mation extracted on the basis of the MST. By calculating
the distances between descriptor extracted from the current
query image and descriptors from the nodes we can quickly
determine the relevant sub-tree. Usually, descriptors in the
same cluster have similar properties and tend to belong to
same class. However, when in the same cluster there are ex-
emplars belonging to different classes then the confidence
of final decision is lowered.

The final most relevant image to a given query image
is determined dynamically of the basis of two most simi-
lar images. This is contrast to relevant algorithms. Lets us
assume that for a given query image the most similar im-
ages are determined by four different methods, where some
of them operate on identical descriptors, whereas some of
them operate on different image descriptors. From four im-
ages we select two most similar images to the considered
query image together with their indexes. Such a pair of in-
dexes defines a series of images that are between two most
similar images, selected by two best methods for the con-
sidered query image. The final index is simply the average
of the indexes of such two most similar images. For such a
rounded averaged index to integer value we select the cor-
responding image that is the final most relevant image. This
means that the final decision is taken on the basis of voting.

4. Experimental Results
At the beginning we conducted experiments consisting

in motion blur detection as well as deblurring real-world im-
ages. We ran our algorithm for blur detection on real images
with severe (unknown) blurs and compared it with state-of-
the-art algorithms, including [25, 28]. Table 1 presents ex-
perimental results that were achieved on two test sequences,
where first one is contaminaed by the blur, whereas the sec-
ond one is more blurry. As we can observe, our algorithm

achieves superior results. The images from the second se-
quence are far more harder to process and analyze due to
higher amount of blur. The results achieved by CNNs spe-
cialized for non-uniform blur detection [34] are better in
comparison to results achieved on the basis of method [28].
The discussed result has been achieved using neural net-
work trained in 50 epochs. A recently proposed algorithm
[10] achieved accuracy equal to 85.6%.

Afterwards, we determined descriptors representing im-
ages and calculated minimum spanning trees. The MSTs
were visualized for images from each category as well as
for all images from the training set. Figure 3 depicts a sam-
ple MST that was obtained for the NetVLAD descriptor on
all images from the training subset. As we can observe, in
most of subtrees the majority nodes are of the same class.
However, in some of them there are nodes from more than
one class. Moreover, they are not convex, or of irregular
shape, which testify the validity of carrying out the infer-
ence on a minimum spanning tree, instead of on a densely
connected graph. By definition, the discussed data struc-
ture joints points that are close in the descriptor space, high-
lighting intrinsic localities, similarities and local consisten-
cies in the scene. We calculated, visualized and analyzed
minimum-spanning trees on all images, on images classi-
fied as sharp, and on only blurry images. The discussed
analysis of linkage maps was conducted with aim to col-
lect the knowledge about the dataset, to study the useful-
ness of MST for visual place recognition, and in particular
to investigate the influence of blur on performance of scene
classification as well as place recognition on images with
severe blurs. Particularly, for the selected query images to
perform place recognition we analyzed their global descrip-
tors if they are sufficiently rare so that the corresponding
locations could be considered distinctive.

Next, we evaluated state-of-the-art global descriptors for
indoor scene recognition, where the set of scenes was a list
of nine different room types. Table 2 presents experimen-
tal results which were achieved on our dataset. We com-
pared the performances achieved by the SVM with the lin-
ear kernel as well as k-NN. Table 2 presents only the better
result among the results obtained by SVM and k-NN. Clas-
sification accuracies achieved on the basis of ReNet50 and
SVM are noticeably better in comparison to results achieved
on the basis of other deep neural architectures, including
GoogleNet trained on Places365 dataset. The classification
results achieved by k-NN on NetVLAD features are bet-
ter in comparison do results mentioned above. The dis-
cussed global features have been calculated using VGG-
16 + NetVLAD + whitening, trained on Tokyo Time Ma-
chine dataset2 [1]. Although MST did not permit achieving
best results, the certainty of the MST-based classifier’s deci-
sions is bigger. It is worth emphasizing that categorization

2https://www.di.ens.fr/willow/research/netvlad/
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Table 1: Blur detection on images with severe (unknown) blurs.

Seq. with less blur Seq. with more blur

method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

var. Laplacian 0.8589 0.8114 0.7931 0.8015 0.8767 0.8248 0.7635 0.7880
SVM calib. 0.9078 0.8650 0.7931 0.8992 0.9294 0.8761 0.9226 0.8964
LR 0.9194 0.8984 0.8770 0.8870 0.9228 0.9271 0.8992 0.9065
MB-det-CNN [28] 0.8720 0.8412 0.8231 0.8126 0.8866 0.8398 0.8435 0.8480
BD-PR (ours) 0.9206 0.8869 0.9005 0.8934 0.9428 0.9271 0.8992 0.9065

Figure 3: Minimum spanning tree determined on NetLAD descriptor from training subset (plot best viewed in color).

of scenes only on images without blur, i.e. images auto-
matically classified as non-blurry leads to considerable im-
provement of the results. This means that in such a scenario
the algorithm first classifies the acquired image as blurry or
non-blurry and then if the image is blurry it acquires next
one. As we can observe, costly and time consuming de-
blurring images with severe (unknown) blurs did not lead
to better results. The discussed results were achieved using
recently proposed deblurring algorithm [35]. Blur detection
and then deblurring the images contaminated by blurs leads
only to slightly better results, see results in the last row.

Table 3 presents experimental results achieved on im-
ages from another image sequence, on which degree of blur
is higher, see also Tab. 1. In general, all scores are much
lower than scores presented in Tab. 2. Once again, results
achieved on the basis of GoogleNet trained on Place365

dataset are lower in comparison to results achieved on the
basis of VGG19 and ResNet50. As we can notice, scene
categorization only on images classified as non-blur leads
to considerable gain in the classification performance. In
contrast to results obtained on images from the image se-
quence with less noise, the results achieved by algorithm
with blur detection and then deblurring the images contam-
inated by the blur leads to larger gains in the performance
in comparison to the case with deblurring all images. This
more challenging image sequence of images opens up a
number of research opportunities in the field of both blur
detection, deblurring images contaminated by severe (un-
known) blurs. In particular, comparisons of performances
on both sequences can lead to further improvements of al-
gorithms, including algorithms for place recognition.

In last part of experiments we focused on place recog-



Table 2: Performance of room categorization on Seq. with
less blur (NV - NetVLAD).

Acc. Prec. Recall F1-sc.
[A]VGG19+SVM 0.9056 0.9072 0.9056 0.9050
[B]GoogleNet Places365+SVM 0.8939 0.8956 0.8939 0.8936
[C]ResNet50+SVM 0.9428 0.9474 0.9428 0.9434
[D]NV+KNN 0.9583 0.9600 0.9583 0.9583
[E]NV+MST 0.9544 0.9567 0.9544 0.9545
[F ]NV+SVM+BlurDet. 0.9652 0.9687 0.9652 0.9662
[G]NV+SVM+Deblur 0.9528 0.9570 0.9528 0.9532
[H]NV+SVM+BlurDet.+Deblur 0.9550 0.9585 0.9550 0.9556

Table 3: Performance of room classification on Seq. with
more blur (NV - NetVLAD).

Acc. Prec Recall F1-sc.
[A]VGG19+SVM 0.8111 0.8355 0.8111 0.8095
[B]GoogleNet Places365+KNN 0.8056 0.8165 0.8056 0.8053
[C]ResNet50+KNN 0.8444 0.8574 0.8444 0.8458
[D]NV+SVM 0.8678 0.8796 0.8678 0.8690
[E]NV+MST 0.8522 0.8896 0.8522 0.8566
[F ]NV+SVM+BlurDet. 0.9190 0.9281 0.9135 0.9173
[G]NV+SVM+Deblur 0.8478 0.8655 0.8478 0.8491
[H]NV+SVM+BlurDet.+Deblur 0.8661 0.8832 0.8661 0.8675

nition. As mentioned above, basic idea of current image-
based approaches to place recognition is to search a reposi-
tory of indoor images and return the best match. In the first
phase of this part of the research, we analyzed the perfor-
mance of place recognition on images from the less blurred
sequence using the NetVLAD features. The precision is
the fraction/percentage of retrieved images that are relevant.
The recall is the fraction/percentage of relevant images that
were retrieved. Figure 4 depicts sample precision-recall
plot for one of the rooms. Minimum two query places for
each room with corresponding relevant and irrelevant im-
ages were manually selected for evaluation of algorithms
for visual place recognition.

Figure 4: Precision-recall plots for three query images from
room F104.

Figure 5 depicts precision-recall plots for all rooms us-
ing images from Seq. with less blur. The red horizontal
lines depict the mean Average Precision (mAP) values for
the considered scenes. It can be seen that the performance
of the algorithm is lower for the corridors, see plots in the
first row, while the performance of discussed algorithm is
acceptable for all remaining rooms.

Figure 5: Precision-recall plots for all nine scenes.

First row of Figure 6 depicts query image and then
relevant images, which are sorted from most similar to
less similar. Second row contains example irrelevant im-
ages. The discussed images, except query one, were man-
ually selected taking into account the perceptual similar-
ity/dissimilarity with the query image. Third row shows
some correctly matched query and reference images.

Figure 6: Query image and relevant images (upper row),
irrelevant images (second row), images retrieved using
NetVLAD features.

In the last phase of this part of the research we com-
pared performances of algorithms in place recognition. We
evaluated recognition performance achieved by k-NN (k
set to 3) on netVLAD features with VGG-M as backbone,
MST on netVLAD features with VGG-M as backbone, on-
lyLookOnce (oLN) [8] with VGG-M as backbone, and cor-
relations between Gram matrixes extracted on conv5 3 lay-
ers of VGG-M network. Each of the mentioned above im-
age retrieval methods was evaluated on all images or images
on which no blur has been detected. Table 4 illustrates the
mean Average Precision (mAP) for each of the considered
scenes as well as the mAP scores for all scenes and images
from Seq. with less blur. In last two columns we present re-
sults that were achieved on the basis of the proposed voting.



Table 4: mAP achieved by k-NN (VGG-M, NetVLAD), MST (VGG-M, NetVLAD), onlyLookOnce (VGG-M), correlation
between Gram matrixes (VGG-M) and our voting-based approach, with no blur detection and blur detection (bd.).

room k-NN k-NN+bd. MST MST+bd. oLN oLN+bd. GM GM+bd. voting voting+bd.
Corr. 1 0.8643 1.0 0.8625 0.9377 0.9552 1.0 0.8011 0.9931 0.9425 1.0
Corr. 2 0.5804 1.0 0.5789 1.0 0.8573 1.0 0.9084 1.0 0.6864 1.0
Corr. 3 0.8007 0.9750 0.7945 0.9750 0.8270 0.7667 0.7045 0.7917 0.8629 0.9750
D3A 0.7831 0.6549 0.7836 0.6549 0.8482 0.6913 0.8243 0.7931 0.8336 0.6987
D7 0.8038 0.8193 0.8016 0.8193 0.8083 0.8788 0.8985 0.9859 0.8698 0.8762
F102 0.7833 1.0 0.7146 1.0 0.9406 1.0 0.8559 1.0 0.8329 1.0
F104 0.8704 0.8547 0.8504 0.8537 0.8483 0.8543 0.6687 0.9103 0.8652 0.9004
F105 0.8819 1.0 0.8813 1.0 0.9123 0.9167 0.7737 0.7421 0.9172 1.0
F107 0.7238 0.8772 0.7238 0.8772 0.7663 0.8600 0.4711 0.5184 0.7620 0.8551
mAP 0.7880 0.9090 0.7768 0.9020 0.8626 0.8864 0.7674 0.8594 0.8414 0.9228

In general, blur detection permits to achieve consider-
able better mAP scores, c.f. results in the last row in
Tab. 4. Comparing results achieved by k-NN operating on
netVLAD features with VGG-M as backbone, we can ob-
serve that thanks to blur detection, considerable gains in the
mAP scores can be obtained.

As we can notice, the discussed scores vary considerably
depending on the room category. The proposed correlation
between Gram matrixes, which are extracted on conv5 3
layers of VGG-M network, achieved better mAP scores in
comparison to scores of k-NN in room #2 (corridor), and
rooms #4, #5 and #6. As in the case of the k-NN, blur de-
tection allows to achieve far fetter results. It is worth not-
ing that onlyLookOnce is quite resistant to motion blur as
gains in mAP scores when using blur detection to skip im-
ages with blur are relatively small. It transpired that knowl-
edge about room category is essential as confidence of place
recognition in long and narrow corridors with similar and
repetitive scene content is much smaller. MST-based anal-
ysis of neighbors with respect to coherence of global de-
scriptors, together with information about image noise as
well as room category can improve the performance of place
recognition. As we can observe in Tab. 4 the use of such in-
formation in the voting engine permits to achieve the best
performance of place recognition in terms of mAP.

5. Conclusions
In this work we introduce a challenging dataset for blur

detection and visual place recognition. The RGB images
were acquired by a humanoid robot in nine rooms. We
present a novel real-time algorithm for blur detection on
images with severe (unknown) motion blur and demonstrate
experimentally that it outperforms recent algorithms. Ow-
ing to using a computationally cheap neural backbone for
regional feature extraction it can be executed in real-time
on embedded devices, including recently introduced by In-
tel device for visually impaired. Local features that are cal-
culated on salient CNN-based regional representations are
fed to calibrated classifiers in order to estimate the blur

intensity. We evaluate potential of several global descrip-
tors for scene classification and demonstrate experimentally
that blur detection permits to achieve superior accuracies in
room recognition. We propose an algorithm for place recog-
nition that on the basis of two most relevant images, which
are selected by two best methods established dynamically,
determines the final most relevant image. We demonstrate
experimentally that such an approach to visual place recog-
nition permits achieving superior mean average precision.
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