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Abstract. This paper presents an approach for evaluating multiple color
histograms during object tracking. The method adaptively selects his-
tograms that well distinguish foreground from background. The variance
ratio is utilized to measure the separability of object and background
and to extract top-ranked discriminative histograms. Experimental re-
sults demonstrate how this method adapts to changing appearances of
both object undergoing tracking and surrounding background. The ad-
vantages and limitations of the particle filter with embedded mechanism
of histogram selection are demonstrated in comparisons with the stan-
dard CamShift tracker and a combination of CamShift with histogram
selection.

1 Introduction

This work addresses the issue of on-line selection of discriminative color features
during object tracking. Feature selection is a process of mapping the original data
into more effective features [1]. If features with little discrimination capabilities
are selected, even a good algorithm can lead to poor tracking performance. On
the other side, if discriminative features are selected the tracking system can be
simplified and thus a limited number of CPU cycles can be sufficient. The most
tracking methods operate using only a fixed set of features that are determined in
advance. As stated in [2][3], comparatively little work has been done in building
tracking systems, which can select most discriminative features on-line. In their
work [4], Shi and Tomasi have pointed out that discriminative features are just
as equally important as good tracking algorithms.

Selecting a low-dimensional discriminative feature set can improve tracker
performance. The goal of dimensionality reduction is to preserve most of the
relevant information of the original data according to some optimality criteria.
Methods such as principal component analysis (PCA), independent component
analysis (ICA) and linear discriminant analysis (LDA) are exemplars of algo-
rithms finding a mapping between the original feature space and a lower di-
mensional feature space [5]. These methods involve feature transformation and
create a set of transformed features rather than a subset of the original features.
In work [3] feature extraction is achieved by PCA and the number of dimensions
is determined by the pre-defined proportion of eigenvalues. Weights are assigned
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to each pixel and the mean-shift algorithm [1][6] is utilized to perform tracking.
The variance ratio is employed to evaluate the degree of the salience for the fore-
ground in the likelihood image. The main limitation of this approach is that some
visual information from the original image can be lost by the projection. The
work [2] also uses the likelihood image to combine feature spaces and to select
better ones. A method for evaluating several feature spaces while the tracking
process proceeds is proposed. It selects the best feature space among candidates
that are constructed by different linear combinations of the three color channels
from the RGB color space. The method utilizes the previous frame as the train-
ing frame to perform a feature selection and then utilizes the current frame as
the test frame for foreground-background classification. The features are ranked
on the basis of a variance test for the distinctiveness between object and back-
ground. Improved tracking performance to standard mean-shift based tracking
algorithm has been reported. However, the creation of 49 likelihood images is
time consuming.

The importance of the background appearance for tracking has been empha-
sized in other work [7]. This algorithm maintains a pool of discriminant functions
each distinguishing an object pattern against the background patterns that are
currently relevant. A searching for the region that best matches the targets and
simultaneously avoids background patterns seen previously is embedded in this
algorithm. Combining both labeled and unlabeled data is utilized in discrimi-
nant expectation maximization (D-EM) algorithm [8] to automatically select a
good color space. The basic idea of D-EM is to identify some similar samples in
the unlabeled set to grow the labeled data set and then to apply a supervised
technique on such enlarged labeled set. Both background and foreground are
represented by mixtures of Gaussians.

In work [9] a dynamic switching between five predetermined color spaces
takes place in order to improve the performance of face tracking. The selection
of color space is done using the ratio of flesh probability pixels within the internal
and external face windows with concentric location.

Traditional appearance based representations construct appearance models
from examples in training data sets and then utilize such models to track the
object of interest. Color histograms [10] that are invariant to some degree of
viewpoint change are often used to construct appearance models. Appearance
based representations can be very useful in construction of fast and effective
tracking systems [11][12][6][13]. For example, the scale invariant feature trans-
form (SIFT) [14] employs a histogram of gradient that is scale and rotation
invariant.

Recent work on on-line selection of discriminative features for tracking as well
as the success of appearance methods in tracking inspired us to base our tracking
method on color histograms. We employ a selection algorithm that maintains a
pool of histograms to select histograms yielding more discriminative power. A
pool of histograms assigning the various number of bins to each of the color
component of the utilized color space is maintained. Our contribution to on-line
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selection of discriminative features is a method which allows to select the most
appropriate color histograms in the current context.

The rest of the paper is organized as follows. The next Section contains a
description of evaluating feature discriminability. Section 3. is devoted to object
tracking. In Section 4. we outline CamShift based tracking with feature selection.
In Section 5. we present all ingredients of our probabilistic tracker with adaptive
feature selection and report results which were obtained in experiments. Finally,
some conclusions follow in the last Section.

2 Evaluating Feature Discriminability

At the beginning of this section, we show how the log likelihood ratios are com-
puted. The feature space will be presented as the second topic. A description of
feature discriminability ends this section.

2.1 Likelihood ratios of foreground and background histograms

A variety of parametric and non-parametric statistical methods can be utilized
to represent color distributions of homogeneous colored areas. The histogram
is the oldest and most widely applied non-parametric density estimator. It is
computed by counting the number of pixels in a region of interest that have
given color. The colors are quantized into bins. This operation allows similar
color values to be clustered as single bin. By normalizing the histogram by the
number of elements in it we form the discrete probability density representing
the given object. Methods using histograms techniques are effective only when
the number of bins can be kept relatively low and when sufficient data amounts
are in disposal. Histogram based methods are only suitable for low dimensional
data spaces because as the number of dimensions expand, the number of bins
should grow exponentially.

Given a foreground histogram and a background histogram, the log-likelihood
ratio for a pixel with color u is given by [3]:

L(u) = log
max(p(u), δ)
max(q(u), δ)

, (1)

where δ is a very small number, whereas p(u), q(u) represent the discrete proba-
bility density of color pixels in the foreground and background, respectively. Col-
ors that are shared by both foreground and background have values L(u) which
tend towards zero. The likelihood image can be computed by back-projecting the
ratio for each pixel in the image. Then the salient region in object of interest can
by identified by pixels with high likelihood ratios. Such regions, extracted on the
basis of different features can be employed to extract a binary mask identifying
the object.
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2.2 Feature space

The color histograms are usually extracted through assigning to each color chan-
nel a fixed number of bits, determined a priori. Such approaches ignore the fact
that both foreground and background appearance undergo changes as the tar-
get moves. The ability to distinguish between object and background can be
insufficient when histograms assigning each color channel a fixed number of bits
have been chosen. A color histogram with specific combination of bins for each
color channel and possessing good discrimination capabilities for tracking a car
in front of green background can perform poorly when colors in the background
change their values.

In our approach we maintain identical number of total bins in all candidate
histograms. The set of candidate histograms is composed of linear combinations
of bin numbers assigned to color channels. In our implementation the RGB color
space is utilized and the number of histogram bins m is set to 512. With this
histogram length and assuming that the number of bins for each color channel
can take the values 2b, where b = 0, 1, ..., 5, we can construct a pool of candidate
histograms. Table 1. presents a set of candidate histograms that was utilized
in this work. Given a pixel at position xi, the bin index of 1D histogram is
computed as follows:

idx = cR(xi) + cG(xi) ∗mR + cB(xi) ∗mR ∗mG (2)

where the function cj(x) : <2 → {1, ...,mj} associates the value of pixel at
location xi to bin number, j ∈ {R,G,B}, whereas R, G, B denote color channels.

Table 1. Number of bins assigned to each color channel in the set of candidate his-
tograms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mR 8 4 4 8 16 16 8 2 16 16 1 1 16 32 16 32

mG 8 16 8 4 4 8 16 16 2 16 16 32 32 16 1 1

mB 8 8 16 16 8 4 4 16 16 2 32 16 1 1 32 16

2.3 Feature discriminability

The foreground and background pixels are sampled using center-surround ap-
proach in which an internal rectangle covers the object, while a larger surround-
ing rectangle represents the background. Following the suggestion in [2], the
grade of the salience for the foreground and the likelihood image can be ex-
pressed by the variance ratio:

VR(L; p, q) =
var(L; (p+ q)/2)

var(L; p) + var(L; q)
(3)
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where var(L; a) =
∑
i a(i)L2(i)− [

∑
i a(i)L(i)]2. The log likelihood images asso-

ciated with features of high variance ratio correspond to good features in terms
of foreground and background separability. On the basis of the variance ratio we
extract top-ranked discriminative histograms.

3 Object Tracking

There are, generally, two types of tracking algorithms: deterministic and proba-
bilistic. The mean-shift algorithm and CamShift are the most famous determin-
istic tracking algorithms. They may be trapped in local minima and generally
can not recover from temporary failure. This problem can ameliorate proba-
bilistic methods built on particle filters. They achieve robustness to clutter and
occlusion by maintaining multiple hypotheses over the state space. At the be-
ginning of this section we describe the CamShift algorithm. The second part of
this section is devoted to particle filtering.

3.1 CamShift

CamShift tracking algorithm is based on a robust non-parametric technique
called mean-shift to seek the nearest mode of probability distribution. The
searching starts from the final location in the previous frame and proceeds itera-
tively to find the nearest mode. The value of each pixel in the probability image
represents the probability that the pixel belongs to the object of interest. The
object probability density image P (x, y) is extracted through thresholding the
log likelihood image.

The mean location of the distribution within the search window is computed
using moments [15][12]. It is given by:

x1 =

∑
x

∑
y xP (x, y)∑

x

∑
y P (x, y)

, y1 =

∑
x

∑
y yP (x, y)∑

x

∑
y P (x, y)

(4)

where x, y range over the search window. The eigenvalues (major length and
width) of the probability distribution are calculated as follows [15][12]:

l = 0.707
√

(a+ c) +
√
b2 + (a− c)2, w = 0.707

√
(a+ c)−

√
b2 + (a− c)2 (5)

where

a = M20
M00
− x2

1, b = 2M11
M00
− x1y1, c = M02

M00
− y2

1 , M00 =
∑
x

∑
y P (x, y),

M20 =
∑
x

∑
y x

2P (x, y), M02 =
∑
x

∑
y y

2P (x, y).

The algorithm repeats the computation of the centroid and repositioning of
the search window until the position difference converges to some predefined
value, that is, changes less than some assumed value. Relying on the zero-th
moment M00 the CamShift adjusts the size of the search window in the course
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of its operation. It requires the selection of the initial location and size of the
search window. The algorithm outputs the position, dimensions, and orientation
of object undergoing tracking. It can be summarized in the following steps [12]:

1. Set the search window at the initial location (x0, y0).

2. Determine the mean location in the search window (x1, y1).

3. Center the search window at the mean location computed in Step 2, set the window
size to zero-th moment M00.

4. Repeat Steps 2 and 3 until convergence.

3.2 Particle Filtering

The effectiveness of object tracking in image sequences has been greatly improved
with the development of particle filtering. The particle filter is an algorithm
for estimating the posterior state of a dynamic system over time where the
state cannot be measured directly, but may be estimated at the current time-
step t. Particle filters are attractive for nonlinear models, multi-modal, non-
Gaussian or any combination of these models for several reasons. They utilize
imperfect observation and motion models and incorporate noisy collection of
observations through Bayes rule. The ability to represent multimodal posterior
densities allows them to globally localize as well as relocalize the object of interest
in case of temporal failure during tracking. Particle filters are any-time because
by supervising the number of samples on-line they can adapt to the available
computational resources.

Two important components of each particle filter are motion model p(xt |
xt−1) describing the state propagation and observation model p(zt | xt) de-
scribing the likelihood that a state xt causes the observation zt. Starting with
a weighted particle set S =

{
(x(n)
t−1, π

(n)
t−1) | n = 1...N

}
approximately distrib-

uted according to p(xt−1 | z1:t−1) the particle filter operates through predicting
new particles from a proposal distribution. To give a particle representation
S =

{
(x(n)
t , π

(n)
t ) | n = 1...N

}
of the posterior density p(xt | z1:t) the weights of

particles are set to π
(n)
t ∝ π

(n)
t−1p(zt |x(n)

t )p(x(n)
t |x(n)

t−1)/q(x(n)
t |x(n)

t−1, zt). When
the proposal distribution from which particles are drawn is chosen as the distrib-
ution conditional on the particle state at the previous time step, the importance
function reduces to q(x(n)

t |x(n)
t−1, zt) = p(x(n)

t |x(n)
t−1) and the weighting function

takes the form π
(n)
t ∝ p(zt | x(n)

t ). This simplification leads to a variant of a
particle filter, Condensation [16]. From time to time the particles should be
resampled according to their weights to avoid degeneracy [17].

4 CamShift Based Tracking with Feature Selection

The tracking algorithm we present here follows the idea of selection of discrim-
inative features on-line, which is presented in [2]. In this section we examine
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a selection algorithm to determine how well each histogram distinguishes ob-
ject from background in the current frame. The feature selection algorithm is
embedded in CamShift based tracking system.

The CamShift algorithm is utilized to find the estimate of the 2D object
location of the object in the frame. Using the estimated object location as well
as an object mask we extract all candidate histograms. Afterwards, we select the
top-ranked discriminative histograms on the basis of the variance ratio. The best
three histograms are used to extract the likelihood images for the next frame.
Using such likelihood images we extract the compound likelihood image, which
is a simple weighted average. After thresholding the compound image we get the
binary image. The compound image is subjected to CamShift.

The algorithm iterates through frames and chooses new sets of discriminative
histograms. All candidate histograms representing both background and fore-
ground are adapted over time. To avoid model drift the histograms are adapted
using linear combination of current observed histograms, the histograms from
the last frame as well as histograms from the first frame. The accommodation
coefficients were determined experimentally under assumption that the object
appearance will not change drastically over the tracking sequence. The set of
features used for tracking changes while the tracking process proceeds. Figure 1.
depicts some probability images corresponding to the best and worst pair of fore-
ground and background color histograms, in terms of foreground and background
separability.

Fig. 1. Probability images of foreground/background and corresponding histograms
(frame #50 in the sequence of images demonstrated in Fig. 2). The probability images
and histograms for the most discriminative feature are in upper row. The images and
histograms for least discriminative feature are in bottom row.

The images from middle row of Fig. 2. illustrate the failure of standard
CamShift algorithm. The standard CamShift algorithms operate using only a
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fixed set of three histograms and do not change this pre-selected set while the
tracking process proceeds. During tracking in varying illumination conditions
the tracker is affected by similar background color, leading to tracking failure.

#2 #11 #165 #180

Fig. 2. Face tracking in varying illumination conditions using CamShift. Raw color
images (top row), object probability images-no feature selection takes place (middle
row), object probability images-feature selection (bottom row).

The tracker with histogram selection detects which colors in the model are
similar to colors in background and tries to choose the histograms that allow
for better foreground/background separation. This property can be observed in
Fig. 3. We see that during tracking under illumination changes, frame #165 in
Fig. 2., the tracker adapts to changing appearances of both tracked object and
the background. Our algorithm continues the tracking whereas the standard
CamShift with pre-selected histogram pool suddenly loses the object.

Figure 3. shows how the selection of the best histogram in sequence of images
from Fig. 2. evolves over time. For most frames of the sequence the algorithm
selects the histogram number zero, see Tab. 1., which assigns the equal number
of bins to all color channels. In several frames the algorithm selects thirteen pair
of histograms. The selection mechanism supports the tracking and allows the
object model to adapt to current conditions and background distractions.

5 Probabilistic Tracking with Feature Selection

In our approach we consider only the location d = (x, y) in the image coordinate
system, the window scale s and the histogram number as the state variables to
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Fig. 3. Number of the best histogram for tracking versus frame number.

be estimated. One way to model the transition of the state is using a random
walk which can be described by

xt+1 = xt + η. (6)

A Gaussian noise N(0, ν2), where ν2 is typically learned from training sequences,
has been added to the first three state variables, whereas the evolution of the
histogram number in such a hybrid state particle filter was modeled using a
probability distribution over possible histogram numbers. Such a choice was
motivated by observation that the frame to frame position differences in our test
sequences are not too large.

The observation model must favor candidate object locations close to the true
object locations as well as favor histograms yielding better separability between
foreground and background. We therefore need to consider the object probability
in the object window given the state of the particle. An iterative mode-seeking
in the form of the mean-shift algorithm can be applied to shift the particles to
high weight areas [18][19].

The kernel based methods of density estimation construct an estimate of the
true density distribution through placing a kernel function on each sample. The
estimate of the posterior distribution p(xt | zt) with kernel K can be formulated
as follows:

p̂(xt | zt) =
N∑
n=1

Kh(xt − s(n)
t )π(n)

t (7)

where Kh(xt − s(n)
t ) = 1

Nhd
K(xt−s(n)

t

h ), and h is the kernel bandwidth. For
the radially symmetric kernel we have K(xt − s(n)

t ) = ck(‖xt − st‖), where c
is a normalization constant which makes the integral K(xt − s(n)

t ) to one, and
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k(r) = k(‖xt − st‖) is called the profile of the kernel K. In our particle filter we
employ the Epanechnikov kernel that is defined as:

KE(x) =
{

1
2c
−1
d (d+ 2)(1− ‖x‖2) 0 ≤ ‖x‖ ≤ 1

0 ‖x‖ > 1 (8)

Given a particle set and the associated weights {π(n)
t }Nn=1, the particle mean

is determined by

m(s(n)
t ) =

∑N
i=1Hh(s(n)

t − s(i)
t )π(i)

t s(i)
t∑N

i=1Hh(s(n)
t − s(i)

t )π(i)
t

, (9)

where h(r) = −k′(r) is in turn a profile of kernel Hh. It can be shown that the
mean-shift vector m(x)−x always points toward steepest ascent direction of the
density function.

The choice of bandwidth h is of crucial importance in kernel based density
estimation. A small value can generate a very ragged density approximation
with many peaks, while a large value of h can produce over-smoothed density
estimates. In particular, if the bandwidth of the kernel is too large, significant
features of the distribution, like multi-modality can be missed.

The mode-seeking continues searching until a maximum number of iterations
has been reached or until the Euclidean distance between the corresponding
modes in the last two iterations is below an empirically determined threshold.
We scale down the kernel bandwidth at each mean-shift iteration in order to
concentrate on the most dominant modes. Following mode-seeking, the most
dominant mode is extracted on the basis of weighted average over all particles
within the kernel. The tracking scheme can be summarized as follows: p(xt−1 |
zt−1) dynamics−−−−−−→ p(xt | zt−1) measurement−−−−−−−−−→ p(xt | zt) mean−shift−−−−−−−−→ p̂(xt | zt).
Each particle can only change its location during mean-shift iterations. The
following observation model is utilized:

p(zt |xt) = (1.0− exp (−λ1VR2))× (1.0− exp (−λ2Pr2)) (10)

where VR denotes the variance ratio and Pr is the mean probability in the object
window.

To test our probabilistic tracker we performed experiments using various test
sequences. Experimental results that are depicted in Fig. 4. indicate that due
to its Monte Carlo nature, the particle filter better handles confusions that are
caused by similar colors in the background. Both CamShift and probabilistic
tracker were initialized with a manually selected object region of size 20x20 in
frame #2799.

The algorithms were implemented in C/C++ and run on a 2.4 GHz PIV PC.
The average number of mean-shift iterations per frame is 2.9. The tracker runs
with 60 particles at frame rates of 12-13 Hz. All experiments were conducted on
images of size 320x240.
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#2800 #2810 #2866

Fig. 4. The results of tracking using CamShift (top row) and particle filter (bottom
row).

6 Conclusions

We have presented an approach for evaluating multiple color histograms dur-
ing object tracking. The elaborated method adaptively selects histograms that
well distinguish foreground from background. It employs the variance ratio to
quantify the separability of object and background and to extract top-ranked
discriminative histograms. The superiority of CamShift based tracker using the
histogram selection over the traditional CamShift tracking arises because the
variance ratio when applied to log likelihood images, which are computed on
the basis of various candidate histograms, yield very useful information. Our
algorithm evaluates all candidate histograms to determine which ones provide
better separability between foreground and background. By employing the his-
togram selection, the modified CamShift can track objects in case of dynamic
background. The particle filter with the embedded selection of histograms is able
to track objects reliably during varying lighting conditions. To show advantages
of our approach we have conducted several experiments on real video sequences.
Currently, only RGB space is used. The performance of the visual tracker could
be much better if other color spaces such as HSI could be utilized within this
tracking framework.
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