
Laboratory 4, Reflection

Main goal
Students will learn about:

 Nested, inner and anonymous classes – how to use them, why they can be useful in Java

(increasing encapsulation, multiple inheritance, substitute for lambdas)

 Object lifecycle – references, initializing classes, java.lang.ref package, memory

model and memory leaks in Java, garbage collection

 Flyweight design pattern

 Reflection mechanism in Java – how to use, writing custom annotations, common use

cases

Required for the lab
 Basics of object-oriented programming in Java

 Difference between nested (static), inner (non-static) and anonymous classes

 Purpose and capabilities of different kinds of nested classes

 Flyweight design pattern – motivation and general idea

 Reflection mechanism

o uses and drawbacks

o .class object

o annotations (@Override, @Deprecated, writing custom ones)

Plan
In each section you have chunks of code and several unit tests prepared. During the classes you will

be provided the address to the repository containing the code package for this lab. Your task is to fill

in gaps in the code according to the instruction, so existing tests will pass.

Nested classes

 Nested (static and non-static) classes

Java allows defining classes inside other classes and they are called nested classes. They’re

divided in two categories:

 Static – called static nested classes

 Non-static – called inner classes.

A nested class is a member of its enclosing class. Non-static nested classes (inner classes)

have access to other members of the enclosing class, even if they are declared private. Static

nested classes do not have access to other members of the enclosing class.

They should be used to logically group used classes in only one place, increase encapsulation

and create more readable code.

Your task is to refactor classes Catalogue and Position. Position class is used only

in Catalogue. Position should be declared as a nested class in Catalogue. You

should decide whether this should be static or non-static class.

 1

 Increasing readability by moving parts of a class to a nested class

Class Geometry contains a list of x and y coordinates. They represent points which build

the geometry. Operating on separate x and y coordinates is not intuitive and can lead to

errors because they refer to the same point, but are accessed separately.

Extract inner class Point and move all logic operating on separate coordinates to that class.

It should behave exactly the same as before.

 Anonymous classes

Sometimes there is a need to override some behavior in a class only in one place, without

declaring any instances. One of common uses is to create so called comparator for a sorting

algorithm, which defines how elements should be compared to determine their order. Your

task is to create sortByLength method which will sort list of Strings using custom

comparator.

public void sortByLength(List<String> strings);

The comparator should be implemented as anonymous class implementing Comparator

interface. You should use Collections.sort(List T, Comparable c) method

for sorting. Strings should be sorted by their length, from the shortest to longest ones.

Object lifecycle

Objects created using new operator are allocated on heap. They’re never explicitly released –

Garbage Collector is doing this when memory is needed and objects are unreachable. In short, it’s

checked if there are any references to the object and if there aren’t any, then the object may be

removed.

 Finalize method

It’s a method defined in Object, similar in behavior to destructors in C++. However, unlike

in C++, it’s never known when it’s going to be executed – it’s executed only by Garbage

Collector which behavior is nondeterministic. It’s described to be “invoked if and when the

JavaTM virtual machine has determined that there is no longer any means by which this

object can be accessed by any thread that has not yet died”, which means that there are

cases when it’s never executed – for example, if there’s enough memory available

throughout whole program execution. Java provides other means of cleaning up which will

be described on next laboratories.

There are however some cases when it can be useful – for example, if your application is

long-running (so GC is more likely to run) and you want to provide extra safety and check if

all resources are released.

Class OutputStreamOperator contains buggy code which does not always close

OutputStream that it’s operating on. Write finalize() method which closes that

stream if it’s not closed yet.

 2

Flyweight design pattern

Flyweight pattern is primarily used to reduce the number of objects created, to decrease memory

footprint and increase performance.

Flyweight pattern tries to reuse already existing similar kind objects by storing them and creates

new object when no matching object is found.

To apply the pattern, you need to create Flyweight factory which returns shared objects. Attached

source code contains simple implementation of application drawing shapes – lines and squares.

They both implement Shape interface. Square contains property defining whether it should be

filled with color; line doesn’t contain any such property. There are three possible shapes to draw –

SQUARE, SQUARE_FILLED and LINE.

ShapeFactory.getShape(ShapeType st)method returns new Shape instance every

time the method is called. Fix the implementation so it will keep created objects cached and when

getShape is executed many times for the same type (for example LINE) it will return the same

object. What are the benefits of this approach?

Add another method

public Shape getShape(ShapeType st, String color)

which behaves in the same way as getShape, but caches instances for every color separately.

Reflection
Reflection is a mechanism that allows programs to examine (introspect) or modify the runtime

behavior of applications running in the JVM. It is a powerful tool, allowing to change existing code

however it should be used with care – it allows breaking contracts in program (for example, you can

overwrite access modifiers) and has large negative impact on performance.

 @Override annotation

@Override is an annotation marking that following method overrides a method from its

superclass. The method has to have exactly the same prototype as method in superclass. It

is optional when overriding methods.

public class OverrideAnnotation {

 @Override

public String toString(String value) {

 return value;

}

}

What is the problem in this class? Why it doesn’t compile? How @Override annotation

helps to discover potential bugs and what would happen without it?

 3

 Custom annotations

Java allows to create own annotations, providing information about classes, methods and

fields. Create annotation @Copyright taking one parameter, describing copyright info.

Write a piece of code showing all method names in given class with their copyright

information. Example usage of your annotation:

class Example {

 @Copyright(info = “(2009) Luxoft Inc.”)

 public void test() {}

}

 Accessing private methods and members

Consider the following class:

public class Authenticator {

 private boolean authenticated = false;

 public void authenticate(String user, String password) {

 if (isValid(user, password)) {

 authenticated = true;

 }

 }

 public boolean isAuthenticated() {

 return authenticated;

 }

 // ...

}

Class Authentication can be used by an external system to authenticate users. It

contains private field authenticated, containing true if the user is authenticated and

false otherwise. At first, user is not authenticated and the only way to authenticate is to

execute method

Authenticator.authenticate(String user, String password).

Your task is to implement method
AuthenticationOverrider.authenticate()

which doesn’t use user or password, but after which
Authenticator.isAuthenticated()

will return true. Do it by two methods:

1. Executing private method

2. Changing private field’s value

 Creating create new instance of a class by its name

Implement createInstance method:.

public Object createInstance(String className)

Your method should return new instance of class denoted by this String.

Hint: use java.lang.Class class.

 4

 Checking object type – instanceof operator

Write isNumber method taking one parameter – Object:

public boolean isNumber(Object object)

The parameter can contain value of any type – Float, List, String etc. The

method should return true if the value is any kind of number.

Hint – all numeric types (Float, Integer, ...) extend Number class.

Way of getting a credit for the classes
 Completion of tasks in each section

 Taking part in discussions

Literature
1. Nested classes – http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

2. Reflection API – http://docs.oracle.com/javase/tutorial/reflect/

3. Java Reflection Tutorial – http://tutorials.jenkov.com/java-reflection/index.html

4. Design Patterns: Elements of Reusable Object-Oriented Software – chapter “Flyweight pat-

tern”

5. Flyweight design pattern - http://javapapers.com/design-patterns/flyweight-design-pat-

tern/

6. Object lifecycle - http://en.wikibooks.org/wiki/Java_Programming/Object_Lifecycle

7. Object finalization and cleanup - http://www.javaworld.com/article/2076697/core-

java/object-finalization-and-cleanup.html

http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://docs.oracle.com/javase/tutorial/reflect/
http://tutorials.jenkov.com/java-reflection/index.html
http://javapapers.com/design-patterns/flyweight-design-pattern/
http://javapapers.com/design-patterns/flyweight-design-pattern/
http://en.wikibooks.org/wiki/Java_Programming/Object_Lifecycle
http://www.javaworld.com/article/2076697/core-java/object-finalization-and-cleanup.html
http://www.javaworld.com/article/2076697/core-java/object-finalization-and-cleanup.html

