Applied Java

Daniel Lewandowski, Andrzej Katuza



Object Oriented Features

Key features

Abstraction
Encapsulation
Inheritance
Polymorphism



Abstraction

Abstraction is the modelling process

- hideimplementation details

- show only essential information to the user

- abstract class is arestricted class that cannot be used to create objects
- abstract method: can only be used in an abstract class

- interface: only methods prototypes (also default implementations)



Encapsulation

Technique of hiding data from users

- object data (fields) should not be directly visible
- object data should be protected from direct modification
- object should expose methods allowing modification

- scope modification
- private - method and field is visible only by an object
- protected - method and field is visible also by child object
- public - method and field is visible by all



Inheritance

In the Java language, classes can be derived from other classes, thereby inheriting fields and methods
from those classes

- Aclass thatis derived from another class is called a subclass (also a derived class, extended class, or
child class)

- Theclass from which the subclass is derived is called a superclass (also a base class or a parent
class).



Polymorphism

Biology:
- anorganism or species can have many different forms or stages
Java

- subclasses of a class can define their own unique behaviors
- and yet share some of the same functionality of the parent class.



An exercise



SOLID principles

SOLID principles were formulated in a response to arising problems with maintaining and developing
complex programs

- Single Responsibility

- Open/Closed

- Liskov Substitution

- Interface Segregation
- Dependency Inversion



Single Responsibility

- class should have a single responsibility

- class should have only one reason to change.

- natural tendency to mix responsibilities (aka features)

- finding and separating those responsibilities is a challenging



Open for Extension, Closed for Modification

class open for extension (i.e. through inheritance)
closed for modification
new functionality without changing the existing code



Liskov Substitution

- substitutability states that if S is a subtype of T, then objects of type T may be replaced with objects
of type S

- subclass must not break superclass contract

- equals and hashCode



Interface Segregation

- client should not be forced to depend on methods it does not use
- larger interfaces should be split into smaller ones



Dependency Inversion

- decoupling of software modules
- must not depend on implementation
- must be based on abstractions



An exercise



References

- https://en.wikipedia.org/
- https://docs.oracle.com/en/java/



https://en.wikipedia.org/
https://docs.oracle.com/en/java/

