Laboratory 4, Reflection

Students will learn about:

Nested, inner and anonymous classes — how to use them, why they can be useful in Java
(increasing encapsulation, multiple inheritance, substitute for lambdas)

Object lifecycle — references, initializing classes, java.lang. ref package, memory
model and memory leaks in Java, garbage collection

Flyweight design pattern

Reflection mechanism in Java — how to use, writing custom annotations, common use
cases

Basics of object-oriented programming in Java
Difference between nested (static), inner (non-static) and anonymous classes
Purpose and capabilities of different kinds of nested classes
Flyweight design pattern — motivation and general idea
Reflection mechanism
o uses and drawbacks
o .class object
o annotations (ROverride, @Deprecated, writing custom ones)

In each section you have chunks of code and several unit tests prepared. During the classes you will
be provided the address to the repository containing the code package for this lab. Your task is to fill
in gaps in the code according to the instruction, so existing tests will pass.

Nested classes

Nested (static and non-static) classes
Java allows defining classes inside other classes and they are called nested classes. They’re
divided in two categories:

e Static — called static nested classes

e Non-static — called inner classes.

A nested class is a member of its enclosing class. Non-static nested classes (inner classes)
have access to other members of the enclosing class, even if they are declared private. Static
nested classes do not have access to other members of the enclosing class.

They should be used to logically group used classes in only one place, increase encapsulation
and create more readable code.

Your task is to refactor classes Catalogue and Position. Position classisused only
in Catalogue. Position should be declared as a nested class in Catalogue. You
should decide whether this should be static or non-static class.



o Increasing readability by moving parts of a class to a nested class
Class Geometry contains a list of x and y coordinates. They represent points which build
the geometry. Operating on separate x and y coordinates is not intuitive and can lead to
errors because they refer to the same point, but are accessed separately.

Extract inner class Point and move all logic operating on separate coordinates to that class.
It should behave exactly the same as before.

e Anonymous classes
Sometimes there is a need to override some behavior in a class only in one place, without
declaring any instances. One of common uses is to create so called comparator for a sorting
algorithm, which defines how elements should be compared to determine their order. Your
task is to create sortByLength method which will sort list of Strings using custom
comparator.

public void sortByLength (List<String> strings);

The comparator should be implemented as anonymous class implementing Comparator
interface. You should use Collections.sort (List T, Comparable c) method
for sorting. Strings should be sorted by their length, from the shortest to longest ones.

Object lifecycle

Objects created using new operator are allocated on heap. They’re never explicitly released —
Garbage Collector is doing this when memory is needed and objects are unreachable. In short, it’s
checked if there are any references to the object and if there aren’t any, then the object may be
removed.

e Finalize method

It’s a method defined in Object, similar in behavior to destructors in C++. However, unlike
in C+4, it’s never known when it’s going to be executed — it’s executed only by Garbage
Collector which behavior is nondeterministic. It’s described to be “invoked if and when the
Java™ virtual machine has determined that there is no longer any means by which this
object can be accessed by any thread that has not yet died”, which means that there are
cases when it’s never executed — for example, if there’s enough memory available
throughout whole program execution. Java provides other means of cleaning up which will
be described on next laboratories.

There are however some cases when it can be useful — for example, if your application is
long-running (so GC is more likely to run) and you want to provide extra safety and check if
all resources are released.

Class OutputStreamOperator contains buggy code which does not always close
OutputStream that it's operating on. Write finalize () method which closes that
stream if it’s not closed yet.



Flyweight design pattern
Flyweight pattern is primarily used to reduce the number of objects created, to decrease memory
footprint and increase performance.

Flyweight pattern tries to reuse already existing similar kind objects by storing them and creates
new object when no matching object is found.

To apply the pattern, you need to create Flyweight factory which returns shared objects. Attached
source code contains simple implementation of application drawing shapes — lines and squares.
They both implement Shape interface. Square contains property defining whether it should be
filled with color; line doesn’t contain any such property. There are three possible shapes to draw —
SQUARE, SQUARE FILLED and LINE.

ShapeFactory.getShape (ShapeType st)method returns new Shape instance every
time the method is called. Fix the implementation so it will keep created objects cached and when
getShape is executed many times for the same type (for example LINE) it will return the same
object. What are the benefits of this approach?

Add another method
public Shape getShape (ShapeType st, String color)

which behaves in the same way as getShape, but caches instances for every color separately.

Reflection

Reflection is a mechanism that allows programs to examine (introspect) or modify the runtime
behavior of applications running in the JVM. It is a powerful tool, allowing to change existing code
however it should be used with care — it allows breaking contracts in program (for example, you can
overwrite access modifiers) and has large negative impact on performance.

e (@Override annotation
@Override isan annotation marking that following method overrides a method from its
superclass. The method has to have exactly the same prototype as method in superclass. It
is optional when overriding methods.

public class OverrideAnnotation {
@Override
public String toString(String wvalue) {
return value;

What is the problem in this class? Why it doesn’t compile? How @Override annotation
helps to discover potential bugs and what would happen without it?



Custom annotations

Java allows to create own annotations, providing information about classes, methods and
fields. Create annotation @Copyright taking one parameter, describing copyright info.
Write a piece of code showing all method names in given class with their copyright
information. Example usage of your annotation:

class Example {
@Copyright (info = “(2009) Luxoft Inc.”)
public void test () {}

}

Accessing private methods and members

Consider the following class:

public class Authenticator {
private boolean authenticated = false;
public void authenticate (String user, String password) {
if (isValid(user, password)) {
authenticated = true;

}
public boolean isAuthenticated() {

return authenticated;

}
//

Class Authentication can be used by an external system to authenticate users. It
contains private field authenticated, containing t rue if the user is authenticated and
false otherwise. At first, user is not authenticated and the only way to authenticate is to
execute method
Authenticator.authenticate (String user, String password).
Your task is to implement method
AuthenticationOverrider.authenticate ()
which doesn’t use user or password, but after which
Authenticator.isAuthenticated()
will return true. Do it by two methods:

1. Executing private method

2. Changing private field’s value
Creating create new instance of a class by its name
Implement createInstance method:.

public Object createlnstance (String className)

Your method should return new instance of class denoted by this String.
Hint: use java.lang.Class class.



PoNPRE

Checking object type — instanceof operator
Write 1 sNumber method taking one parameter — Object:

public boolean isNumber (Object object)

The parameter can contain value of any type —Float, List, Stringetc. The
method should return true if the value is any kind of number.

Hint — all numeric types (Float, Integer, ...)extend Number class.

Completion of tasks in each section
Taking part in discussions

Nested classes — http://docs.oracle.com/javase/tutorial/java/javaO0/nested.html
Reflection API — http://docs.oracle.com/javase/tutorial/reflect/

Java Reflection Tutorial — http://tutorials.jenkov.com/java-reflection/index.html

Design Patterns: Elements of Reusable Object-Oriented Software — chapter “Flyweight pat-
tern”

Flyweight design pattern - http://javapapers.com/design-patterns/flyweight-design-pat-
tern/

Object lifecycle - http://en.wikibooks.org/wiki/lava_Programming/Object_Lifecycle

Object finalization and cleanup - http://www.javaworld.com/article/2076697/core-
java/object-finalization-and-cleanup.html


http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://docs.oracle.com/javase/tutorial/reflect/
http://tutorials.jenkov.com/java-reflection/index.html
http://javapapers.com/design-patterns/flyweight-design-pattern/
http://javapapers.com/design-patterns/flyweight-design-pattern/
http://en.wikibooks.org/wiki/Java_Programming/Object_Lifecycle
http://www.javaworld.com/article/2076697/core-java/object-finalization-and-cleanup.html
http://www.javaworld.com/article/2076697/core-java/object-finalization-and-cleanup.html

