
Applied Java

Daniel Lewandowski, Andrzej Kałuża



Test Driven Development
- software development process

- repetition of a very short development cycle
- add test cases as requirement implementation
- improve code so that the tests pass
- repeat

- focuses more on the implementation of a  feature

- written in a language similar to the one used for 

feature development

- unit tests



TDD anti - patterns

- test cases depend on system state manipulated from previously executed test cases

- dependencies between test cases

- execution order should not be presumed

- interdependent tests can cause cascading false negative

- testing precise execution behavior timing or performance

- testing implementation details

- slow running tests

- building "all-knowing oracles"

- implementation focusing on tests (test - code coupling)



TDD patterns

Unit tests - typically automated tests written and run by software developers to correct behaviour of a 

section of an application (known as the "unit"):

- easy to write

- readable

- reliable

- fast

- truly unit, not integration



Acceptance Test Driven Development

- development methodology

- communication between the business 

customers, the developers, and the testers

- specification by example

- understanding the customer's needs prior 

to implementation

- customers express requirements domain 

language

- a single acceptance test is written from the 

user’s perspective

- writing acceptance tests

Given Credentials entered in a login form

And User registered on the system

When User checks an account balance

Then List of transactions is printed



Behavior Driven Development

- software development process

- encourages collaboration among 

developers, QA and non-technical or 

business participants

- motivates to formalize a shared 

understanding of how the application 

should behave

- understanding requirements

Feature: Subscribers see different sets of stock images based on their 
subscription level

Scenario: Free subscribers see only the free articles
Given Free Frieda has a free subscription
When Free Frieda logs in with her valid credentials
Then she sees a Free article on the home page

Scenario: Subscriber with a paid subscription can access both free and 
paid articles

Given Paid Patty has a basic-level paid subscription
When Paid Patty logs in with her valid credentials
Then she sees a Free article and a Paid article on the home page



JUnit

- simple framework to write repeatable tests

- instance of the xUnit architecture
- Test runner - an executable program that runs tests and reports the test results
- Test case - the most elemental class executes a unit with specified arguments
- Test fixtures - the set of preconditions or state needed to run a test
- Test suites - a set of tests that all share the same fixture
- Test execution -  an individual unit test proceeds as follows:

- setup
- specific code
- teardown

- Test result formatter - produces results in one or more output formats
- Assertions - a function or macro that verifies the behavior (or the state) of the unit under test



Test class contains 
all unit tests for 
Calculator class

@Test annotation 
marks a method as 
a unit test

@DisplayName overwrites a 
message identifying a unit 
tests

assertEquals checks equality of 
expected value and actual value. 
Raises AssertionFailedError 
exception with a given message



@ParametrizedTest marks a unit 
test to be executed multiple times 
with different parameters @CsvSource defines an array of the 

parameters applied to an unit test 

A parameterized unit test with 
arguments for a function 
evaluation and a result verification

An assertion with an 
automatically generated 
message



An exercise



Regular test class

Regular test class

Mocked object have 
the same methods 
as a list. It 
remembers what 
and how is used.

Mocked object pretending to 
be an instance of a list

It can be verified how a 
mocked class was used.



Mocked object pretending to 
be an instance of a list.

Mocked object returns 
“element 0” string when get 
methods is called with any 
integer value.

Verification if get method of 
mocked object was called 
with an integer value 999.

A bit more advanced example 
using custom argument 
matcher.



An exercise



References

- https://en.wikipedia.org/

- https://docs.oracle.com/en/java/

-

https://en.wikipedia.org/
https://docs.oracle.com/en/java/

