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Abstract

One of the acclaimed algorithms that is used to solve combinatorial graph
problems is ant colony optimization (ACO). In this article, we focus on a
novel extended model of the pheromone that is responsible for storing col-
lective knowledge. The presented two-dimensional pheromone is able to ac-
commodate more information that is extracted from feasible solutions that
can be used to improve the search of a solution space. The idea is positively
evaluated on TSP and VRP problems, achieving better results as compared
to the original algorithm. Since it is a universal concept, it can be applied
to any single-objective problem that is solvable by ACO.

Keywords: ant-colony optimisation, metaheuristics, two-dimensional
pheromone

1. Introduction

In the optimization algorithms that iteratively generate feasible solutions
to problems to be solved, the continued improvement of the results stems
from some incorporated learning process. Most typically, an elitist approach
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is represented, which means that any information is only extracted from top
solutions with the aim of directing a search toward the better regions of a
solution space. In the case of the ant colony optimization algorithm (ACO),
the model that is used to store the information that is extracted from the
candidates is a very simple structure; the most popular variants learn only
from those solutions with the lowest costs [1, 2, 3, 4].

In our previous research [5, 6], we showed that it was possible to improve
the results that were obtained by ACO by using more solutions in the learning
process that were based on planned-leveraging HPC to run a specific imple-
mentation of distributed ACO. Following this idea, we decided to pursue
this research further and encode more information into the pheromones that
were used in ACO (thus, increasing their dimensionality). In other words,
each edge would contain significantly more information than before, helping
in the realization of complex optimization tasks. Moreover, the algorithm
should be able to make better use of computational resources and increase
the diversity of a search, resulting in improved performance as compared to
the reference algorithms. Finally, a possible future work is the application of
the idea of a multi-dimensional pheromone for the solving of multi-objective
optimization problems by ACO-type algorithms [7, 8, 9].

This article is constructed as follows. First, we discuss the background
of the presented research. Then, we present the details of our proposed
modification to the ant colony optimization pheromone. After this, a series
of conducted experiments is described, including a discussion of their results.
A summary of the article concludes the paper.

2. Research background

In order to picture the context for this research, it is worth presenting
some material in two areas — the ant colony optimization algorithm, and the
automatic configuration of the algorithms.

2.1. Ant Colony Optimization

The ant colony optimization algorithm was originally proposed by Marco
Dorigo [10] as an algorithm for solving the traveling salesman problem (TSP)
and was later presented as a metaheuristic algorithm by Dorigo and Caro [11].
It was inspired by the way that ants share their knowledge in their colonies
in nature.



In its basic form, the algorithm can be used to solve single-objective
optimization problems, which are represented as a graph of vertices; the edges
between them have assigned costs with defined restrictions and requirements
that describe those paths that can be feasible solutions to a stated problem.
The solution with a minimum cost (defined as a function of the costs of its
component edges) is an optimal solution.

The algorithm consists of subsequent iterations in which a population of
ants (agents) generates candidate solutions. These solutions are created in a
step-by-step manner and steered by a probabilistic decision rule (see Eq. 1)
that determines the selection of the next vertex. This is based on two sources
of information — the heuristic attractiveness, and the pheromone trail. The
former is a value that indicates how promising a given edge looks when it
comes to obtaining a solution with a low cost, while the latter is a value that
represents the quality of those solutions that the algorithm has already found
that contain this edge.

Let us introduce the variables that are present in the formula of the
probabilistic decision rule. In iteration ¢, the probability of selecting the
edge between vertices ¢ and j by ant k£ is dependent on the current value of
the pheromone trail of this edge 7;;(¢) and its heuristic attractiveness 7;;(¢).
The relative weight of these two elements is controlled by the powers of «
and (. The probability is calculated with regard to other possible moves Ay.
The formula is defined as follows:

()l (1) i
e €A
phi(t) = { Sieayaniw = (1)

0 otherwise.

The valid solutions that have been created by the ants are used further to
update the pheromone trail. The original algorithm modifies the pheromone
values after each iteration, applying pheromone evaporation (controlled by
p € [0,1) — a pheromone-persistence coefficient) and using all m feasible
solutions that have been generated in the iteration as given in the following
formula:

k=1

Given Ly, the cost of a given solution, and a constant (), the solution
updates the pheromone by a value that is defined as follows:



(3)

Ak L% if k-th ant uses edge (i, 5)
le — :
0 otherwise.

Many modifications have been proposed to outperform the original al-
gorithm; our area of interest has mostly focused on the pheromone and its
update process. As opposed to the original version that is described above,
later variants have usually proposed strongly limiting the numbers of solu-
tions that update the pheromone. The elitist ant system (EAS, [1]) simply
uses a limited number of solutions with the lowest costs. The rank-based ant
system (ASRank, [2]) acts in a similar fashion as EAS, but the impact of a
specific solution is weighted by its rank among the solutions so that the best
solution leaves the strongest trail. Finally, the max-min ant system (MMAS,
[3]) uses a mere single best solution. Incidentally, this algorithm also intro-
duced an idea that has gained a lot of popularity: imposing pre-established
bounds on the values of the pheromone trail.

Overall, the most popular variants of ACO mainly extract knowledge
from the most promising solutions. Although this is a popular approach in
optimization algorithms, it ignores the potential of learning from most of the
solutions; these are simply ignored, causing a waste of computational effort
[5].

Given the topic of our research, we should also mention a related idea of
adding an additional dimension to the pheromone (described in [12]), which
stores information about customer blocks and their exact locations from the
VRP solutions. Even though there is a common ground among the concepts,
it is important to note that the idea that is presented in [12] is strictly
associated with a specific problem type being solved, whereas our goal is to
propose a general problem-independent extension of the pheromone.

2.2. Automatic algorithm configuration

Metaheuristic optimization algorithms are often parameterized, which
makes it difficult to objectively evaluate their performance. With expo-
nentially growing search spaces for the multiple parameters that control the
behavior of the algorithm, finding optimal values for them is a difficult hyper-
optimization task per se. Typically, only a limited number of configurations
can be tested. A simple approach to this problem is often based on selecting
a few possible values of the parameters and evaluating all of the combina-
tions. One of the publicly available software applications that is aimed at



the problem of automatic algorithm configuration in a more advanced way
is irace [13]. This algorithm implements iterated racing procedures, includ-
ing the iterated F-race algorithm (which, among others [14, 15, 16], have
been successfully used to automatically configure multi-objective ACO algo-
rithms [17, 18, 19]). Given an algorithm with the definitions of its parameters
and the instances of a problem to be solved, the software sifts through the
parameter space looking for those configurations (parameters values) that
statistically perform better than the others.

3. Two-dimensional pheromone for ant colony optimization

As discussed earlier, most of the popular variants of the ACO algorithm
use very limited numbers of solutions (often just a single one [3]) to update
the pheromone in a single iteration. Our previous research showed, however,
that this algorithm may benefit from learning from more solutions — espe-
cially when larger colonies are in use [5]. The concept that we would like to
propose is based on the idea that the algorithm could be further improved
by introducing a more composite model of a pheromone that could contain
information from more feasible solutions.

The standard model of the pheromone is a single value of a trail that
is maintained for each edge. The extended structure, in turn, could store
multiple values; hence, the name “two-dimensional pheromone” (the first
dimension being the index of the value, and the second — the value itself).
The values would be updated independently by different groups of solutions.
Such a modification requires some parts of the algorithm to be appropriately
adjusted. Adapted approaches need to be proposed for the steps around
the pheromone, such as its update process and its use in the ants’ decision-
making processes. An initial concept and a preliminary test of this idea were
presented in [20].

3.1. Update process

The pheromone trail is the mechanism in the ant colony optimization
algorithm that is responsible for learning from the feasible solutions that
have been found thus far. In the original algorithm, this is modeled as a
single value per edge in the problem graph. The values are modified by two
mechanisms: evaporation, and increase; the former (also called “extinction”)
consists of decreasing each value by some fraction (extinction) after each
iteration, while the latter also happens after each iteration and is responsible
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Figure 1: Grouping by part from evaluation vs. part from index

for increasing the trail by some particular value (increment) for those edges
that were part(s) of the selected solution(s).

Our proposal introduced multiple values in lieu of a single one for each
edge; this required the above mechanisms to be adjusted accordingly. The
extinction mechanism was simply applied to all of the values in a similar
manner as with the standard algorithm, while the other mechanism was
transformed in a more complex way. Our main goal was to extract informa-
tion from a larger set of solutions that was created in each iteration. Having
n values of the trail for each edge, these solutions are then divided into n
groups according to their cost, and each group modifies one part (a single
value) of the pheromone. Two strategies were proposed for the grouping of
the solutions: PartFromiIndex (PFI), and PartFromEvaluation (PFE)
(see Fig. 1).

In PartFromIndex, the solutions are sorted by their costs and then
divided into equinumerous (or as equinumerous as possible) groups. In
PartFromFEvaluation, the range that is determined by the solution costs
is divided into equal subranges, and the subrange into which a specific solu-
tion falls determines to which group it is assigned.

The update process then acts as follows:

1. For each group of solutions, the increment value is divided by its size
in order to maintain the same amount of pheromone deposition.

2. For each edge in each solution in the group, the current value that is
stored in the assigned part of this edge’s pheromone is increased by the
value that was calculated in the previous step.



3.2. Interpretation variants

In the original ACO algorithm, the pheromone trail that is modeled as
a single value for each edge is used during the solution’s construction (as
presented in Formula 1). In the proposed two-dimensional model, there are
multiple values instead of a single one. In order to again obtain a single value
that can be used in the formula, we initially propose three variants of the
interpretation of the extended pheromone structure:

e ExponentialRandom (ER) — a randomized choice of one of the available
values in which the first value (i.e., the one that is updated by the best
solutions) is selected in half of the cases, while each subsequent value
is selected half as often as the previous one (with the exception of the
last value — assuring that the probability adds up to 1).

e WeightedCombination (WC) — the values in the pheromone are com-
bined by a weighted product with the weights assigned as follows: the
first value is assigned a weight of 0.5, and the weight of each subsequent
value is half the size of the weight of the previous one (again, with the
exception of the last value so that all weights add up to 1).

e PairingCombination (PC) — this variant can be described as a multi-
step procedure (also see Fig. 2 for reference):

— values are paired up from outside toward center (note: in each
pair, one value is updated by better solutions and another by
worse solutions);

— for each pair, average and difference are calculated;

— difference is multiplied by index of pair (as presented in figure),
which makes difference most reinforced for outer pair — average is
then added to this value;

— having calculated such values for all pairs, we finally compute their
average;

— this average is then ensured to be not larger than established
mazxValue of pheromone and not smaller than smallest value of
pheromone that is possible in given iteration (which can be calcu-
lated as maxPhV alue * (1 — extinction)iterationsSoFary
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Figure 2: Pairing and indexing in PC method

These three variants were used in the first part of the experiments that
are described below. For the next part of the experiments, two additional
methods were proposed:

e ExponentialRandomMax (ERM) — a modification of the Exponential-
Random interpretation variant where the variant can be described as
follows: a random value points to the index of the pheromone from
which we take the value (according to the distribution as is described
for that variant); then, we select the maximum of the values that are
stored in the pheromone up to the selected index in this variant.

e ExpectedCombination (EC) — this is also a multi-step procedure that
has its origins in the idea of treating a set of pheromone values as a
kind of probability distribution of how often a solution with this edge
falls into the group that is represented by each value and calculating a
sort of expected value of the edge’s evaluation based on it:

— Each value (part) of the pheromone has a corresponding score
assigned to it (between 0 and 1) — assuming that the index-
ing of the parts starts from 0 for the part that is updated by
the worst solutions, then the score of each part is (index +
0.5) /twoDimPheromoneSize.

— We want to treat the values as a distribution so that they are
normalized to add up to 1 (divided by their sum).

— The expected score is calculated as a sum of the multiplications
of the normalized value and assigned score.

— The obtained value (between 0 and 1) is then adjusted to range
between the minimum and maximum values of the pheromone.



4. Experimental evaluation

To evaluate the proposed modifications, we have extended the frame-
work that was described in our previous article [20]. For the second part
of the experiments, new variations of the two-dimensional pheromone were
implemented, and the code was adjusted to be compatible with the irace
software for the purpose of the automatic search of the algorithm’s param-
eters space (including the parameters of the two-dimensional pheromone).
The experiments were based on the framework’s ability to solve TSP and
CVRP problems, noting that no problem-specific local optimizations were
applied to the created solutions that aligned with our objective to evaluate
the algorithm as a problem-agnostic metaheuristic.

Some of the parameters were set to the same constant values in all of the
experiments (described below):

e iterationsNums — number of iterations of algorithm — 200;
e minPhValue — minimum value of pheromone — 0.001;

e maxrPhV alue — imposed maximum value of pheromone — 0.999.

4.1. Selective experiments

The first set of experiments was conducted for two larger TSP instances
from TSPLIB (namely, kroA100 and tsp225) with the following values of
the algorithm parameters (all possible combinations of values for the various
parameters):

e antsNum — number of ants in colony — 20 or 50 for kroA100, and
20, 50, or 100 for tsp225;

e o — power of pheromone in probabilistic decision rule — 2.0 or 3.0;

[ — power of heuristic value in probabilistic decision rule — 2.0 or 3.0;

e pheromoneType — choice between standard “one-dimensional” and
experimental two-dimensional pheromones — Basic or TwoDim;

e pheromoneDelta — values used for two parameters: pheromone update
increment, and pheromone extinction fraction — 0.01, 0.05, or 0.1;



e updateNum — number of best solutions used to update pheromone —
1 (only for Basic), half of antsNum, or -1 (meaning all solutions from
iteration).

For the configurations with pheromoneType set to TwoDim, a few more
parameters are necessary:

o twoDimensional PheromoneSize — number of values associated with
single edge;

e interpretationType — one two-dimensional pheromone-interpretation
variant —FExponential Random, Exponential RandomM ax, WeightedCombination,
PairingCombination, or ExpectedCombination;

e updateType — one two-dimensional pheromone-update type — PartFromFEvaluation
or PartFromlIndex.

In order to evaluate various configurations of the algorithm, we compared
them with the average global best results that were found over 20 repeats.
The top-30-performing configurations are listed in Tab. 1 for kroA100 and
Tab. 2 for tsp225.

Based on this, we can make the following observations: most of the con-
figurations had the largest-possible numbers of ants and o = 2.0, g = 3.0,
pheromoneDelta = 0.05. In both tables, a configuration with a Basic
pheromone appeared only once (in the 16th and 30th positions, respectively);
this was a configuration with a single ant that updated the pheromone and
the other values that were set in the same way as was described in the previ-
ous point. TwoDim configurations usually use half of the population to up-
date the pheromone. InterpretationType set to Exponential Random domi-
nated the table, while PairedCombination also showed up in multiple rows,
but WeightedCombination appeared only once. PairedCombination was
usually combined with smaller TwoDim pheromone sizes and the whole pop-
ulation that updated the pheromone. UpdateType set to Part FromEvaluation
was more popular than PartFromlIndex. The dominance of the smaller or
larger TwoDim pheromone sizes was not clear (even though the first config-
uration used 20 in both tables).

The execution time of the algorithm was not our main concern at this
point, and the code was not written in the most efficient way. Still, let
us just briefly note that the configurations that used the two-dimensional
pheromone took up to two-times longer than the standard algorithm with the
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Table 1: Average global-best results from 20 repeats (kroA100)

Ants a [ Pheromone Inc. Ext. UN TDS InterpT. UpdateT. Avg. score
50 2 3 TwoDim 0.1 0.1 25 20 ER PFE 22168.95
50 2 3 TwoDim 0.1 0.1 25 4 ER PFE 22238.63
50 2 3 TwoDim 0.1 0.1 25 10 ER PFE 22272.90
50 3 3 TwoDim 0.1 0.1 25 10 ER PFE 22273.12
20 2 3 TwoDim 0.05 0.05 10 4 PC PFI 22311.09
50 2 2 TwoDim 0.05 005 -1 20 ER PFI 22319.00
50 2 3 TwoDim 0.05 005 -1 20 ER PFE 22341.16
50 2 3 TwoDim 0.05 005 -1 20 PC PFI 22345.67
50 3 2 TwoDim 0.05 0.05 25 10 ER PFE 22406.36
20 3 3 TwoDim 0.05 0.05 10 10 ER PFE 22418.92
50 2 3 TwoDim 0.05 0.05 25 10 ER PFE 22422.77
20 2 3 TwoDim 0.1 0.1 10 10 ER PFE 22442 .58
50 2 3 TwoDim 0.05 0.05 25 20 ER PFE 22450.34
20 2 3 TwoDim 0.05 0.05 10 4 ER PFE 22478.21
50 2 2 TwoDim 0.05 0.05 25 4 ER PFE 22482.15
50 2 3 Basic 0.05 0.05 1 - - - 22499.86
50 3 3 TwoDim 0.01 0.01 -1 10 PC PFE 22505.25
50 3 3 TwoDim 0.1 0.1 25 20 ER PFE 22509.47
50 2 3 TwoDim 0.1 0.1 25 10 ER PFI 22509.93
50 2 3 TwoDim 0.05 0.05 25 4 ER PFE 22516.57
50 2 3 TwoDim 0.05 0.05 25 10 ER PFI 22517.97
50 3 2 TwoDim 0.1 0.1 25 4 ER PFE 22518.19
20 2 3 TwoDim 0.05 005 -1 4 PC PFI 22521.77
50 3 2 TwoDim 0.05 0.05 25 20 ER PFE 22538.59
50 2 3 TwoDim 0.05 005 -1 20 PC PFE 22539.33
50 2 2 TwoDim 0.1 0.1 -1 4 PC PFE 22543.72
50 3 3 TwoDim 0.05 005 -1 20 WC PFI 22561.96
50 2 3 TwoDim 0.05 0.05 25 4 PC PFE 22563.30
50 2 2 TwoDim 0.1 0.1 25 4 ER PFI 22564.82
20 2 3 TwoDim 0.05 0.05 10 10 ER PFE 22571.30

Inc. - increment; Ext. - extinction; UN — updating solution number; 2DS — two-

dimensional pheromone size; InterpT. — interpretation type; UpdateT. — update type;
PC - pairing combination; ER - exponentigljrandom; WC — weighted combination; PFE
— part from evaluation; PFI — part from index



Table 2: Average global-best results from 20 repeats (tsp225)

Ants a [ Pheromone Inc. Ext. UN TDS InterpT. UpdateT. Avg. score
50 2 3 TwoDim 0.05 0.05 25 20 ER PFE 4116.97
100 2 3 TwoDim 0.05 0.05 50 20 ER PFE 4127.85
100 2 2 TwoDim 0.1 0.1 -1 4 ER PFI 4137.80
100 2 2 TwoDim 0.1 0.1 50 4 ER PFE 4140.03
100 2 3 TwoDim 0.1 0.1 50 10 ER PFI 4143.05
100 2 2 TwoDim 0.05 0.05 50 10 ER PFE 4147.36
100 2 3 TwoDim 0.1 0.1 -1 4 PC PFI 4147.72
50 2 3 TwoDim 0.05 0.05 25 4 PC PFI 4149.90
100 2 3 TwoDim 0.05 0.05 50 10 ER PFI 4152.27
100 2 3 TwoDim 0.05 005 -1 10 PC PFI 4152.33
100 2 3 TwoDim 0.1 0.1 50 4 ER PFE 4153.28
100 2 2 TwoDim 0.05 0.05 50 20 ER PFI 4153.60
50 2 3 TwoDim 0.05 0.05 25 4 ER PFE 4154.06
100 3 3 TwoDim 0.05 0.05 50 10 ER PFE 4154.74
100 2 3 TwoDim 0.05 0.05 50 20 ER PFI 4155.69
100 2 3 TwoDim 0.05 0.05 50 10 ER PFE 4158.35
100 2 3 TwoDim 0.05 005 -1 20 ER PFI 4158.78
100 2 3 TwoDim 0.05 005 -1 10 ER PFI 4159.71
100 2 3 TwoDim 0.05 0.05 50 4 PC PFI 4159.78
100 2 3 TwoDim 0.05 0.05 50 4 ER PFE 4160.54
50 2 3 TwoDim 0.05 0.05 25 10 ER PFE 4162.32
100 2 2 TwoDim 0.05 005 -1 10 ER PFI 4162.72
50 2 3 TwoDim 0.05 005 -1 10 ER PFI 4164.55
100 2 3 TwoDim 0.05 005 -1 4 PC PFE 4164.56
100 2 3 TwoDim 0.05 005 -1 20 PC PFI 4164.71
50 2 3 TwoDim 0.05 005 -1 10 ER PFE 4165.18
100 2 2 TwoDim 0.1 0.1 50 10 ER PFI 4166.39
50 3 3 TwoDim 0.05 0.05 25 20 ER PFE 4168.79
100 2 3 TwoDim 0.1 0.1 50 10 PC PFI 4169.98
100 2 3 Basic 0.05 0.05 1 - - - 4171.44

Inc. - increment; Ext. - extinction; UN — updating solution number; 2DS — two-

dimensional pheromone size; InterpT. — interpretation type; UpdateT. — update type;
PC - pairing combination; ER - exponentiglyrandom; WC — weighted combination; PFE
— part from evaluation; PFI — part from index



same number of ants. As we can see for both instances, however, there were
configurations with the two-dimensional pheromone and a smaller number
of ants that performed better than the standard algorithm (the fifth and
first positions, respectively), and the execution time of these configurations
was actually around 75-85% of the corresponding (and nota bene — worse
performing) configurations that used the basic pheromone structure.

Overall, we can see that introducing another dimension to the pheromone
and updating the pheromone by more than just a single top solution could
lead to better obtained results by the ant colony optimization algorithm.
Among the tested configurations, the ones that used Exponential Random
and PartFromFEvaluation performed especially well.

4.2. Automatic configuration for TSP

Selective experiments only allow us to test a limited number of configu-
rations, whereas it is valuable to search the parameter space for the values
that give the best results. For this, we used the irace [13] package with
various definitions of acceptable parameters. The common parameters were
configured as follows:

e iterations — constant (200);

e number of ants — constant (100);
e o —range (0.1, 5.0);

e 3 —range (0.1, 5.0);

e pheromoneDelta —range (0.04, 0.1) — common parameter for pheromone
increment and extinction values;

e updateAnts (UN) — integer from range (1, 100) — with exception of
“Single Basic” configuration (described below).

The parameters for the scenarios with the two-dimensional pheromone
were configured as follows:

e twoDimPhSize — even integer from range (2, 20);
e updateType — choice of (PartFromEvaluation; PartFromIndex).

In order to test the various heterogeneous scenarios separately, we ran
the following independent runs:
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e Basic — with pheromoneType set to Basic;

e SingleBasic — with pheromoneType set to Basic and updateAnts set to
L

e Five scenarios with interpretationType preset to selected value (Ex-
pected, ExponentialRandom, ExponentialRandomMax, Pairing, or Weighted);

e TwoDimAll — with pheromoneType set to TwoDim and getType con-
figured as choice from possible values listed above.

The irace software was configured with its default settings with a few
exceptions. Due to the high variance of the results, we decided to set the
number of instances that were to be evaluated before the first elimination
test to 12 instead of the default 5 (this also set the number of configurations
that were sampled and evaluated at each iteration to 12); also, we set the
number of instances that were evaluated between the elimination tests to 3.
The budget was set to 100,000 seconds (with the exception of the TwoDimAll
scenario, where it was increased to 300,000 seconds).

Since the tuning was limited by the total execution time, we selected a
set of instances with fairly similar sizes. During the search phase, we used
six TSP instances: kroA100, kroB150, kroC100, pr76, pr124, and prl44.
The configurations that were found by irace for each scenario are listed in
Tab. 3. These were then tested on seven other instances: kroA150, kroB100,
kroD100, kroE100, pr107, pr136, and pr152. Since the result of the tuning
was dependent on the training set, we wanted the test instances to be similar
as well. The results that were obtained for the test instances over 20 repeats
are presented as box plots in Fig. 3.
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Table 3: Configurations found by race for TSP

Scenario a I} phDelta UN phType twoDimPhSize updateT interpretationT
Basic 1.3444 4.4230  0.0988 5 Basic - - -
BasicSingle 0.8036 4.1805 0.0523 1 Basic - - -
Expected 0.8264 4.8468 0.0705 6 2D 14 PFE Expected
ExponentialRandom 0.9391 4.4132 0.0643 2 2D 2 PFE ExpRnd
ExponentialRandomMax 0.7453 4.3232  0.0991 29 2D 20 PFE ExpRndMax
Pairing 0.7726  4.9294  0.0929 8 2D 10 PFI Pairing
Weighted 0.7078 4.6913  0.0580 2 2D 8 PFE Weighted
TwoDimAll 0.9285 4.9715 0.0996 15 2D 14 PFE ExpRnd




Looking at the charts, we can see that it is difficult to observe the strong
repeatability of the better or worse performances of the configurations among
the test instances. The Basic scenario resulted in a configuration with five
ants updating the pheromone, but the BasicSingle mostly performed better.
On most of the charts, a few of the configurations with the two-dimensional
pheromone can be seen to have been better than the ones with the basic
pheromone (for the pr152 problem alone, only a single one [ExpRnd| stood
out as being better). In all of the scenarios, irace found fairly similar val-
ues of a and 3. Consistent with the results from the selective experiments
4.1, the Weighted variant did not usually come out well. Furthermore, the
performance of the newly proposed Expected and ExpRndMax variants was
very mixed across the test instances (e.g., ExpRndMax had the best av-
erage for the kroD100 problem). Also consistent with the previous Set of
Experiments 4.1 was the fact that the ExpRnd variant was usually better
than the configurations with the standard version of the pheromone — both
configurations from the ExpRnd and TwoDimAll scenarios. The former sce-
nario was simplified to having 2 ants update the pheromone with a size of 2
(which was significantly different from the configurations that were tested in
the selective experiments 4.1), and the latter was selected to having 15 ants
update the pheromone with a size of 14 (which actually performed better
— mostly). The Pairing variant presented quite good performance as well;
interestingly, is was the only one that combined irace with PFI (similar to
what was observed in 4.1). Out of the proposed variants, Pairing and Ex-
ponentialRandom generally performed the best; additionally, the second one
was also selected in the TwoDimAll scenario.

Thanks to making the code more efficient, we observed a lower time over-
head for the two-dimensional pheromone. For example, one of the best-
performing configurations, the one that was selected in the TwoDimAll sce-
nario, was around 15% slower than the BasicSingle configuration.

4.8. Automatic configuration for VRP

A similar experiment was conducted for VRP with irace. Similar to what
was done for TSP, we again selected a set of instances of fairly similar sizes
for both the training and testing. During the search phase, we used six
TSP instances: kroA100, kroB150, kroC100, pr76, pr124, and prl44. The
configurations that were found by irace for each scenario are listed in Tab.
3. These were then tested on seven other instances: kroA150, kroB100,
kroD100, kroE100, pr107, pr136, and pr152. Since the result of the tuning
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was dependent on the training set, we wanted the test instances to be similar
as well. In the search phase, we used six instances: tail50d, tail50b, CMT4,
M-n121-k7, CMT13, and E-n101-k8. Tab. 4 lists the configurations that
were found by irace. These were then tested on six other instances: tail50c,
tailb0a, CMT9, M-n151-k12, CMT11, and P-n101-k4. Fig. 4 presents the
results that were obtained by these as box plots for the test instances over 20
repeats. Since the number of vehicles in the solutions was always the same
across all repeats and configurations (for every test instance), it was excluded
from the analysis of the solutions cost and the charts only present the total
distance.
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Table 4: Configurations found by irace for VRP

Scenario Q B8 phDelta UN phType phSize updateT interprationT
Basic 1.1457 2.564  0.0834 1 Basic - - -
BasicSingle 0.9957 3.5957  0.0859 1 Basic - - -
Expected 1.1924 3.1466  0.0804 2 2D 20 PFE Expected
ExponentialRandom 2.2521 2.7513 0.0633 36 2D 18 PFE ExpRnd
Exponential RandomMax 1.0863 4.1444  0.0978 38 2D 10 PFE ExpRndMax
Pairing 1.0858 3.6955 0.0613 57 2D 12 PFE Pairing
Weighted 0.4803 4.7727 0.0738 30 2D 12 PFE Weighted
TwoDimAll 1.3649 4.7456  0.0566 24 2D 8 PFE Pairing




In general (here as well), it is difficult to mark the repeatability of the
configurations’ efficiency among the test instances. The Basic scenario re-
sulted in a configuration with just a single ant updating the pheromone,
but BasicSingle led to different values of primarily o and g and mostly per-
formed better. In those scenarios with the two-dimensional pheromone, irace
decided to choose more ants to update the pheromone than for TSP (4.2).
On most of the charts, at least one of the two-dimensional configurations can
be considered to be better than the ones with the basic pheromone (better
results of multiple variants were obtained for the tail50a problem, whereas
minimal or even debatable superiority could be observed on the M-nl51-
k12 and CMT11 problems). As opposed to what was observed for TSP,
diverse values of o and [ were selected for different scenarios. What is more,
ExpRnd did not perform that well; however, newly proposed ExpRndMax
exhibited better performance. The Expected variant again showed unstable
performance across the test instances; however, it gave the best results (on
average) of all of the configurations for the CMT11 problem, for example.
The Pairing variant was represented by two configurations (which emerged
from the Pairing scenario, but also from the TwoDimAll scenario). These
often gave similar results (except for the tail50c problem, where one of them
could be considered to be the best and the other the worst of the tested
configurations). Overall, the configurations that were found by irace and
their qualitative results on the test instances were different from those that
were obtained for TSP (see 4.2). Still, the Pairing variant looked the most
promising here as well; this was also due to the fact that it was selected in
the scenario with an unspecified interpretation type.

As for the execution time of the algorithm, the configuration from the
Pairing scenario was only 10% slower than BasicSingle. This suggests that
the overhead of the two-dimensional pheromone becomes lower when solving
more-complicated problem types, as more computational resources are uti-
lized for the logic of the problem itself (e.g., tracking capacity); therefore,
the core metaheuristic algorithm took proportionally less time.

5. Conclusion

In this article, we have presented and evaluated a modification of the
popular ant colony optimization algorithm — a two-dimensional pheromone
structure. This was first proposed in [20], and our research represents a
significant extension of this work — we have both introduced new variants
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of the pheromone’s behavior and broadened our conducted experiments in
order to assess the idea.

The results of the experiments on multiple TSP and VRP problems that
are presented in this article demonstrate that the ant colony optimization al-
gorithm can benefit from the introduction of a more capacious model of the
pheromone. In the selective experiments 4.1, a series of configurations with a
two-dimensional pheromone overpowered those with a standard pheromone.
Further experiments that were aimed at automatic configuration were per-
formed with irace. Looking at the results, we can see multiple examples
of superiority of the presented idea over the original ant colony optimiza-
tion algorithm with a simple pheromone structure (even though it is diffi-
cult to point to a single best setup of the algorithm with a two-dimensional
pheromone, which is in line with [21]). The most popular (i.e., the best-
performing) variants of the ACO algorithm use just a single top solution
in each iteration from which to learn by updating its pheromone. Having
multiple values instead of a single one for each edge enables the algorithm
to extract knowledge from more solutions and give better results as a result.
As for the execution time of the algorithm, the selective experiments showed
that the overhead of the two-dimensional pheromone can be mitigated by
reducing the size of the colony while still achieving better results than the
standard algorithm. At the same time, we observed that the top-performing
configurations were only 10-15% slower than the standard version when us-
ing the same number of ants in the experiments with irace. The overhead is
not discrediting (especially for those applications where minimizing the exe-
cution time is not crucial) and becomes lower for more-complicated problem
types.

Having widely evaluated the idea of the two-dimensional pheromone on
single-objective optimization problems, we will now aim at adjusting it to
multi-objective optimization problems (this was actually our preliminary
plan, with the idea of increasing the dimensionality of the pheromone in
ACO). In such problems, there are normally a set of solutions (a so-called
Pareto front) that can be treated as being the best instead of just a single
one [22, 23, 24, 25]. Therefore, our intuition is that applying an extended
model of the pheromone could turn out to be particularly effective in the
optimization in multiple dimensions, since it can benefit from the ability to
encode more information in a more complex pheromone structure.
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