Laboratory 3, Collections

Main goal
Students will learn the main data structures of Java programming - collections - their use cases,
performance issues and pitfalls.

Covered topics: Generic classes, wildcards, Generic methods, Primitive wrappers, Autoboxing,
Collection interfaces, implementations, factory method.

Required for the lab
Java types and their sizes, Generic classes, creating, type erasure, sorting algorithms, O(n) notation,
autoboxing.

e add(),get(),size (), remove () of List interface, time and memory cost of
LinkedList and ArrayList implementations

e add(),offer(),poll (), peek(), remove (), methods' contract of Queue interface
e Integer.valueOf () and Boolean.valueOf () implementation details

¢ please compile a class with int, boolean and 1long autoboxing and use
javap —-c classname.class to see how autoboxing is implemented

* type erasure

e (*)what is amortized time cost of ArrayList.add (Object o) operation
(prove using coin method)

Plan

Students will be provided with src/main and src/test code which will contain gaps to fill and
errors to correct. Students have to fix code while not changing the code of tests (unless explicitly asked
to), to make the tests pass. This will need them to investigate the problem highlighted in test
commentary, find appropriate fix, and rerun tests to make sure the fix was correct.

Way of getting a credit for the classes
Students will follow exercises given by teacher. There will be no crediting exam on this classes. There
will be a project after this laboratory.

Literature
1. http://docs.oracle.com/javase/tutorial/collections/

2. http://docs.oracle.com/javase/tutorial/java/generics/

3. Provided source code.


http://docs.oracle.com/javase/tutorial/collections/
http://docs.oracle.com/javase/tutorial/java/generics/

@ We're going to have some fun with lists and maps
@ Lists and maps are basic data structures, and in this context
“Basic” means being a base of everything else

When there exists ng > 0 and ¢ > 0 for which we can say that:
¥n> ng f(n) < c-g(n)

we say that f is big-O g and write f(x) = O(g(x))
When there exists ng > 0 and ¢ > 0 for which we can say that:

Vn > no f(n) > c-g(n)

we say that f is big-Q g and write f(x) = Q(g(x))

When we can say that f(x) = O(g(x)) A f(x) = Q(g(x)) we say
that 7 is Big © g and write:

f(x) = ©(e(x))

® Given g(x) = x2 and f(x) = 3x> + 4 we can say that
f(x) = 0(g(x)).. ..
s Given g(x) = x* and f(x) = 100x? + 4x* we can say that
f(x) = 0(g(x))-. ..
s Given g(x) = 2% and f(x) = 2% + x®* we can say that
fx) = 0(g(x))-. ..
We can also easily say that x? = O(2¥), and x2 = Q(1) but it is
not very interesting. This observation is very weak. We are rather
interested in finding the closest matches.

The most interesting is finding the simple in form, but exact,
match of the function. This match is symbolised by ©.

f(x) = 0(g(x) A f(x) = o(g(x)) = f(x) = O(g(x))
If f(x) = ©(g(x)), it means that f is grows asymptotically as fast
as g.
Sufficient condition for f(x) = ©(g(x)) is:

x—roo

0< lim ‘%‘<oo

We use given notation extensively to describe algorithm time of
execution (and memory consumption). Hence for us (generally):
@ x? is worse than x
@ x is worse than log x
@ 2% is worse than x' and it's bad
@ x! —it's so much, we don't distinguish between x! and 2%,
Those are equally BAD.

@ We often don't distinguish between logarithm and exponential
bases



Programmers also consider worst case (pessimistic) scenarios of
algorithms and their complexity. Some algorithms work very slow
on some special cases of input data. E.g. quicksort, despite of
being O(n - logn) runs at n® time, when in every partitioning
selected pivot divides data to lengths: 1 and rest.

Having that in mind, we can select, for example, heapsort, which
has worst case running time still n-logn

o Allocated as a one block in memory (more “array-ish” than
“list-ish™)

@ Quick “please get me an element at position n" (further
referred to as get): O(1)

@ Slow “please insert element at position n, moving all following
elements to the right” (further referred to as insert): O(n)

8 Slow “please delete element at position n, moving all following
elements to the left” (further referred to as delete): O(n)

@ We analyse amortised cost of operations amortised by their

number.
@ Amortised cost for given f(n) is F(n) that:
_ T
F(n) =
where

T(n)=3 f(x)
x=0

@ All arrays and lists in Java are indexed from 0/1!

@ Quick special-case insert, when for n equal number of
elements, further referred to as append: ©(1), but only when
the underlying array size is N > n+1

@ When ArrayList is full, to perform insert we need to expand
underlying array. We do it by increasing size by twice the
current size.

@ Is really the append operation ©(1)?77

@ For array initialised to 2, in the append operation we have
cost:
1,1,m=211m=41111n=38

where ny is n-th resize cost equals array's size at the moment
of resize.

If we use an accounting method to tell that every operation,
we put additional 2 operations’ time on a special account, for
a later use, we can reuse that time at critical sections of
resizing. Our account state is then:



Operation | Account state
+2
+2

+ |

N -~

—

MO ®WOENS RN AN

Table 1 : Amortised analysis using accounting method

@ In this case we say that operation append on ArrayList is
O(1) and keep in mind that sometimes it can stop our system
for a very long time. So if we want to get overall computation
time fit, we can allow us to expand a very large ArrayList, but
when we are low-latency needers, we might need to search for
a better solution.

@ Allocated as linked list of many objects

@ Every inserted object needs a wrapper object, so the number
of objects in memory are at least twice the number of
elements in list.

e Fast append: ©(1)

@ Fast insert but only when given a preceeding node in the
list.

e Fast delete but under the same conditions as insert

@ Slow get: O(n)

@ Does not need to grow - append is not lagging from time to
time.

o Fast finding element by the key (further referred to as:
lookup): O(1).!

@ Fast putting a key-value pair (further referred to as: insert):
(O(1), pessimitically n = size, when map needs to grow.

@ Fast remove: O(1) (HashMap does not shrink).

@ Values with the same hash stored in LinkedList, collisions may
occur.

"When time is longer, in properly setup map (i.e. number of buckets >
size), it means that collisions occur. This can be the sign of incorrect hash
function.

x.equals(y) = x.hashCode() == y.hashCode()

x.hashCode() == y.hashCode() =4 x.equals(y)

@ Implemented by Red-Black tree.
@ Keys are sorted.

@ Quite good lookup: O(logn)

@ Quite good insert: O(logn)

@ Quite good delete: O(logn)

& Memory consumption: O(n).



