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Abstract

This paper presents the application of a kernel particle
filter for 3D body tracking in a video stream acquired from
a single uncalibrated camera. Using intensity-based and
color-based cues as well as an articulated 3D body model
with shape represented by cylinders, a real-time body track-
ing in monocular cluttered image sequences has been real-
ized. The algorithm runs at 7.5 Hz on a laptop computer
and tracks the upper body of a human with two arms. First
experimental results show that the proposed approach has
good tracking as well as recovering capabilities despite us-
ing a small number of particles. The approach is intended
for use on a mobile robot to improve human robot interac-
tion.

1 Introduction

A large research area within computer vision is con-
cerned with tracking humans. A rather coarse model of
the human body is usually adopted in surveillance appli-
cations or for recognizing large-scale activities. Obviously,
the recognition of small-scale activities that are related to
movements of individual body parts requires a finer hu-
man body model. For example, the ability of robot com-
panions to recognize hand gestures is of crucial importance
for human-robot-interaction as it allows humans to interact
with the robot in a more natural way.

Our goal is to realize human-robot interaction using a
mobile robot with limited computational power. This lim-
itation and the need to track in real-time the body config-
urations of humans with arbitrary clothing rules out ap-
proaches using stereo cameras. Such approaches require
image disparities to successfully carry out the computa-
tionally expensive depth calculation (e.g., [12]). A dif-
ferent approach is taken in model-based tracking methods
performing a probabilistic integration of image cues (see,
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e.g., [16, 18, 4, 17, 13, 9]). However, extracting 3D body
configurations from 2D image data is connected with com-
plicated modeling as well as feature extraction difficulties.
Matching a complex self-occluding model to a cluttered
scene is an inherently difficult task and depending on the
number of image cues and their discrimination capabilities
it is only feasible with multiple cameras [2].

In our approach, we focus on estimating in real-time the
pose of the upper body on the basis of a 3D model of the
human body and monocular uncalibrated video. Motions of
body segments in depth, towards or away from the camera,
cannot be tracked precisely with a monocular camera, but
as long as tracking is not lost, a very rough estimate of the
body configuration is still available. Different from other
approaches we use a larger number of cues. Their combi-
nation produces results that are less dependent on the back-
ground, enabling tracking from onboard a mobile robot. A
skin color model is used for detecting a person’s hands and
face. For the detection of the limbs we utilize edge, ridge,
and color cues.

Tracking the 3D model over time is realized using a ker-
nel particle filter which avoids the need for a huge number
of particles to represent probability distributions in high di-
mensional state space. On the basis of mean shift based
mode-seeking the dominant mode is determined and then
used to select the particles for the next time step. A linear
motion model is used for propagating a fraction of the par-
ticles while uniform random noise is used for the other part.
Special emphasis is placed on the scalability of the frame-
work to enable the real-time estimation of a 3D body con-
figuration. First experimental results demonstrate the suit-
ability of our approach to support human-robot interaction
using a mobile robot equipped with a standard laptop.

The paper is organized as follows: Section 2 gives an
overview of related work and Section 3 gives a system
overview. The 3D model and the image processing are
described in Section 4. The next section describes kernel



based particle filtering. The configuration of the overall
framework to enable real-time tracking and the results ob-
tained are the topic of Section 6. The paper concludes with
a summary in Section 7.

2 Related Work

Tracking of a human in 3D with limited computational
resources on a mobile robot was already described in 1996
by Kortenkamp et al. [10]. This approach used depth infor-
mation from a stereo camera to track the 3D body model.
In more recent approaches, skin color is often used as an
additional cue to get the 3D hand position and its pointing
direction (e.g., [12]).

As the depth calculation from stereo images causes high
computational costs and relies on the presence of image dis-
parities, the use of monocular cameras as basis for estimat-
ing the 3D body configuration is a promising alternative.
Often multiple cameras are used in order to cope with body
self-occlusions (see, e.g., [4, 17, 14, 13, 9]). While some of
these approaches use a body model and aim to find match-
ing features in the image [4, 9] other approaches are taking
an opposite direction and construct in a probabilistic way a
body model out of body parts detected in the image [17, 13].
However, all approaches are computationally intensive pro-
hibiting their use for human-machine interaction.

The use of multiple cameras in a task consisting in
tracking the human body from a mobile robot is techni-
cally difficult. Only few authors have addressed the prob-
lem of 3D full-body tracking using a single uncalibrated
camera [16, 15, 18]. One such approach for tracking a
detailed 3D human body model was proposed by Siden-
bladh [16, 15]. It is based on a variety of gray-level image
cues and a particle filter for tracking the human motions. To
cope with the huge search space, motion priors are used to
predict the 3D body configuration prohibiting the tracking
of unconstrained motions. Following Sidenbladh’s work,
Sminchisescu used a more precise modeling of the 3D body
model and a complex parameter space exploration [18], but
the computational time required prohibits its use for real-
time tracking. To cope with a large parameter space, kernel-
based Bayesian filtering has been proposed to track objects
or isolated body parts in the 2D image space (e.g., [7, 3]).

3 System Overview

An overview of our algorithm for matching 3D object
features of a generic human model and 2D image features
extracted from input images is depicted in Fig. 1. The algo-
rithm has been inspired by Sidenbladh’s work [15] and uses
similar edge and ridge cues. In addition to these cues, we
developed color-based cues to support the detection of the

face, hand, and clothing. Different from Sidenbladh’s ap-
proach [15], we calculate weighted limb-specific probabili-
ties and use a kernel particle filter for probabilistic tracking.
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Figure 1. Outline of the algorithm.

One iteration of our algorithm can be described as
follows: Input images are acquired with an uncalibrated
monocular color camera (1) and preprocessed. The re-
sults (2) are used for matching configurations of the body
model with the current image. The outcome (3) is a prob-
ability distribution which is further explored in multiple it-
erations (4) of the mean shift algorithm. That leads to the
identification of different modes (5) of the underlying prob-
ability distribution from which a single mode (6) represent-
ing the most likely human body pose is selected as output
for subsequent recognition algorithms. This mode is also
used as input (7) for the next time step of the particle fil-
ter. Particles generated from this mode are then - partly
after applying a motion model (8) - disturbed (9) to give an
estimation of body configurations for the next time step. Fi-
nally, the next picture is acquired (1), preprocessed (2), and
the propagated configurations are evaluated (3) on the new
image.

4 Modeling the Appearance of Humans

We use an articulated 3D body model consisting of cylin-
ders with ellipsoid cross sections. This representation gen-
erates the best results when the cylinder is observed by
the camera from the side. The kinematic structure is com-
pleted by defining individual joint angle limits which model
the physical constraints of the human body. Our model of
the upper body with two arms has 14 degrees of freedom,
whereas a coarse model of the whole body needs at least 34
degrees of freedom.



The 3D body model is back-projected into the image
plane using a pinhole-camera model. This yields an approx-
imate representation of the 3D body model consisting of a
2D polygon in the image plane for each limb. The estima-
tion of a single pose is done by combining likelihoods for
eachlimb ! =1, ..., L of the body model using up to four
image cues ¢ € {E, R, C, S}, where F stands for the edge
cue, R is the ridge cue, C is the mean color cue and S de-
notes the skin color cue. The image processing is briefly
discussed in the following:

1) Edge Cue: The edge cue [15] uses the first partial deriva-
tives that are sensitive to strong changes in contrast. For
recognizing human body parts the presence of edges is most
important, not their magnitude. Therefore all images with
partial derivatives have been scaled with a nonlinear nor-
malization function. This function has been used to smooth
low magnitude edges stemming from textured backgrounds
and to emphasize stronger ones. The edge cue provides an
accurate match for the position of a limb by comparing the
angle of the edge gradient [9,(z), 9,(z)]T with the esti-
mated limb angle o, which has been obtained from the 3D
model. This is done form = 1, ..., My feature points z(")
positioned equally spaced on the limb boundaries, where
2™ = [z,9]" denotes the location of one pixel in the im-
age plane. The response of such an edge filter is:

@™y = 8,z ™)e(a) - 0,(2™)s(a), (1)

where s(a) stands for sin(a) and ¢(«) stands for cos(a).
The filter response for the whole limb is calculated by aver-
aging over the Mg feature points:
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2) Ridge Cue: The ridge cue [15] is utilized to find elon-
gated structures of a specified thickness in the image. As
it depends on the size of the limbs in the image, it will
only provide appropriate results if the observed limb is
in a particular distance to the camera. Consequently, the
correct resolution level p in the Gaussian image pyramid
is selected based on the current distance of the limb to
the camera. The cue suppresses point-like edge features
by searching for edges parallel to the expected limb an-
gle o and missing edges in perpendicular direction. This
is achieved by evaluating the normalized second partial
derivatives [0 (z), 0% (z), 8% (2)]T at m = 1,..., Mg
feature points (") equally distributed on the main limb axis
(superscript m is omitted):
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where sc(a) stands for sin(a) cos(a). The filter response
for the whole limb [ is computed by averaging over all M r
feature points:
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The ridge cue gives a coarser estimate of the limb position
than the edge cue, but produces less false maxima.

3) Mean Color Cue: The mean color cue models the ap-
pearance of limbs using an adapted color model for each
limb. The algorithm uses B; polygons on each limb [. The
mean color value is calculated trough averaging over the
color values of the M¢ pixels in the polygon b positioned
in the back-projected limb. The number of polygons B; and
their positions are chosen on the basis of the limb type. To
calculate the filter response, the mean color C;(z(") of
each polygon b at position z(""¥) is compared to the adapted
mean color C’t(f’ll) of this polygon on limb [ using the 1.2
norm in the utilized RGB color space:
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The filter response for the limb [ is calculated from:
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To deal with varying illumination conditions we adapt the
current mean color values according to the mean color
values C;_1(z(")) extracted on the basis of the back-
projection of the best mode in the last time-step ¢t — 1:

) —g.C @)y +1-p)-c™) @

where (3 is an adaptation factor. This cue reliably finds the
coarse limb position as color is a very discriminative cue.

4) SKkin Color Cue: The skin color cue uses a skin color
segmentation in rg color space providing a binary segmen-
tation image [5]. The skin color model allows to find the
position of the hands and the head. Similar to the mean
color cue, all Mg pixels (™) in a polygon on the limb are
analyzed. The filter response for the limb [ is calculated
using the ratio of pixels being classified as skin or non-skin:
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where ¢(z("™)) = 1 if the pixel belongs to the skin class and
¥(z™) = 0 if not. In varying illumination conditions the
skin color model can be adapted over time.



The edge, ridge, mean color, and skin color cues generate
a separate filter response for each limb. The filter responses
are converted into likelihoods using the following Gaussian
weighting function:
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where the standard deviations o, are derived from the vari-
ability of the responses of each utilized cue c. To account
for the variations in the number of cues per limb /V; the cue
likelihoods are scaled according to a balancing factor. As-
suming that the cues and limbs are independent the overall
likelihood for the pose is calculated as:

L
pvilx)= I [[eed™ o)

ce{E,R,C,S} I=1

This observation model describes the likelihood that a
body state x; causes the observation y,.

5 Probabilistic tracking

The idea of using the mean shift mode seeking within a
particle filter is relatively new and until now it has mainly
been utilized in experiments consisting of tracking objects
or isolated body parts in the 2D image space (e.g., [7, 3]).
In this section we briefly introduce the kernel particle filter
and demonstrate how it is applied for tracking in the high-
dimensional space associated with 3D human modeling.

5.1 Standard Particle Filtering

The particle filter (PF) is a probabilistic framework
to propagate the conditional density to the next step [1].
Given in the d-dimensional space R?a particle set S, =
{s\™ 1N and the associated weights {w.™, }2_,, which
are approximately distributed according to p(x;—1 | Y;—1),
where Y;—1 = {yg,...,¥,_1} is the history of observa-
tions up to time ¢ — 1, the PF operates through predicting
new particles over time. To give a new particle representa-

(n)

tion {stn), w;™ }N_, of the posterior density p(x; | Y) the

weights of the particles are set to w!™ = p(y, |s{™) with
w normalized to Zgzl w§"> = 1. In the specific variant of
sequential importance sampling known also as CONDEN-
SATION [8], a re-sampling step using the new weights is
applied to avoid degeneration of the particle based represen-
tation. In high-dimensional search space, even if a particle
escapes out of a local minimum, the probability of hitting
the low-weight surroundings is much larger than that of hit-
ting a region with high weights. This is due to the huge
increase of volume with radius that results in the need for a
large number of particles which in turn increases computa-
tion time.

5.2 Kernel Particle Filtering Using Mean
Shift

In order to perform tracking with a small number of par-
ticles, an iterative mode-seeking in the form of the mean-
shift algorithm is applied to shift the particles to high weight
areas. For this purpose, the true density distribution is es-
timated through placing a kernel function on each sample.
The estimate of the posterior distribution p(x; | Y;) with
kernel K can be formulated as follows:

N
pxe | Yo) = Kn(xe — st )™ (11
n=1

(n
where K}, (X —s,(fn)) = w7 K( thhsf ), and h is the kernel

bandwidth. For a radially symmetric kernel we have K (x;—

s,E")) = ck(||x¢ — s¢||), where c is a normalization constant

which makes the integral K (x; — s,E")) to one, and k(r) =
k(||x; — s¢||) is called the profile of the kernel K. In our
application we use the Epanechnikov kernel:

TegMd+2)(1—|x?) o< x| <1

Given a particle set S; and the associated weights

{w™}N_, the particle mean is determined by

2 Hils” = sy
N n % i
S Hist” = s

m(s\™)

(13)

where h(r) = —k'(r) is in turn a profile of kernel H},. Itcan
be shown that the mean shift vector m(x) — x always points
toward steepest ascent direction of the density function [3].
Following the shifting of particles using the mean shift vec-
tor, the particle weights wﬁ”) are recomputed. Additionally,
areweighting is performed to guarantee that each mean shift
iteration follows the correct posterior gradient [3].

The choice of the kernel bandwidth A is of crucial im-
portance in kernel based density estimation and is usually
scaled down at each mean shift iteration in order to concen-
trate on the most dominant modes. In our implementation,
the initial bandwidth hy is scaled at every iteration ¢ accord-
ingtoh = 0.8% hy where the value 0.8 has been determined
empirically, similar to [3].

The mode-seeking continues until a maximum number
of iterations has been reached or until the Euclidean dis-
tance between the corresponding modes in the last two it-
erations is below an empirically determined threshold. Fol-
lowing mode-seeking, the most dominant mode is obtained
by a weighted averaging over all particles in a window cen-
tered at the peak of the posterior. This mode serves as es-
timate of the current body pose, see also Fig. 1. The back-
projection of this pose into the image plane is utilized as
reference model for updating the mean color using Eq. 7.



For propagating the particles from the dominant mode to
the next time step we combine two different strategies: A
linear motion model is used for propagating a fraction of
all particles, the remaining particles are subject to random
propagation. For each of the two strategies the cumulated
probabilities of the particles in the posterior are calculated
to decide on the ratio of particles for the next time step. A
minimum percentage of random propagation is enforced to
guarantee the ability to recover from tracking failures. The
velocity in the linear motion model is estimated on the ba-
sis of the location of the best mode in time ¢ and its corre-
sponding location in time ¢ — 1. Particles propagated with
the motion model are subject to uniform noise with variance
0.25 D while uniform noise with variance D is used for the
rest of the particles. The values of the joint angle variances
D have been determined experimentally based on the cam-
era view and the application domain. If the propagation re-
sults in an invalid body configuration, the propagation step
is repeated until a valid body pose is obtained. For the mean
shift iterations, the initial bandwidth is chosen as hg = D,
the window for determining the most dominant mode is set
to 0.25 D, which has been determined empirically.

6 Results

For the intended application of recognizing pointing ges-
tures with a camera mounted on a mobile robot we track
only the upper body and the two arms. In our current body
model the hands are fixed to the lower arms and the head
is fixed to the torso leading to a model with 14 degrees of
freedom. This reduction of the model complexity is accept-
able for tracking a human that is oriented roughly towards
the camera and interacts with a mobile robot.

As cues we use Ciorso = {E,C}, Cupperarm =
{E> R> C}, Clowerarm — {E> R} and Chand = Chead = {S}
with Mg = 20 and Mg = 30. To calculate the mean color
cue we use By, = 3 and Byorso = 4 polygons. We set
Dgrm = [22°,20°, 35°,25°] for the three shoulder joint an-
gles and the elbow and D;,,s, between 1°-3° for rotation
and 1em-5¢cm for translation. These parameters have been
found to be an acceptable tradeoff between detection capa-
bilities and computational load.

Currently the body model has to be initialized manually
before starting the tracking. No occlusion test is performed
to speed up processing. Matching difficulties can arise if
the hands occlude the head or point in the direction of the
camera. In such situations tracking may temporarily fail.
However, the recovering capabilities of the particle filter al-
low the algorithm to continue the broken tracking when the
occlusion ends.

The algorithm was tested on a Sony Vaio VGN-S5HP
(Pentium M 740, 1.73 GHz) with an SONY DFW VL500
FireWire camera acquiring images of size 320 x 240. A

configuration with 150 particles and 2 mean shift iterations
provides an estimate of the 3D hand position at a framerate
of 7.5 Hz. Figure 2 shows an example 3D hand trajectory of
a human performing pointing towards an object of interest.
The rather coarse estimate of the 3D hand position due to
the small image resolution is sufficient for tracking a point-
ing gesture referencing an object in the scene.
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Figure 2. 3D hand trajectory (blue), ground
truth data (red) and corresponding images

With the configuration described above, we carried out
experiments using an image sequence recorded at 7.5 Hz
with 330 frames of size 320 x 240. A human user slowly
performed a total of six pointing gestures with the right
hand: three to the side and three to an object in front of
the human at roughly 45°. Ground truth was obtained from
a marker-based Lukotronic AS 200 motion capturing sys-
tem [11] by placing active markers on the shoulders, the
elbows, and on each wrist ensuring good visibility during
pointing. The marker-based tracking data was manually
aligned to the image sequence and interpolated to account
for the different recording frequencies. For each image the
‘correct’ body pose represented by the markers was used
as the reference to calculate the reconstruction error during
monocular tracking. For the evaluation we used the ground
truth wrist position of the right arm. This is compared to
the position of the wrist joint connected to the lower arm
limb of the body model, as our focus is on tracking pointing



gestures and not on the exact arm configuration.

After manually fitting the body model to the camera im-
age monocular tracking is started. The reconstruction error
for one frame is calculated as Euclidean difference between
the marker-based wrist position and the end of the lower
arm. The overall tracking error is the cumulated error nor-
malized by the number of frames. We evaluated the track-
ing quality of the probabilistic approach by averaging over 5
runs for each configuration. The mean and variance listed in
Table 1 demonstrate that the tracking quality improves with
the number of particles used. For all configurations track-

Side pointing  Angular pointing
Mean | Var. Mean Var.
#Part. | #1Iter. || [mm] | [mm] || [mm] [mm)]

1000 3 775 | 42.1 1242 46.5
500 3 759 | 46.7 | 141.4 60.8
250 3 94.1 | 55.7 | 156.6 77.1
150 2 116.0 | 70.6 | 253.8 | 216.0

Table 1. Mean and variance of tracking error.

ing of lateral movements is possible and a rough estimate
of the hand position is available. For pointing in an angular
direction, tracking works well only if at least 250 particles
are used. In order to enable real-time tracking at 7.5 Hz, we
used only 2 iterations to maximize the number of particles
covering the 14 DOF parameter space. However, with 150
particles tracking non-lateral movements turned out to be
not robust. Ongoing work aims at improving the algorithm
to increase the number of particles.

7 Summary

We presented a probabilistic framework which utilizes
a variety of image cues to track a human in 3D in a
videostream acquired from a single uncalibrated camera.
Robust tracking is achieved by the use of color cues that
are combined with ridge and edge cues. For evaluation
a monocular image sequence depicting pointing gestures
has been recorded together with marker-based ground truth.
The results demonstrate that the kernel particle filter al-
lows tracking of human motions in cluttered environments
as long as no large self-occlusions occur.

Using 150 particles and only 2 iterations, the algorithm
runs at 7.5 Hz and can be used for coarse tracking of a ges-
turing human. Consequently, with a standard camera and
a laptop computer mounted onboard a mobile robot, our
approach can be used for gesture recognition to improve
human-robot interaction. We currently aim at improving
the robustness and speed to use this approach for resolving
multi-modal object references [6] given by a human inter-
acting with a mobile robot through speech and gesture.
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