Applied Java

Daniel Lewandowski, Andrzej Katuza

Test Driven Development

software development process _
Write a

- repetition of a very short development cycle failing test
- add test cases as requirement implementation
- improve code so that the tests pass
- repeat
- focuses more on the implementation of a feature
- writtenin alanguage similar to the one used for

feature development Make the
. Refactor test pass
- unittests

TDD anti - patterns

- test cases depend on system state manipulated from previously executed test cases
- dependencies between test cases

- execution order should not be presumed

- interdependent tests can cause cascading false negative

- testing precise execution behavior timing or performance

- testingimplementation details

- slow running tests

- building "all-knowing oracles"

- implementation focusing on tests (test - code coupling)

TDD patterns

Unit tests - typically automated tests written and run by software developers to correct behaviour of a
section of an application (known as the "unit"):

- easytowrite

- readable

- reliable

- fast

- truly unit, not integration

Acceptance Test Driven Development

- development methodology

- communication between the business Given Credentials entered in a login form
customers, the developers, and the testers

- specification by example

- understanding the customer's needs prior
to implementation

- customers express requirements domain Then List of transactions is printed
language

And User registered on the system

When User checks an account balance

- asingle acceptance test is written from the
user’s perspective
- writing acceptance tests

Behavior Driven Development

- software development process

- encourages collaboration among
developers, QA and non-technical or
business participants

- motivates to formalize a shared
understanding of how the application
should behave

- understanding requirements

Feature: Subscribers see different sets of stock images based on their
subscription level

Scenario: Free subscribers see only the free articles
Given Free Frieda has a free subscription
When Free Frieda logs in with her valid credentials
Then she sees a Free article on the home page

Scenario: Subscriber with a paid subscription can access both free and
paid articles

Given Paid Patty has a basic-level paid subscription

When Paid Patty logs in with her valid credentials

Then she sees a Free article and a Paid article on the home page

JUnit

- simple framework to write repeatable tests

- instance of the xUnit architecture
- Test runner - an executable program that runs tests and reports the test results
- Testcase - the most elemental class executes a unit with specified arguments
- Test fixtures - the set of preconditions or state needed to run a test
- Testsuites - a set of tests that all share the same fixture
- Testexecution - anindividual unit test proceeds as follows:
- setup
- specific code
- teardown
- Testresult formatter - produces results in one or more output formats
- Assertions - a function or macro that verifies the behavior (or the state) of the unit under test

Test class contains
all unit tests for
Calculator class

=]
0]
w0

TN @DisplayName overwrites a
@Test annotation iR message identifying a unit

@DisplayName

marks a method as e tests
a unit test MR
calculator = new Calculato
assertEquals checks equality of expected: 2, calculator.add(a: 1, 'b: 1), message
expected value and actual value.
Raises AssertionFailedError
exception with a given message -
g =) 8B B
v & Test Results 73 ms
C Ca1cu]atorTegts> 73 ms void add(int first, int I, 1nt
1+1=2 34 ms calculator = new Calculato
v & add(int, int, int) 39 ms assertEquals(expectedResult, calculator.add(f
0+1=1 35ms + + + 3
1+2=3 2ms
49 + 51 = 100 1 ms
I 1+ 100 =101 1ms

{s) B B
v & Test Results 73 ms s
v & CalculatorTests 73ms o
1+1=2 34 ms
v @ add(int, int, int) 39ms
0+1=1 35m
1+2=3 2m
49 + 51 = 100 1ms calculator = new Calculato
- 1+ 100 =101 1ms assertEquals(expected calculator.add(a b: 1 message

@ParametrizedTest marks a unit VRt
test to be executed multiple times @CsvSource
ity @it PEFEmEErE @CsvSource defines an array of the
parameters applied to an unit test
An assertion with an
automatically generated
A parameterized unit test with void add{int Tirst, int I, Int message
arguments for a function calculator = new Calculato

evaluation and a result verification assertEquals(e tedResult, calculator.adc

An exercise

Regular test class
-

Regular test class E R RN be an instance of a list

.

(gt v Mocked object pretending to
I

mockedList = mock class
Mocked object have mockedList. z
the same methods i e s e
as a list. It
remembers what
and how is used. It can be verified how a
ify(mockedList).add mocked class was used.

rify(mockedlList

Verification if get method of
mocked object was called
with an integer value 999.

mocked

mockedList.get(a

out.printl

mockedList. ac

y (mockedList

fy(mockedList

1St =

mockedList.get

get

Mocked object pretending to
be an instance of a list.

Mocked object returns
“element 0” string when get
methods is called with any
integer value.

A bit more advanced example
using custom argument
matcher.

An exercise

References

- https://en.wikipedia.org/
- https://docs.oracle.com/en/java/

https://en.wikipedia.org/
https://docs.oracle.com/en/java/

