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Streszczenie

W rozprawie zajmujemy sie problemem aproksymacji stochastycznych réwnan

rozniczkowych nastepujacej postaci

{ AX (1) = a(t, X (£))dt + b(t, X (£))dW () + c(t, X (t=))dN(t), t € [0,T],

X(O) = Xy,
gdzie T > 0, N = {N(t)}ico,r) jest jednowymiarowym niejednorodnym procesem
Poissona z intensywnoscia A\, W = {W(t)}icom jest my-wymiarowym procesem

Wienera. Rozprawa sktada sie z trzech gléwnych czesci.

W pierwszej czeSci rozwazamy problem skalarny z jednowymiarowym procesem
Wienera. Analizujemy w niej algorytm oparty na adaptacyjnej kontroli dtugosci kroku
catkowania. Bazujac na kawaltkami liniowej interpolacji wartosci schematu Milsteina
obliczonego w punktach wyznaczonej siatki, otrzymujemy aproksymacje rozwigzania.
W tej czedci rozprawy analizujemy rowniez bltad metody nie uzywajacej wartosci
pochodnych czastkowych wspolczynnika dyfuzji. Dla obu metod wyznaczamy doktadne
tempo zbieznosci wraz z postacia staltych asymptotycznych. Ponadto uzyskane wyniki
implikuja optymalnosé zdefiniowanych algorytméw w rozwazanych klasach metod.

W kolejnej czedci rozprawy rozwazane sa uklady stochastycznych réwnan
rozniczkowych ze skokami w przypadku wielowymiarowego procesu Wienera.
Jak w poprzedniej czeSci rozprawy do aproksymacji rozwigzania wykorzystujemy
interpolacje kawatkami liniowg wartosci schematu Milsteina obliczonego w punktach
siatki jednostajnej. Ponownie pokazujemy doktadne tempo zbieznosci zdefiniowanego
algorytmu wraz z postacia statej asymptotycznej. Udowadniamy ponadto odpowiednio
oszacowania z dotu na blad, z ktorych wynika optymalno$¢ skonstruowanej metody.

W trzeciej czeSci pracy prezentujemy krotkie wprowadzenie do jezyka
programowania CUDA C wraz z efektywna implementacja algorytmu optymalnego
z drugiej czesci rozprawy. Przedstawiamy roéwniez wyniki przeprowadzonych

eksperymentéw numerycznych.

Stowa kluczowe

Analityczna zlozono$¢ obliczeniowa, stochastyczne rownania rozniczkowe ze
skokami, informacja standardowa, n-ty bltad minimalny, asymptotycznie
optymalana metoda, CUDA C



Abstract

In the thesis we study the problem of approximation of solutions of stochastic

differential equations of the form

{ AX(t) = alt, X (£))dt + b(t, X (£))dW (t) + e(t, X (t=))AN (1), t € [0,T),
X(O) = Xy,

where 7' > 0, and N = {N(t)}icpo,r) is a one-dimensional non-homogeneous Poisson
process, with intensity function A, and W = {W () }+cjo,r] is a my-dimensional Wiener
process. The thesis consists of three main parts.

In the first part of thesis we investigate the scalar problem with m, = 1. We
analyze algorithm based on path-independent adaptive step-size control. The method
computes the adaptive discretization and next it uses a piecewise linear interpolation
of the classical Milstein steps performed at the computed sampling points. We also
analyze derivative-free version of this method. For the both methods we investigate
the exact rate of convergence of the nth errors together with the asymptotic constants.
Moreover, it turns out that the both methods are asymptotically optimal in certain
class of algorithms.

In the second part of the thesis we investigate the systems of SDEs with m,, > 1.
We provide a construction of a suitable algorithm that is based on equidistant
discretization. At the sampling points the method uses a piecewise linear interpolation
of the classical Milstein steps. Again we show the exact rate of convergence of the
defined method together with the asymptotic constants. We also provide corresponding
sharp lower bounds which imply that the constructed method is asymptotically
optimal.

In the third part of thesis we present introduction to CUDA C programming
language together with efficient implementation of the optimal algorithm from the
part two of the thesis. We also show numerical results that confirm our theoretical

findings.

Key words

Information-Based Complexity, stochastic differential equation with jumps,
standard information, mnth minimal error, asymptotically optimal method,
CUDA C



Introduction

Over the last years the number of publications devoted to stochastic problems,
including the approximation of solutions of stochastic differential equations (SDEs)
with jumps, has increased dramatically. One of the possibility which causes this
behavior is the fact that the demand for this type of modeling is rapidly increasing.
The areas where such SDEs problems find applications are for example, financial
mathematics, physics, biology, and engineering, see [11,19,[39,61,78|. The discussed
equations often do not have analytical solutions and the use of efficient approximate
methods is a necessity.

The first monograph which investigates to the topic of approximation of SDEs is
[31] (new release [32]). Authors describe construction of algorithms based on Ito-Taylor
expansions. Additionally, the authors investigate rate of convergence of the proposed
algorithms for the strong approximation (where we approximate trajectories of
solutions) and the weak approximation (where we approximate moments of solutions).
Another main reference which investigates stochastic problems is [39]. Authors,
apart from the results known from the monograph [31], investigate approximation of
deterministic problems using probabilistic methods. They also investigate stochastic
differential equations in presence of small noise and stochastic Hamiltonian systems.
In both monographs authors focused on finding upper bounds for error of considered
algorithms and the stability of the considered methods. The optimality of presented
schemes was not discussed. Another main monograph dealing with SDEs with jumps is
[61]. Authors concentrate on designing and analysing of discrete-time approximations
for SDEs with jumps. Authors present theoretical background for SDEs with jumps
motivated by several application from finance. They analyze stochastic expansion for
a different order of schemes. They also investigate strong and weak approximation and
derivative-free schemes.

Information Based Complexity (IBC) is a branch of numerical analysis, which deals
with complexity of problems where information is partial, priced, and sometimes noisy.
Partial means that multiple problems may share the same information, priced means

that the cost of an algorithm is directly connected with the number and precision of
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observations, and noisy corresponds to some corruption for the observed values. One
of the main tasks of IBC is giving answers about the minimal cost that is needed for
solving a problem with the error at most €, such minimal cost is called e-complexity.
Similarly, the problem of the nth minimal error in a given class of algorithms is also
considered. The nth minimal error is defined as a minimal error of an algorithm that
can be reached in a class of algorithms with a cost at most n. In this work we are
interested in finding essential sharp lower and upper bounds for the nth minimal error
in the context of stochastic problems. It should be stressed that the nth minimal error
corresponds to the problem, not to particular algorithm.

As a cornerstone and a kind of determinant that still determines the paradigms
of studying computational problems in terms of their computational complexity, we
can mention two books [80] and [79]. As a continuity of those, we can distinguish
[46], where authors consider problems in the multidimensional case and analyzing
the impact of the dimension on the complexity of a problem. The main problems
considered in IBC are finding methods for solving mathematical problems such as
approximation of functions (for example [53,55-57.60]), integration (for example |54,
55,58|), optimal approximation of ordinary (for example [20-22]), partial (for example
[12,59,]85]), integral differential equations (for example [13[84]), stochastic integration
(for example |104[14123,63-65]), approximation of stochastic differential equations (for
example [7,8,16}30,33.43-45,66-73,75,76]). We can highlight diffrent types of model of
computations, the worst-case, asymptotic, average, randomized, and quantum settings.
The problems with noisy information are also considered, for example [23,40-42.50-53].

In parallel to the development of theory there is a huge development of hardware
which allows to prepare suitable algorithms which can compute solutions in acceptable
time. Parallel computation, during the several decades, has been more and more
popular in the world of computations. There are also a lot of problems which
need parallel computation to get the solution in a reasonable time. Primary goal of
parallel computation is to improve application’s performance. Mathematical problems,
for example approximation of stochastic differential equations, require simulations
of huge number of independent trajectories, and it makes this type of problems
computationally costly. Multiprocessing is a natural tool which can be applied
to solve this issues. By employing CUDA technology and dedicated programming
language CUDA C, we can create applications of high performance, which solve
mathematical problems efficiently, e.g. matrix multiplication or approximation of

stochastic problems. For example the documents |4} 28,47, [74] contain a lot of



Introduction

information about the CUDA C programming language, together with examples, which
can help to create applications.
In the thesis we deal with the global approximation of solutions of systems of

stochastic differential equations (SDEs) of the following form

{dX(t):a(t,X(t))dt+b(t,X(t))dW(t)+c(t,X(t—))dN(t), el

X(O) =9, g€ R?

where T > 0, and N = {N(t)}+co,r] is a one-dimensional non-homogeneous Poisson
process and W = {W (t) }sc(o,7] is @ my-dimensional Wiener process. There are a lot of
positions in the literature which consider optimal approximation of solutions of SDEs
driven only by the Wiener process. In that case both upper and lower bounds on error

were established for the strong approximation, see, for example, [17}18]44,67,68|.

(a) 1-dimensional case (b) 2-dimensional case

Figure 1: Examples of SDEs trajectories.

For a more complex problems, which also contain the jump term, suitable
approximation schemes were provided, and upper bounds on their errors discussed.
For example, the monograph [61] and in the articles [9,/15,16,34,35] authors deal
with the jump-diffusion SDEs. However, according to our best knowledge, till now
there are only few papers that establish asymptotic lower bounds and exact rate of
convergence of the minimal errors for the global approximation of the scalar SDEs
with jumps, see [24,|69,(70,(72], and there are no articles addresing this problem in
multidimensional case. In [69] the author considers the pure jump SDEs (I)), i.e., b =0
and ¢ = ¢(t), while in [70] the general multiplicative case is investigated. In [72]
author provides a construction of a method based on path-dependent adaptive step-size

control for global approximation of jump—diffusion SDEs. The discretization points and
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their number are chosen in adaptive way with respect to trajectories of the driving
Poisson and Wiener processes. We also refer to |7], where the authors investigate the
optimal rate of convergence for the problem of approximating stochastic integrals of
regular functions with respect to a homogeneous Poisson process. In [70./71] a suitable
method has been defined and showed to be optimal. However, the optimal non-uniform
discretization of the interval [0,7] is defined in a non-constructive way. Therefore,
the practical use of the method is highly limited. In the paper [24] authors show an
implementable method based on path-independent adaptive step-size control that still
preserves optimality properties. Such methods were constructed in pure Wiener case
in several papers [18,44]. Howewer those methods were hard to implement.

In this thesis we present results based on [24] for the scalar case with m,, = 1 and
also not yet published results for the multi-dimensional case where with m,, > 1. In
both cases we assume that diffusion and jump coefficients satisty the jump commutative
conditions (see page 20} or [39]). Method constructed for the one-dimensional case is
based on the path-independent adaptive step-size control. The method assumes that
the step-size is adjusted at each step, but the adjustment is done independently of
behavior of particulat trajectory. Roughly speaking it is adapted to the mean behavior
of W and N. In a multidimensional case we analyze the exact rate of convergence of
piecewise linear interpolation of the classical Milstein steps performed at equidistant

discretization points. The main contributions of the thesis are

e construction and analysis of method based on path-independent adaptive step-size
control for scalar SDEs with jumps driven by Wiener and Poisson processes,

e construction and analysis of method based on equidistant discretization for system
of SDEs with jumps driven by Wiener and Poisson processes,

e establishing optimality of the considered methods,

e implementation of developed algorithms in CUDA C programming language.

The structure of the thesis is organized as follows. In Chapter 1 we show a
short introduction to the computational model. In Chapter 2 we present definition
of algorithm based on path-independent adaptive step-size control. The method
computes the adaptive discretization and next it uses a piecewise linear interpolation
of the classical Milstein steps performed at the computed sampling points. The
construction of algorithm is computer implementable. We denote it by XZn—Mx
We also investigate a derivative free version X#—ln—Mx — {X,‘ji “Em= M of this

algorithm. Both methods compute the adaptive discretization and then use a
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piecewise linear interpolation of the classical Milstein steps performed at the computed
sampling points. Moreover, by the results of [70], the algorithms XI=M* and
Xdf—Lin=Mx _ {)_(,fi*Lm*M*} are asymptotically optimal.

The main results of this chapter are Theorem and Theorem which states

that for the method XLin—M* gnd X#—Lin=M=* e have that error behaves like

T 1/2 T
i k2. (E / X(t) —X]fj”_M*(t)‘zdt> _ % / <]E(H(t))>l/ i, ()

T 1/2 T
i K2 (E / X (1) —)‘(,fgijM*@)fdt> _ % / (]E(%(t)))l/ “a, (3)

where Y(t) = [b(t, X (t))|*> + X(t) - |e(t, X (¢))|* and k,, is the number of evaluations of
the Poisson and Wiener processes. The number k,, is also adapted to the diffusion and
jump coeflicients, and to the intensity function \. For the both methods we investigate
the exact rate of convergence of the nth errors together with the asymptotic constants.
Moreover, it turns out that the both methods are asymptotically optimal in certain
class of algorithms. It means that nth minimal error behaves like ©(n~'/2) in the
considered class of algorithms (see Theorem [2.§)).

Chapter 3 is dedicated to analyzis of the classical Milstein algorithm based on
equidistant discretization for system of SDEs with jumps with multidimensional
Wiener process. We construct an implementable algorithm, denoted by
XLin=Mx - — {)_(ﬁm_M*} and we stress its ease in implementation. The method
uses a piecewise linear interpolation of the classical Milstein steps performed
at the sampling points. The main results of this chapter are Theorem and
Theorem [3.2] which imply the optimality of method X"~M* in some class of
algorithms (Theorem . By the Theorems we have that for the method X Zin—x

the following estimations hold

T 1/2 T 1/2
nEIfoonl/Q' (E / | X (1) —Xgi“”f*(t)\fdt) = \/g ( / E(H(t))dt) . (4)

0

where Y(t) = ||b(t, X (1)) ||% + A(¢) - ||c(t, X (¥))]|%, n is the number of evaluations of the
Poisson and Wiener processes. For method we investigate the exact rate of convergence
of the nth errors together with the asymptotic constants. Moreover, it turns out that
method is asymptotically optimal and the nth minimal error behaves like ©(n~'/2) in

a considered class of algorithms.
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In Chapter 4 we present simple notation and basic information about technology of
CUDA and CUDA C programming language. We show simple introduction to CUDA
C, which allows reader to understand the implementation of algorithm form Chapter
2. At the end of this section we show results from numerical experiments performed
for algorithms from Chapter 2 and 3, which confirm theoretical results.

In Chapter 5 we simply conclude results and define open problem corresponding
to considered problems.

Appendix A contains a theoretical background about random variables, stochastic
processes, martingales, [t6 integration with the respect to semi-martingales, stochastic
differential equations, and other useful facts.

Finally Appendix B contains proofs of main Theorems and Lemmas, which are
useful in proving of main results of thesis presented in Chapter 2 and 3. Most of given
facts in this section were provided by us. As a main result in this section we can listed
proofs of Theorem and Theorem which say about boundary and convergence
of Milstein approximation in space £2(2x [0, T|) for Time Continuous Milstein Scheme
and derivative free version. A similar result has been justified in Theorem 6.4.1 in [61],
however, under slightly stronger assumptions. In particular, in this thesis we do not
assume the existence of continuous partial derivative 0f /0t for f € {a,b,c} and we
do not assume any Lipschitz conditions for the second order partial derivatives of
f=ft,y), f € {a,b,c}, with respect to y. Moreover, we consider non-homogeneous
Poisson process, while in [61] in Theorem 6.4.1 has been shown only for homogeneous

counting processes.
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Symbols

N={1,2,3..}
Ny =NuU {0}

R = (—o0, +00)
R, = (0,400)
R

(a, 0]

-
112
I llr

T, T oo

max(a,b) =aVb
min(a,b) = a Ab
y=(yr, - ya)"

e; =(0,...,0,1,0,...,0)"

a-yYy=9y- -«

A= [a™]i, = laili_; = [a]];?:l

F, 5 H
(Q,F,P)
XY
E(Y)
E(Y | 9)
{‘Ft}tzo
o(Y)
a(A)
FVS§

set of natural numbers

set of natural numbers with zero

set of real numbers

set of non negative real numbers
d-dimensional euclidean space

d-dimensional interval given by

(a,b] X ... x (a,b]

absolute value

second euclidean norm

Frobenius matrix norm

increasing to infinity sequence of x,,
maximum of a,b € R

minimum of a,b € R

column vector y € R? with ith component x;
ej € RY je{l,...,d} vector where non-zero
element is on the jth place

(ayr,...,ayq)T fory e RY a € R

(k x d)-matrix A with ijth component a*,

ith row a; and jth column a’

collections of events, o-algebras
probability space

real valued random variable

expected value of Y

conditional expectation of Y under §
stopping time

filtration

o-algebra generated by random variable Y
o-algebra generated by collection A

o(FU9)
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Symbols

F®G
£(Q, F,P)

1/2

X Nle2(0) = (EIX]?)
£2(Q x [0,T], F @ B([0,7]),P® \)

T 1/2
||Y||22(QX[O7T]) = (Ef |Y(t)|2dt)
0

N(u, o)

alelf
oy™

a.s.

For a function f,¢g: R — R
f(z) = 0(g(z))
f(z) = Q(g(z))
f(z) = O(g(x))

c{FxG : FeF,GeG§})

£2(Q) space of square integrable
random variables

norm of X in £2(Q)

£2(Q x [0,T7]) space of square integrable

stochastic processes

norm of X in £2(Q x [0,T])

normal distribution with mean p
and standard deviation o

Poisson distribution with intensivity A
t

[ A(s)ds, for t =0

0

m(t) — m(s) for ¢,s € [0, T
supremum norm of a function

sup |f(t) = f(s)], 6 €[0,+00)

t,s€[0,T),]t—s|<d

modulus of continuity for a continuous
function f:[0,7] — R,

a € N¢ where |a| = X0, o

dy* =y ... Qyy*

almost surely

ElxoeRElcl>0vac>aco |f(ZL’)| <
3x06R301>0vx2x0 If($>| 2

|
|
f(z) = 0(g(x)) and f(z) = Qg(x))
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Symbols

For a function f:[0,7] x R - R h >0

T
0 o) o)
Lta) = (L), %)
T
0?2 9?2 9?2
(b)) = (2R, ()
0 0 0
6—92(15,35) %(t,x) 6—2(25,3:)
Ao (p o) Q2(p gy ... %t,x
Votay - |t ealta) o)
o) 1o) 0
Tfj(t,w) ﬁ(t,x) ﬁ(t,a}),
fit,x+h-erl)—fi1(t,x)  fi(t,x+h-e2)—f1(t,x) f1(t,x+heq)—f1(t,x)
. - A
_ Lltathe)—fotz) folbathe)-folte) — faltathed—fi(tz)
Venf(t,z) = " " "
fa(t,zt+h-e1)—fa(t,x)  fa(t,zth-e2)—fat,x) fa(t,x+h-eq)—fa(t,x)
. S s

Let f:[0,7] x R - R b:[0,T] x R — R>™ and ¢ : [0,7] x R — R<. For
ke{l,...,my}, (t,z) € [0,T] x RY h > 0 we use the following notation

ka(ta IL’) — Yxf(th) ’ bk(t,.’ll')
Lk,hf(t, SL’) - V%hf(t, .TJ) : bk(t, x)
Lif(t,x) = f(t,x+c(t,x)) — f(t, ).

If d=m, =1 we write

Lif(ta) = bt,o)- &)
Linfltia) = HEEIED g )

Additionally, all constants that appear in the estimations will depend only on the
parameters of the problem and 7', unless it is clearly stated otherwise. Moreover, to
simplify nomenclature and numbers of different symbols we assume, that the same
symbol can be used to indicate different constants. As we consider only asymptotic

case, the exact value of constants is not investigated.
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Chapter 1

(General description of the problem

and aim of the thesis

The aim of this thesis is to present a construction of optimal algorithms for the
global approximation of solutions of d-dimensional system of stochastic differential

equations (SDEs) of the following form

{ AX (1) = a(t, X(D)dt+b{t XOWW () +c(t, X(=)AN®), 0.7, ()

X(O) = Xy,

where 7" > 0, and N = {N () }+c[o,r] is a one-dimensional non-homogeneous Poisson
process, with intensity function A, and W = {W () }+cjo,r] is a my-dimensional Wiener
process.

First, we will investigate the problem of approximating solutions of scalar stochastic
differential equations where d = m,, = 1. Then, we will focus on d-dimensional
system of stochastic differential equations , where d > 1 driven by my, (my > 1)
independent Wiener processes.

Let (Q,F,P) be a probability space for both stochastic processes (see
Appendix [A.2). Both problems will be considered in special classes of functions
a,b,c,\. Let us know that our problem can be defined as a five-elements vector
(a,b,c, A\, xp).

Information

In our model of computation, we assume that we do not have the complete

knowledge about realizations of Wiener and Poisson processes on considered interval

15



[0,T|. Instead, we can use only partial and standard information of evaluations of the
Poisson and Wiener processes N, (N, W), where N,(N, W) : Q — R*(™+1) ig given

as vector of evaluation of processes in given sampling points.
N, (N, W) := [N(tm), N(tan)s .- N(tun), Wt1), Witan), - .., W(tm)] . (1.2)
where points t;,, for i € {0,1,...,n} belong to partition of interval [0, T given by
Ay ={tonstim, - tant, 0=ton <tin <...<tpn,=T. (1.3)

We denote by
N(N, W) = {N.(N, W)}, _ (1.4)

the sequence of vectors N, (N, W), where each provides standard information of the
Poisson and Wiener processes.

For a single process Z € {N, W, Wy, ..., W, } we use the notation

No(Z) = [Z(t10), Z(t2n), -, Z(tan)]-

It is important to know that N(0) = 0 and W (0) = 0. The information used to solve
a problem may be non-adaptive or adaptive. We say that information is non-adaptive
when we choose the points in advance (a priori). We say that the information is adaptive
when discretization points are not given in advance and every next point is calculated
using previous computations/observations. Especially the sequences of discretizations
A = {A,},en may depend on functions a, b, ¢, A and on initial value x,. We also
assume, that discretization does not depend on trajectories of the processes N and W.
Information uses the same evaluation points for all trajectories of the Poisson
and Wiener processes. Therefore, the information about the processes N and W

is non-adaptive.

Algorithm

After computing the information N, (N, W), we approximate solutions of our
problem by an element in solution space £2([O, T} Rd). We apply the algorithm which

is represented by Borel measurable mapping

o RPHD  22([0, T RY), (1.5)
in order to obtain the nth approximation X, = {X,(t)} s 1 the following way
X = @n(NL (N, W)). (1.6)
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It is important to have a tool which allows us to compare exact solutions and
approximations given by algorithms. In Appendix [A.5] we discuss how to move between
spaces of solutions and approximation.

So any approximation method X = {X"}neN can be defined by two sequences
@ = {Pn}nen, A= {An}nen.

The nth cost of the method X is defined as the total number of evaluations of N
and W used by the nth approximation X,,. In literature the cost of algorithm is also
named cardinality of information. For considered in the thesis problem we define nth

cost in the following way

(my+1)-n, ifb#0and c#0,

_ My * N, if b0 and ¢ =0,
cost,(X) = L

n, if b=0and c # 0,

0, if b=0and ¢=0.

Cost calculation does not include combinatoric cost, which is defined as a total
number of arithmetic operations used to calculate approximation. According to
literature, we assume that the cost of information is greater than the cost of arithmetic
operation. The class of all methods X = {X”}neN’ defined as above, is denoted by

x"°"4. Moreover, we consider the following subclass of x"°"? defined as

Xeq — {X c Xnoneq

Tz —nz(X)en * Ynzng An = {iT/n : i=0,1,...,n}}.

Methods based on the sequence of equidistant discretizations ((1.3) belong to the
class x4, while methods that evaluate N and W at the same, possibly non-uniform,

sampling points belong to the class x"°"¢4. Of course, we have that y®d C "4,

The nth minimal error

To measure and compare the quality of algorithms we need to define specific
criteria. The nth error of a method X = {Xﬂ}neN is defined as

T
_ _ _ 9 1/2
en(X) = || X = Xulle2(axom) = (E/HX(t) — X,(1)]] dt) .
0

It is an average error of approximation taken over the whole possible trajectories
dependent on realization of stochastic processes W and N. The nth minimal error (see,
for example, [80]), in the respective class of methods under consideration, is defined
by

e’(n) = )7(112}(’O en(X), © € {eq, noneq}. (1.7)
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Hence, (1.7) is the minimal possible error among all algorithms (from respective

class) that use n evaluation of N and W.

18



Chapter 2

(Global approximation of solutions of

scalar SDEs with jumps

In this chapter we consider the problem of approximation of solutions of scalar
stochastic differential equations of the form (1.1)), where 7" > 0, and N = {N(t) }scpo,1]
is a one-dimensional non-homogeneous Poisson process, and W = {W(t) },cor) is a

one-dimensional Wiener process. This Chapter is based on the article [24].

2.1. The setting

Let T' > 0 be a given real number and (€2, F,P) be a complete probability space.
We consider on it two independent processes a one-dimensional Wiener process

W= {W(t);

te[0,77’

and a one—dimensional non—homogeneous Poisson process

N = (VD)

tel0,7)’

with continuous intensity function A = A(¢). Let us denote by {F;} the complete

t€[0,7]
filtration, generated by the driving processes N and W.

Now we specify the assumptions about functions which build the problem (1.1)).
For a given function f € {a,b,c}, f :[0,T] x R — R, we assume that f satisfy the

following conditions

(A) feCo2([0,T] x R).

19



2.1. The setting

(B) There exists K > 0 that for all ¢,s € [0,7] and all y, z € R,
(B1) |f(t,y) = f(t 2)] < Kly — 2],
(B2) |f(t.y) = f(s.9)l < K1+ yl)It — s,
(B3) |%(ty) = 3t 2)|< Ky — 21

(C) In addition, there exists K > 0 such that for a function f € {b,c} for all ¢t € [0, T
and y,z € R

’Llf(t7y) - L1f<t7z)‘ < K’y _Z|'

We will also assume that functions b and c satisfy the jump commutation condition

(assumption (D)).

(D) For all (t,y) € [0,7] x R,
L—lb(t7y) = Llc(ta y) (21)

This condition will allow the calculation of stochastic integrals defined in (B.4)). More
details about why we use this condition will be given in the next section where the
algorithm will be analyzed. We also refer to Chapter 6.3 in [61] where the condition
(2.1) is widely discussed.

Moreover for the intensity function A : [0,7] — (0, +o00) we assume that
(E) XA e C([0,T)).

By Appendix and the fact that a, b, c and X satisf (B1), (B2) and (FE) the
problem (1.1) has a unique strong solution X = {X(t)}icp,m that is adapted to
filtration {Ft}te[O,T]

The following result characterizes the local mean square smoothness of the solution

and has cadlag paths.

X in terms of the following process
Y(t) = |o(t, X ()" + A1) - |e(t, X0)[F, € [0,T). (2.2)

Proposition 2.1 ([70]). Let us assume that the functions a, b, ¢ and \ satisfy the
assumptions (B1), (B2) and (E). Then, we have for the solution X of problem (I.1)
for all t € [0,7) that

T | X (¢ + h)h:/j((t)um) _ (E<9<t>))l n

Proposition describes local mean square smoothness of the solution X.

This local smoothness reflects in the exact rate of convergence of minimal errors
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2.2. Algorithm based on path-independent adaptive step-size control

established in [70] and will be used for the construction of optimal methods based
on path-independent adaptive step-size control.

In order to characterize asymptotic lower bounds we define

T

o/

T r /2

e T (fovon) "
0

is defined in (2.2). We have that

(moneq

Sl

(B0) P
Y(1))

where the process {9(t)}te[0 7]

(1) 0 < Cnoneq < Cfeq7
(i) Cremed = C°4 iff there exists v > 0 such that for all ¢ € [0, T

E(Y(t)) =,

(iii) C* = 0 iff C™°med = 0 iff b(¢, X(t)) = 0 = (¢, X(t)) for all t € [0,T] and almost

surely.

2.2. Algorithm based on path-independent adaptive

step-size control

In this section we present an implementable and asymptotically optimal algorithm
in the class "4, which is based on the idea of adaptive step-size control. The step-size
control will use the same sampling points for every trajectory of stochastic processes
W and N, which means that it will be path-independent. Moreover, selection of mesh
points will be based on the local Holder regularity (see Proposition . Because of
the fact that we do not know the precise value of E(Y(t)) for ¢t € [0,7T], we have to
use suitable approximations. In addition, the adaptive sampling will be adjusted to
the regularity of the intensity function A, described in the terms of its modulus of

continuity.

2.2.1. Description of the method and its asymptotic

performance

We define the adaptive path-independent step-size control as follows.
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2.2. Algorithm based on path-independent adaptive step-size control

STEP 0 Take an arbitrary strictly positive sequence {e, },en such that

lim e, = lim (n'/?-¢,)" = lim ' 0\T-(n-2,)") =0,  (2.3)

n——+00 n—+00 n—+00
where @ is the modulus of continuity for A (see Remark [2.2)).
STEP 1 Take any n € N and let tAo,n =0, )_(M(fo,n) = x0. Set 7 := 0.
STEP 2 Ift;,, € [0,T) and X" ({;,) are given then compute

. . T
t’i+1,n = ti,n + R 1/2 Y (24)
n- max{sn, (E(HM(tm))> }
where
y]% zn ‘b znaXM zn | + /\ zn) ' }C(fz,naXMO?z,n))}Q
If fiﬂ,n < T then compute
XPM(I?HLn) XM( Zn) + a(f (tA )) (Eerl n E@,n)
+ (i, XM (i) - (W (Eizan) = W(tin))
+ c(t szM@ n) - (N ( i+1, n) — (fi,n))
+ Lab(tin, XM (Lin)) - i, gy (W, W)
+ Loyc(bim, XM (Ein)) - I, 41y (N, N) (2.5)
+ L lb( 7,1y X]\J( 'Ln)) : (Ifi’n,fhul’n (VI/’ N) + It"i_’n,fi+1yn(N7 W>)7

take 1 := 44+ 1 and GOTO STEP 2.
Else compute X™(T) by (2.5) with #;,,,, replaced by T.
STOP

Remark 2.2. If A : [0,7] — (0,+00) is a Hélder function with the exponent o € (0, 1]
then in STEP 0 we can take €, = n~¢/(2let1),

Now we analyze the algorithm and define the stopping criterion. Then we prove

that the algorithm stops in a finite number of steps. Let us define
kn=min{i e N|{,>T} neN,

which is the total number of computed discretization points greater than fo,n = 0. The

end point 7' is attainable, since we have for all n € N that
kn < [n(en + éﬂ? (2.6)

for some C' < +00, where existence of C' follows from the Fact .
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2.2. Algorithm based on path-independent adaptive step-size control

Fact 2.3. Let n € N and let us assume that there evists M,, € N such that t;,, € [0,T)
forall j=0,1,..., M, — 1. Then

T

an,n 2 Mn NN
n(e, +C)

where C' = Ki(14+0C)- (14 H>\||<1></>2) and C' is the constant from Theorem |B.1|

Proof. Let us consider time-continuous Milstein approximation {f( ARG rel0T] based
on the mesh 0 = ty,, < t1, < ... < ta, 1 < T. Since XM(0) = )N(%L(O) = xg, we
have that

XM(t,) = X0 (), §=0,1,..., M, — 1.

Hence, by Theorem we have that
max E})_(M(fj,n)f < C?
0<j<Mn—1

which yields for j =0,1,..., M, — 1 that
M} 1/2 A
max{en, (E(y (tm))) } <ent O (2.7)

Hence, by (2.4) and (2.7))
My,—1

R R . T
tMn,n == (t i+1,m — t,n) 2 Mn T A
j;() ’ ’ n(e, +C)

which ends the proof. [ |

Hence, if for a given n € N we have that M, = [n(e, + C)] then by Fact we
get t M,n = 1. This implies and the fact that algorithm stops in a finite number
of steps.

Now, running n through the natural numbers, we obtain the sequence of

discretizations A = {Akn }neN, where each Akn is defined as
Akzn = {£Q7n7£17n,...,£kn7n}, n € N.

We have that t}yn <Tforalli=0,1,...,k,—1and fkmn > T'. Since we can observe the
Poisson and the Wiener processes only in interval [0, 7], we define the final sequence

of discretizations A* = {A*n}neN by

Ay = (B, \ Al ) U{TY = {E5 0 b5 s T n ), mEN,
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2.2. Algorithm based on path-independent adaptive step-size control

where f;-*’n = fm < T foralls=0,1,...,k, — 1 and fzmn =T < fkmn. So now we

observe processes only in given interval [0, 7.

By XM+ = {XpM+}  we denote the conditional Milstein method based on the

sequence of discretizations A*, which is defined as
)_(Cy*(t) = IE( N,if*(t) | N, (I, W)), tel0,T],

where {XM*} is a sequence of the time-continuous Milstein approximations
kn neN

- based on {A,’;n}neN and information

NZH(N> W) - [N(ﬁ,n% N(%,n)? SR 7N<£zn,n)7
W (i), W(t5,), .- Wi, )] (2.8)

We also denote information with the respect to given process Z € {N, W} as
N;:n(Z) = [Z(Z?){,n% Z(%,n% SR Z(??Zn,n)] .

Following Lemma Lemma and Lemma [B.27] (see also [70]) we can write
that

Xl () = X0 (E,) + alf,, Xel (@) - (= 1,)

e t—t:
7 ! ’ ’ t;'k+1,n - t;k,n
. A(t,t;,)

+ c t:n,XM* fjn . AN:R S —
(s XL 50)) - AN

i+1n0 Yi,n

“ 2

. R . l— t:n
Ll KU E) i, OV (ﬁ)
) ) i+1ln — Yin

+ L—lb(fzn’ Xli\i* (ij,n)) ’ AN:n ’ AVV::n
A(t7 f;k,n) t— tA;‘k,n

A(f* f* ) . Zg;!(—&-1,71 - E;k,n

i+1,n0 Yin

Ll G T (VN () |
_1c(ts in)) i g ) N A oy |
1 ,M kn ) tz,n’tl+17”7« A(t* t* )

i+1n “in

for t € [t t 0, i =0,1,... k, — 1, XgM*(0) = 20 and

,m) Vi+1n

AW, = W(t;lk-ﬁ-l,n) - W(t* )a

©,n ©,m

AN:n = N(ffﬂ,n) - N(ﬁ )

i,m
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2.2. Algorithm based on path-independent adaptive step-size control

Note that XgM* has continuous trajectories and coincides with XM* at the
discretization points. The disadvantage of this algorithm is the use of the
values of A. Hence, we also define the piece-wise linear interpolation )_(kLTf”’M*

of the classical Milstein steps by

_ Xli\,{*(fj,n)(fj—s—l,n - t) + Xlig*(f;k—i-l,n)(t - tA;'k,n)

v Lin— M
i+1n i,n

Y

~

fort € [t
X ij"’M *. In discretization points we have that values of methods are equal, it means
that

X g |,i=0,1,...,k, — 1. In general, the method )_(;;7{”* is not equal to

,ny Yi+1n

Xpn M (ir,) = Xph(ir,) = X ,) = XM ()

However, as in [70] it is convenient to use the method XM* = {)_(,iﬁ/[*}neN in order
to investigate the error of Xtm—M* — {X,fj”’M*}neN. We show in the sequel that they
behave asymptotically in the same way. Moreover, for a fixed discretization A} the
method )_(,fj"_M* does not evaluate A and it is implementable. If b # 0,¢ # 0 then
the both methods )_(,ji‘/[* and X,CLZ”’M* use 2k, values of the processes N and W at the
same time points.

The Theorem states the asymptotic performance of the methods X“M* and

XLin=Mx_"The error is expressed as a function of the number k, of evaluations of the

processes W and N.

Theorem 2.4. Let us assume that the functions a, b, ¢ and X\ satisfy the assumptions

(A) = (E) and let X* € { XM= XLin=M=1,
(i) We have that

lim Mo 1 /T<E(H(t)))l/2dt. (2.9)

(i1) If b £ 0 and ¢ £ 0 then

lim (2k,) Y% - e, (X¥) = V2 - PO, (2.10)
n—-+0oo
else
: 1/2 \*) — (moneq
nEkan er, (X™) = Cmored, (2.11)

Proof. First note that for all n € N

XM )y = XM@E), i=0,1,.. .k,
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2.2. Algorithm based on path-independent adaptive step-size control

and

YY(E) = Y () = DU+ ML) - U2 1= 0,1, k=1, (2.12)

i,n ,Mn
where Uy, = (£, X} (#;,,)). Let us define

kn—1

Spni= S max{ (B ) et} G - i), (213)
=0

5= max{ (B (0,))) 0} - - Y. @14)
1=0

for j € {1,2}, n € N.
Firstly we prove (2.9). By definition of step in algorithm given by (2.4) we have
that

kn—1 kn—1

) iy T
T < ;(tHLn —tin) = n ; maX{ (E(%M(f@n)))lﬂ,s”}

<T- (n-en)’l-kn,

which gives

for all n € N. Hence, from (2.3))

lim k&, = 4oc.
n—-+o0o

Since for all n € N
{tAO,na Z?1,717 s 7£knfl,n} - Akn N Azna

by (2.4) and (2.12)) we have that

1S5 — 55| < 2max{ (E(yM(fkn_l,n»)

irz. . R R A )
&} (i — iV <2ATI0Y, (215)

for j € {1,2}. Furthermore, we have that for all n € N

£* < £ P YT An . )L
Ogrz‘rgl%f—l(tzﬂ’" tin) S ogri%%i{q(tlﬂ’" tin) T (n-en)", (2.16)
and, from (2.3)),
nl_lgloo OS%%nX_l(tiJrl,n —tin) = 0. (2.17)
Let
I N2 o
Sii= S (BOM D) G, — 0, G € {12}
i=0
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2.2. Algorithm based on path-independent adaptive step-size control

We can write that

kn—1 . 1/2 )
> (BWED) - (= i) + R
kn—1

Ri, = (@w%ﬁmf”—@w@wﬁ“)«mm—ﬁJ

=0

By the Fact we have that [0,7] 5 ¢ — E(Y(t)) is continuous, and by (2.17) it
follows that

T
o el . 12 1/2
n1—1>r—ililoo (E(H(tz,n))> ' (tz-i-l n zn / dt.
i=0 ;

Then by the fact that for all z,y € R, it holds that ||z|'/? — |y|'/?| < |z — |1/2
have that

— / /

% P 1/2 S 1/2 e A
Bl = | (EG D) - EOEN) - n = T0)
i=0
= M (7% e 1/2 Tk ¥
< RO ED) — WD) En - ).

i=0

By Lemma and Theorem we have that fori=0,1,...,k, — 1
E(YY(0;,)) ~ B < [EBUL)E = BIb(E,, X (0;,))P
Al - [BIe(UZ )P = Ble(f,., X (2,
< C-(T+ M) - Sup | X (t) = X (t) HSZ’(Q)
M*
< (1 s [IX2 >Hm>+ 2 O] o)
< G- 0§£2%§—1<ti+1’n - zn) a7 (TL ’ En)_l
We obtain
R < Cove)f? - (2 e0)7,
and, by (2.3),
lim |R . = 0.
n—-+o00
Hence,
T
1/2
lim S / dt. (2.18)
n——+00
0
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2.2. Algorithm based on path-independent adaptive step-size control

By (2.14) we have

gin < Sr,n < ‘gin +T " En;

which, together with (2.3)) and (2.18]), implies
. r 1/2
lim Sf = lim S;*n:/(ﬂz(y(t))) dt.
n—+oo ’ n——+0o00 ’
0

Moreover, by (2.15) we have that

T
1/2
lim Sy, = lim S{n:/<E(‘j(t))> dt. (2.19)
n—-+o00 n—+00 ’
0
Since :
T J
S]n == kn (_) ) ] S {172}7
n
by (2.19) we obtain
T
T 1/2
lim k- = lim Sy, = / (B) " at < +oc. (2.20)
n—-+oo n n——+oo
0
which gives (2.9). O
Now, we go to the proof of (2.10) and (2.11)). By (2.20)) we also have that
lim k,-n"?=0. (2.21)
n—-+00
Hence, from (2.15) with j =2, (2.20)) and (2.21) we obtain
T 2
T 2 1/2
lim kS5, = lim k- S»p= lim (kn—> - (/(E(y(t))) dt) . (2.22)
n——+o00 ’ n——+4o0 n——+oo n
0
From ({2.14)) it follows that
i kn—1 )
b S5 — e T? < ke S5, — kel > (Byy 0 —t5,)? < kn- S5, < k- S5, (2.23)
) n bl ’ k) ) k)
i=0
Hence, from (2.3), (2.20), (2.22)) and (2.23) we obtain
T 2
- 1/2
lim k-3l — ( / (B0)) dt) | (2.24)
n—+00 ’
0
By decomposition (B.61)), estimation (B.67) and (2.16) we have that
v M v cMx r7 M M -1
‘Han - an £2(Qx[0,T]) ”H n QQ(QX[O,T])‘< HRkn £2(Qx[0,17) S C’(n-en) :
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2.2. Algorithm based on path-independent adaptive step-size control

Let us define
Z:(t) = Z(t) —E(Z(t) | N (Z)), Z € {N,W}.

Then we have that

T i
knfl i+1,n

|H Paxpr) = E(/|ﬁ1§,{*(t>\2dt> = Z / E|HY™(t)Pdt
0 =,
kn—1 f;f«&»l,n
-y / EB(UL,) - W2 (H) + e(U7,) - N ()]dt
=0 .
2

t*
knfl i+1,n

= ) /(E|b(U;n)-W;(t)|2+ E|c(Uf,) - Ni(t)[?
2 Eb(U;) - elU],) - W) - Ni(o)])dt.

We have that b(U,), c(U;,) are F;- -measurable. For all ¢ € [{;,, {7, ] the process
W(t), N*(t) are independent of F; . This imply that

Ep(U;,) - Wi = EpU;,)1 - EW; (1), (2.25)
Ele(U},) - Ni(OF = Ele(U;,)[* - EIN; (1) (2.26)

By the fact that b(U},) - c(U},) are Fp -measurable and E|b(U},) - ¢(Uf,,)| < 400 (by
Hoélder inequality and Theorem ) together with the fact that for all t € [t £ ]

wn Yi+1n

W*(t) - N*(t) are independent of F;. and W*(t), N*(t) are independent we have that

Ep(U7,) - e(Usy) - W) - Ni()] = Ep(U,) - e(U,)| - EIW, ()] - E|N; (1)] = 0.

(2.27)
Finally, by (2.25)), (2.26)) and (2.27) we obtain
kp—1 £:+l,n 1/2
1H e onpay = (Z / E[b(U7,)1* - E[W, (1) +E\C(U5n)|2-E\NZ(tht> :
=,
By Lemma we can calculate that
tA:«%l,n tA')Z«l»l,n
T r% (t;k l,n - t) (t - t::n) 1 Tk Tk
[ Eiopa - [ S g, i 229
. . i+1.n i,n
t;,n t:,n
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2.2. Algorithm based on path-independent adaptive step-size control

Then for i = 0,1,...,k, — L and t € (£5,,t5, ) we define

wny Yi+1n

A(t7 t;,kn) ' A(i\;{-l,n? t)

in t) = * T ’
(tz—i-l n t) (t - tz,n)

Of course H;, € C((t},,%,,,)) and it can be continuously extended to [}, &7, ],

since

A

H(tA::n_’—) = )‘(f;:n) ’ A<£z<+1,n£;n)/(£:+1,n - t:(,n)

and

A,

H(&:—l,n ) - )\( i+1, n) ' A(Lt;(—i-l,n? E:,n)/(fr-‘rl,n - t;k,n)

are finite. Therefore, by Lemma and from the mean value theorem we have that

i i
[ EN0Pa = A i) e [ Hial) G- 0 - e
& £
&iin
— M) Hialdl) [ =) - 6
&
- o = 229)

*

for some dfn, Am,ﬁi*’n,?y;n € [t tryn), i=0,1,... k, — 1. Now by (2.28) and (2.29)
we define

kn—1 ~ A
) n * * )\(ajn>)‘(ﬂz*n> ] ]
S2,n = Z <E|b(Uz,n)|2 + E|C(Uz,n)|2 ' W ’ (ti+1,n - ti,n)zu
=0 i,n

and of course we have that

k1 tLn 1/2 1 1/2
kflz/Q'”ﬁl?f*“z?waT <k Z /E’HM* )‘th> :<€n§§n> - (2.30)

z,n

Furthermore,
ken—1 A 5
Ak Crsk S )‘(O‘:n))‘wzn) P Tk T
’kn ’ SQ,n — ki - S2,n| < k- Z E|C(U 2. )\('3/:”_) - /\<tz,n> '(ti+1,n — tz n)2
kn,
< 0= ONT-(n-g,)"). (2.31)

Hence, from (2.3), (2.20), (2.24) and ( - we obtain
T 2
1/2
lim kS5, = lim k, S, = (/(E(H(t))) dt) . (2.32)

n—-+o0o n—-+o0o
0
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2.2. Algorithm based on path-independent adaptive step-size control

Therefore, by (2.30) and (2.32) we obtain

nginoo k}lz/Q : Hﬁj\i* e2(Qx[0,7)) o,
Since from and it follows that
lim kY% (n-g,)"' = lim <ﬁ)1/2 (et =0, (2.33)
n—+oo \ N

n—-+o0o

and we get

: 1/2 r7 M none
lim k[ HE ]| o oy = €70 (2:34)

£22x[0,T) ~ n5eo

lim k,l/Q . HXM* _ XCM*
n—too kn kn

Next, from Theorem |B.1

C- max (&, —t
Ogigk’n—l( i+1n z,n)

< CT(n-g,) " (2.35)

N

<, (X)

v cM x v M * v cM *
)ekn(X ) - HXk - an £2(Qx[0,T])

Hence, from (2.33)), (2.34) and (2.35)) we have that

e2(Qx[0,7)) ¢rene

Y

Hm k% ey, (XM) = lim k2 || X005 — XM
n—+oo n—+oo n n

which ends the proof in the case when X* = XM*,

Now we analyze the error of X* = X,f:"_M*. Note that

R = K00 - X (0
= C(U::n) ' AN:n ’ Tk 7A* - T ’ Tx
A(ti+1,n’ tz,n) ti+1,n - ti,n
FLb) T (s ) )
7 s (t:+1,n - t;n)z
o —t NG
+ L—lb(Uz*n) ) ANz*n ) AWz*n ) — R ’ E H_LnA )
’ ’ ’ —t; A(t;(+1,n7 t?,n)

Tk
ti+1,n \n

+ L*IC(Ui,n> ’ If’f R (N7 N) ’ e VA* T Tk k* )
prn A(ti+1,n7 tz,n) ti—i—l,n - ti,n

)> L*lb(U:n)a
(N, N)

,kn — 1. By the fact that c(U;,), Lib(U;,,
Niw AW B e (WOW) e e

,n? 3
) i,ni+1l,n N

for t € [t7,,171,),1=0,1,...
L_ic(Uf,) are F; -measurable and A
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2.2. Algorithm based on path-independent adaptive step-size control

are independent of F; and AW

,n N7

Lemma we have that

AN{, are also independent. Together with

A(t,t:,) t—1tr,

» Yin

E[Ry (0 < Ele(US)* EJANG,[*- -

~

Az tr,) i, — 1,

(t— ) - (t— )|
(Efy1m — 11)2
o=t A1)
by =, A, 10

i+1n0 “i,n

+ E[L(U;) 1Bl

i,n’i+1,n

(w.w)*-

2

+ E[Lc(U)P - Ell g (N,N)J-

,mi41,n

In addition, by (2.16)) and Fact we have that

A(taf;kn) t— g;kn _ -1
Sl TR o sup M) - A < G BT (n-e,) ),
At tn)  thas — U, tselty iy ]

(2.36)
fort € [t*,,t,,],i=0,1,... k, — 1.

w,n Yi+1n

By the Lemma [B.28] Lemma [B.2] and (2.36) we obtain the following estimation.

EIRY () < Cr- (w(\T/(n- 5n)))2 I+ (n-e)™h) (n-en)!
+Co-(negy)? (14 (n-e,)™). (2.37)

Since, from ([2.37), (2.21)) and (2.33) we have

]{5711/2 i 6kn<XLin—M*) . k’,,ll/Q . ekn(XcM*)

< k| R

£2(Qx[0,77])

< el @ T (neen) - (14 (- 20) ™) (/)2 - 2}/

we get (2.10) and (2.11) for X* = XLn=M* This ends the proof. |

2.2.2. Derivative-free version of the path-independent adaptive

step-size control

In this section we present the derivative-free version of the Milstein scheme,
which can be used for the path-independent adaptive step-size control and achieves

asymptotically the same rate of convergence as XFin—M+*,
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2.2. Algorithm based on path-independent adaptive step-size control

STEP 0 Take an arbitrary strictly positive sequence {e, },en such that

. _ 1/2 . \-1 _ (n-g, ) 1) =
e = A (o)™ = i et T ()™ =0

where @ is the modulus of continuity for A (see Remark [2.2)).
STEP 1 Take any n € N and let tAo,n =0, )_(M(fo,n) = x0. Set 7 := 0.
STEP 2 Ift;,, € [0,T) and X¥~M(¢,,) are given then compute

- ~ T

tHLn:mm+}%nmx&%(EM#—M@meﬂ}’ -

where
ydf M( zn) = ’b(ii,naxdfijw(gi,n))‘z + A(fz,n) : ‘ ( zn7de M( zn))’Q-

If tAHLn <T, lAzm = tAiH,n — fi,n then compute

~

KI M) = KON () 4 i, XY 010) - G = )
b B K9G (V) ~ W)
el XY (1)) - (N (E2.) = N (i)
00 blEas K ) - T (WD)

+ Loye(tip, XT™M(t;,)) - Itm,;lﬂn(N N) (2.39)
+ L—lb(ti, df M fz n)) (It 7W) + I VVa N))v

tz,n 7tA'L+Ln (

\ny 7,+1n

N z+1n

take 1 := 74+ 1 and GOTO STEP 2.
Else compute X%~ (T) by (2.39) with #;,,, replaced by T.
STOP

The stopping criterion is defined in the same way as in previous algorithm and
kn:min{iENHm}T}, n € N,

which is the total number of computed discretization points greater than tAo,n = (. The

end point T is attainable, since we have for all n € N that
kn < [n(en + C)1, (2.40)

for some C' < 400, where existence of C' follows from the Fact [2.5]
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2.2. Algorithm based on path-independent adaptive step-size control

Fact 2.5. Let n € N and let us assume that there evists M,, € N such that t;,, € [0,T)
forall j=0,1,..., M, — 1. Then
T

{?Mnn 2 Mn N
’ n(en + C)

where C' = Ki(140C)- (14 H)\Hé(/f) and C is the constant from Theorem .

The proof of Fact [2.5 goes analogously as proof of Fact so we skip it. Hence, if
for a given n € N we have that M, = [n(e, + é’)] then by Fact We get men >T.
This implies (2.40]) and the fact that algorithm stops in a finite number of steps.

Again, we obtain two sequences of discretizations A = {Akn}n oy and
A = {Azn}neN and we define the conditional derivative-free Milstein method
df—cMx __ [ Srdf —cMx

XMy = B(XTM (1) | N;, (N, W), te[0,T],

where {Xgi_M*}neN
approximations - based on {A,’;n}neN and vector of information
N; (N,W) is as in (2.8). Followed by Lemma Lemma Lemma [B.27] (see
also [70]) it follows that

is the sequence of time-continuous derivative-free Milstein

A,

* o-df — M * /1% *
)+ alty,, XPME) (8- 15,)

X 1) =

in

- R t—t:
’ " 7 7 t;}(—&-l,n - t;k,n
A(t,t7,)

(B AT E) - AN S

i+1,n0 Yi,n

+ Lyt X ) - L g (VW)

im" i,n’i+1,n
t— tA;kn 2
X ( Fx ’ P >
ti+1,n - ti,n
T o-df — M 7% * *
+ L—1b<ti,n7 Xk:i (tz,n)) ) ANz,n ’ AWz,n
A(t,t,) t—15,

» Yin

X = = e~ =
A<t* t; ) t;!:rl,n - t::n

i+1n “in

+ L—lc(tAZn7 X}gfl_M*(tAj,n» ' If* t* (Na N)

i,ni+1,n

At tr,) N2
(3@ )

i+1,n0 Yin

for t € [Ef,,,t51,), i =0,1,... k, — 1, hf =17, — &1, and X7 ~M*(0) = a,

,ny “i+1n

AWF, = W(E5, ) — W(E,),

@,n
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2.2. Algorithm based on path-independent adaptive step-size control

A,

= N(ti10) = N(E,).

\n

AN}

n
We also take the piecewise linear interpolation X ,fj”_M * of the derivative-free Milstein

steps

o-df — M * (7 T o-df — M * ;7 x T
X (A, — 1) + X0 () (=17,

X}(jﬁ—Lin—M* (t) _

Tk P ’
ti+1,n - ti,n

for t € [t7,,, 6,0, i =0,1,... Kk, — L.
Due to Theorem (B.95) and the decomposition (B.90) we can repeat
argumentation from the proof of Fact and Theorem in order to obtain the

same asymptotic result for X¥—¢M* and XU —Lin=Mx,

Theorem 2.6. Let us assume that the functions a, b, ¢ and )\ satisfy the assumptions

(A) = (E) and let X* € {XY—eMx XA—Lin=0Mx1

(i) We have that

T

ngrfoo% _ % / (E(H(t)))l/ it (2.41)

(i) If b#£ 0 and ¢ # 0 then

lim (2k, )% - ep, (X*) = V/2 - Omomea, (2.42)
n—-+0o0o
else
: 1/2 Y *) — (moneq
nl_l)I}_loo k< - eg, (X™) = Cmored, (2.43)

Proof. The proof of (2.41) goes almost exactly in the same way as proof of (2.9). The

main change in the proof goes as follows. Change:

XM into XM,
Xéf* into Xgi_M*,
9 () into YU (E,)

e . df N wdf—Ms
U = (t; X,i‘f (t;,)) into UZ-,]; = (t; in (7))

in \n i,n?

Then we use definition of step given by (2.38)) and Theorem instead of (2.4)
and Theorem [B.1] Hence, finally we obtain

n—-+4o0o

T

- T 1/2

lim kn-ﬁ_/@z(y(t))) dt < 400,
0
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2.2. Algorithm based on path-independent adaptive step-size control

which gives (2.41]). Using the same argumentation as in proofs of (2.10)) and (2.11)) we

have that

. 1/2 df —eM*\ __ 1: 1/2 vdf—Mx  xrdf—cMx __ o Ynoneq
nl—l>r—iI-100 kn ek"(X ) a nl—1>I—&I-loo kn HXk" Xk" L2@axo,1) ¢ ’
which ends the proof in the case when X* = X#—cM~, O

Now we analyze the error of X* = )_(gi_Li”_M*. Note that in this case

RZ{L*M* (t) = X}?{;*CM* (t) o X’(;lifLin—M* (t)
C(Ugﬁ*) AN, - A( 7A) . n
: ’ At mtin)  tha. —th,

(t—=17,)- (t=171,)
(tf—&—l,n - t;(,n>2
tAz(,n —t A(Ezi—&-l,m t)
tAz(—l—l,n - f;k,n A(f* E* )

i+1,n0 Yi,n

. 2 .
At tr, t—tr,
+ L_lc(Uf]:) Iy 3 (N,N)- <<(—))> —’>7

i,nolitln e e - _ %
A(ti+1,n7 ti,n ti+1,n ti,n

+ Ly DUSY T e (W, W)

,mi+1,n

for t € [t 4., i = 0,1,... k, — 1. By the fact that c(UY"), £,; bUY),
Loab(Uf)), Loac(U)) are Fi -measurable and AN7,, AW, Ly g (W,W),
Lp e, (N, N) are independent of 7. and AW}, , AN/, are also independent. Using

the same logic as in the case of (2.37) the only change is that we use Llﬁmb(Ug{f)
instead of le(Uf];*), which satisfies exactly the same assumptions, by Theorem m

and we have that
E[RIM 0P < G- (@NT/(n-e.)* (14 (n-en)) - (n-2,)"
+Cy-(n-en) 2 (14 (n-e,)™h). (2.44)

Since, from ([2.44]), lir}rl k,-n~2 =0 and
n—-+0oo

. 1/2
lim kY% (n-e,)"' = lim (—) (n'?-e,)7t =0,

n——+00 n—+oo \ N

then
1/2 v df — Lin— M x 1/2 vdf —cM
kn/ < e, (X ) — kn/ g, (X ) £2(Qx[0,T))
<Ot 0T/ (n-e)) - (14 (n-g,) ™) (ko /m) /2 - )/
+ Oy (k2 (n-0)) - (14 (n-e,) "),

< k|| BRI

we obtain (2.42)) and (2.43)) for X* = X¥~Lin=M* This ends the proof. [ |
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2.3. Lower Bounds

We have the following result.
Theorem 2.7 (|72|). Let us assume that the mappings a, b, ¢, and )\ satisfy the
assumptions (A) - (E). Let X be an arbitrary method from x""4. Then

lim inf (costn(X))l/Z . €n(X) > (movea

n—-+o0o

From Theorems [2.4] [2.6] and we can obtain the following main result of this
chapter.

Theorem 2.8. We have that

lim n1/2 . enoneq(n> _ C«noneq7
n—-+0oo

and the methods XM gnd X¥-Ln=Mx qre asymptotically optimal in the class

noneq
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Chapter 3

(GGlobal approximation of solutions of

multidimensional SDEs with jumps

In this section, not yet published, we consider the problem of approximation of
stochastic differential equations given by (L.1) where 7" > 0 and N = {N(t)}te[QT]
is a one-dimensional non-homogeneous Poisson process, with intensity function A,
and W = {W(t)}te[O,T]

knowledge these are first results in the case of multidimensional jump-diffusion SDEs.

is a my-dimensional Wiener process. According to our best

3.1. The setting

Let T > 0 be a given real number, parameters d,m,, € N, and (Q, F,P) be
a complete probability space. We consider on this space independent processes a

my-dimensional Wiener process

W={W®}com
Wt

wi = | "0
W (1)

and a one—dimensional non—homogeneous Poisson process

N = {N(t)}te[O,T}’ (3.1)
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3.1. The setting

with intensity function A = A(¢). Let us denote by {F;} the complete filtration

t€0,T
generated by the driving processes N and . -

To simplify notation we use the same symbol || - || for both Frobenius and
Euclidean norm, and the meaning is clear from the context. In this chapter we always
use Frobenius norm for matrices and Euclidean norm for vectors. Let for function

f €{a,b,c}, exists K > 0 such that

(AMD
(BMD
Blyuo) If(ty) — f(t2)|] < Klly — =],

(
(B2w) 1t y) — f(s, 9l < K(1+ [yl — s,
(B3uwp) ‘(%J;(t,y) —~ g—yfj(t,z)Hg K|y — 2| for all j € {1,...,d}.

fe ([0, T] x RY).
For all t,s € [0,T] and all y, z € R?

)
)

(Cup) There exists K > 0 such that for f € {b',... 0™ ¢}, for all t € [0,T], y, 2 € R,
jeA{1,2,...,my} we have

1L f(ty) = Lif(t,2)| < Kly—=[.

The diffusion and the jump coefficients satisfy the following jump commutativity

conditions.
(Dyp) For all (t,y) € [0,T] x R?, all j1, 70 € {1,2,...,my},

leij(t7y) = Lj2bj1(t7y)v (32)
Lic(t,y) = Lab'(ty). (3.3)

(Ewp) For the intensity function A : [0,7] — Ry we assume that A € C([0,T1).

By Appendix and the fact that a, b, ¢ and \ satisfying (Blyy), (B2yp), and
(Ewp) the equation ([1.1) has a unique strong solution X = {X(¢) }+cjo,r) that is adapted
to {‘Ft}te[o,T

Condition (D,,;,) will allow the calculation of stochastic integrals defined in (B.4).

More details about why we use this condition will be given in the next section, where

| and has cadlag paths.

the algorithm will be analyzed. (We refer to Chapter 6.3 in [61]|, where the conditions

(3.2) and (3.3) are widely discussed.)

In order to characterize asymptotic behavior we define constant

csa = @ - ( / E(%(t))dt) 1/2,
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3.1. The setting

is defined as

where the process {B(t)}te[o 7]

Y(t) = |[b(t, XO)||* + [|et, X@)||* - M), te0,7T].

Jump Commutative conditions

Before we present algorithm we would like to show examples of problems which
satisfy jump commutative conditions.

Let us consider the problem of the following form

1=

dX;(t) = rX;(6)dt + S oW X () dW; (1) + ¢, X, (£)dN(¢), t € [0,T],
X;(0)>0, i=1,...,d

In that case for z € R% we define the functions

alt,z) = r-x = r-(21,...,24)7, (3.4)

c(t,z) = (ctay, ..., cxg)T. (3.6)

Let o = o%(t) and ¢ = (t) for all j € {1,2,...,my} and

i € {1,2,...,d}. Let y € R? then the functions defined by (3.5) and (3.6)

satisfy condition (D).
We now justify the claim above. For all ji,jo € {1,2,...,my} let us check the
equality L; v2(t,y) = L,V (t,y)

o2 (t) 0 0 oI (t)y, o2 (1) ol (t)y,
L] O 0 0 | e | meon |

0 0 o®I2(t) oI (t)yq o2 (t) oI (t)y,

A0 0 a0

Lt y) = 0 02”’.1 (t) Q o2 Ft)yz | (ﬂf’” (t)ys

o 0 o)) \o2(a)  \ o ()0t
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3.2. Algorithm based on equidistant mesh

This implies that L;, b (t,y) = Lj,b"'(¢,y). For all j; € {1,2,...,my} let us check the
equality L; c(t,y) = L1t/ (t,y)

c(t) 0 0 o () ()t ()
L cft.y) — 0 () 0 oM (ys | | AB)e* 7 (B)y |
0 0 c(t) o (t)yq cH(t)a® (t)ya
By + ¢ (B)y) oty ()t (H)y
LWty = o (B)(y2 + E()y2) || M By | | (B0 (D
a7 (t) (ya + c(t))ya) a7 (t)ya ! (t)a®7 (t)ya

This implies that Ljc(t,y) = L_1b"(¢,y). That ends the proof of fact that problem
defined by functions (3.4) — (3.6) satisfy jump commutative conditions.

If
a(t,x) = r-x = r-(z, ,:Ud)T,
b(twqj) = [ Z’]]ZBW:LVII’
c(t,r) = (cl7 ,cd)T

It is easy to see that for all ji,j» € {1,2,...,my} and for all (t,y) € [0,T] x R?
L b2(t,y) = 0, L1V (t,y) = 0, and L; c(t,y) = 0. It means that in this case the

condition (D) is also satisfied. For more examples see also page 227 in [61].

3.2. Algorithm based on equidistant mesh

In this section we present an implementable and asymptotically optimal algorithm

in the class x°4, which is based on equidistant mesh.

3.2.1. Description of the method and its asymptotic

performance
We define the algorithm based on equidistant mesh.
STEP 1 Take any n € N and let ¢5,, = 0, XM (ty,,) = 2o. Set i := 0.
STEP 2 If t;,, € [0,7) and X™(t,,) are given, then compute
T

ti—i—l,n - tim, + —.
n
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3.2. Algorithm based on equidistant mesh

Iftiy1,, < T, then compute

XM(tz'H,n) = XM(tz‘,n) + a(tin, XM(ti,n)) (tizin — tin)
+ 0(tin, XM (tin)) - (W (tigrn) — W(tin))
+ (tin, XM (tin)) - (N(tiy1n) — N(tin))
1 & , _
+ 5 Z Lj1b]2 (ti,m XM(t%n))

Ji,g2=1

)
)

~— ~—

X <[ti,n7ti+1,n (an sz) + [ti,n:ti+l,n (Wj27 le))
+ Loyc(tim, XM(tin)) - I N,N)

i,'ruti+1,7L(
+ Z L—lbjl (ti,nv XM<tl,n)) : <Iti,n7ti+l,n (iju N) + Iti,n,ti+1,n (N7 VVJl)) )
J1=1
take ¢ := 7+ 1 and GOTO STEP 2.
STOP

Running n through the natural numbers, we obtain the sequence of equidistant

discretizations A = {An}neN’ where

An = {ton tips s tan}, neN.

We have that ¢;,, < T foralli=0,1,...,n. So we observe the Poisson and the Wiener
processes only in [0, 7]. Here the definition of discretizations satisfies the assumptions
of the calculation model. By X* = {XM} _ we denote the conditional Milstein

method based on the sequence of discretizations A, which is defined as
XM () = E(X) (1) | No(N, W), t€0,7],

where {Xfl” }neN is a sequence of the time-continuous Milstein approximations

— based on discretization {A,} _.
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3.2. Algorithm based on equidistant mesh

By Lemma - we can calculate that X¢M(t) is given by

XMty = XM(ti) + altin, XM (tin)) - (t —tin)
; t—tin

+ b(tin, XM (tin)) - AW, - ——

’ ’ 7oty — tin
A(t, tin)

Ativin, tin)

1 & . -
t3 > Ly (tin, XY (i)

J1,J2=1

2
t—tin
% (Iti,n,ti+1,n(Wj1’ VVD) + ]ti,n7ti+1,n(Wj2’ VVJl)) . (t—)

-+ C(ti’n, XM(tz’n)> . ANl’n .

i+1ln ti,n
+ Z Lflbjl (ti,na X;]L\/[ (ti,n)) ' (Iti,n,tiJrl,n(le? N) + [ti,mtiﬂ,n (N? le))
j1=1

)

Ativin, tin) tigin —tin

At tin) t—tin

2
A(t, tz’,n)
+ L—lc(ti,me(ti,n)) ' Iti,nyti+1,n (Nv N) ’ (m) ’

for t € [ti,nyti-i-l,n}y 1= O, 17 Lo, = 1 and XZM(O) = Ty,

AW, =W (tiv1n) — W(tin),

)

AN,y = N(tiz1.0) — N(tin)-

Note that X has continuous trajectories and coincides with XM at the
discretization points. The disadvantage of this algorithm is the usage of the values
of A. Hence, we also define the piecewise linear interpolation X1"~™ of the classical

Milstein steps by

XM(tin) - (tigin —t) + Xy(ti-i-l,n) (t—tin)

)
tivin —tin

XL M (p) =

for t € [tin titin), @ = 0,1,...,n — 1. In general, the method XM is not equal to

XLin=M "hut in discretization points we have that for all i = 0,1,...,n —1

XﬁmiM(ti,n) = XCM<ti,n) = XM(tz,n) = XM(t“J

n n

However, it is convenient as in the scalar case to use the method XM = {X’ﬁbM }HGN
in order to investigate the error of XM — {qu""*M}neN. We show that they

behave asymptotically in the same way. Moreover, the method X"~ for any fixed

43



3.2. Algorithm based on equidistant mesh

discretization A, does not evaluate A, and it is implementable. Both methods XM
and XLn=M yge (my, +1) - n values of the processes N and W, when b # 0 and ¢ % 0.

We also have the following results. The proof of the following results go by using
the extension of the technique proposed by author of [44].

Theorem 3.1. Let us assume that the mappings a, b, ¢ and \ satisfy the assumptions
(Avn) — (Bup). Let X be an arbitrary method from x°4. Then we have the following

upper bounds.

(i) If b £ 0 and ¢ Z 0 then

lim inf (costn(X)) 2 en(X) = (my + D2 29 (3.7)
n—-+0o0
(i) If b# 0 and ¢ = 0 then
lim inf (costn()_())l/2 cen(X) = (my)Y? - C. (3.8)

n—-+00
(11i) If b=0 and ¢ # 0 then

liminf (cost,(X)) 12,

n——+o0o

en(X) = Cii. (3.9)

Proof. We start with showing (3.7) in the case when b # 0 and ¢ # 0. Let
X = {X"}neN € x°? be a method based on sequence of uniform discretizations
A = {A,‘iq}neN, where each A% = {jT/n | j = O,l,...,n}. Therefore, we have

that for all i € {0,1,...,n— 1},

T
Livin — tin = —. (3.10)
n

We denote by N(N, W) = {N,(N,W)}
the values of N and W at A%, i.e.,

wene Where each vector N, (N, W) consists of

N,(N, W) = [N(tlm), N(ton)s-- N(tnn),
W (t10), W(tan)s -, W(tnn)]- (3.11)

Every X,, uses information about the processes N and W. Let us denote by
{Xfl” }neN the sequence of continuous Milstein approximations - based on
the sequence of discretizations A and which use the information N(NV, W) about the
processes N and W. From Theorem and fact that we consider equidistant mesh
we have that

HX_Xést?(Qx[ <C-n (3.12)

0,7))
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3.2. Algorithm based on equidistant mesh

where the positive constant C' does not depend on n. Moreover, let

A

Zn(t) = Z(t) =E(Z(t) | Nu(2)),
for 7 € {N,VV,Wl,...,W } and t € [0,7]. Note that for any ¢ € [tin,tit1n)]

the random variable Z,(t) is a convex combination of Z(t) — Z(t;,) and
—(Z(tiy1rn) — Z(t)). Hence, Z,(t) is independent of F,
and the processes {Nn(t }teOT {W }te[U,T]
of Wiener process we also have that E(W]n(t)) = 0. Moreover, random variable
Ny (t) - Win(t) for t € [tin,tiy1n] and j € {1,...,my} are independent of Fi,.,- For
almost all ¢t € [0, 7] we have that

for all t € [tin, tiv1n)

i,n

are independent. By the definition

E[| X () - XM ()| > B[ XM () — E(XM (1) | Na(N, W)

From (3.10)), (3.12)), (B.61) and Lemma we have that

en(X) X _XMHLQ

WV
>

HX o XMHQQ (2x[0,T]

n (2x[0,T)) )
> 1% =B NN W) | oy = €
2 ”HM RMHQ? Qx[0,7)) —Cont
> ||H7JL\/IH)32(Q><[U,T]) —Conl (3.13)
Let Uy, = (tin, XM(t;,)), then we have that
T
182 ooy = [ BN @]t
=Y / E|[b(Us ) - Wa(t) + c(Us ) - N (1) dlt.
=0 ts,

Foralli € {0,1,...,n— 1} and t € [t;n, ti+1.n] we have that

E[|6(Uin) - Walt) + c(Uin) - Nu(2)|?

~—

d My 2
- E) <Zbk’j(Ui,n)'Wj,n(t>+ C'“(Ui,n)-Nn(t))
k=1 \ j=1
d M 2
- B (Zb’“ﬂ‘(mm»m,n(w)
k=1 \ j=1
d mw
+ 2 Ezzbkj zn : A ,n(t> ’ ck(Ui,n) ’ Nn<t)
k=1 j=1

+ Ei (ck(Ui,n) . Nn(t)>2. (3.14)
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3.2. Algorithm based on equidistant mesh

By the fact that for all & € {1,...,d} and j € {1,...,my}, we have that
VP (U; )-c*(Us ) are Fi,.,, measurable. Then by the Holder inequality and Theorem

we have that E[b"7(U;,,) - *(Uyn)| < 0. So we obtain
E(b5 (Uiy) - Wyn(t) - F(Usn) - Nu(t)) = E(ka(Um) : ck(Um)) CE(Wa(t) - Na(t))
=B (U,) - " (Uin)) - E(W;n(t) - E(N, (1) = 0. (3.15)

By (3.14) and ( m we have that

z+1 n

HHMH,Q?QX[OT] Z/ E||b(U;n) - An(t)HQ—i—E”C(Ui,n)'Nn(t)HQ)dt' (3.16)

zthn

By the fact that for all k € {1,...,d} and j € {1,...,my}, V" (U;,) and c(U,,,) are

Fi, ,-measurable. Processes Nn, I/T/jn are independent of F;, , so we have that

i,n?

E||b(Us) - Wal0)]]* = (Z(Zb'” ) A’"“))j

k=1 j=1
d mw 9
_ ZZE(b’“’j(Um) an(t))
k=1 j=1
d mw
= DD EOM(U) E(Wu(1)
k=1 j=1
= N E[Y U] E(Wa(b)’, (3.17)
j=1
and
Ellc(Uin) - Na®)|" = Elle(Usn)|? - E(Na(t))”. (3.18)
Finally, by — we have that
n—1 tit1n
1 ey = (3 [ (el 2000
1=0 tim

1/2
+ EHC(UM)HQ-E(Nn(t))z)dt> . (3.19)

Now, we analyze the asymptotic behavior of the first term in (3.19). From

Theorem we have that for all j € {1,2,...,my} (analogously like in (2.28)))
it follows that

titi,n

A 1
/E(WM( )t = (b — i) (3.20)
ti,n
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3.2. Algorithm based on equidistant mesh

From Lemma [B.32] we have that

n—l1 T n—1 T
=0 i=0

n
n—1 ) ) T
< }:meaﬁm” — E|[b(ti, X i) [ -
o .
=0 7=0
<Y (1 XM (1) X)) gz
2O (1 s X Ollerey + sup X Ol
T
X HXy(u") - X<ti:")H22(Q) n
< Ci/n. (3.21)
By and by Fact [B.30| we have that [0,7] 3 ¢ — E||b(¢, X (¢ H is continuous,

we arrive that
T

:/EMtX )Pat (3.22)

0

n—1 ) T
i SR

The asymptotic behavior of the second term in (3.19) goes from the following

consideration. Analogously like in (2.29)) we have that

(O‘z 2)A(Bin) 2
E(N, ()2t = = Q) AW in) g 2, 3.93
/ ( ( )) 6 /\(’Vz,n) ( +1, ) ) ( )
ti,n
fOl" some Oéi’n, 6@”’ %,n (S [tz"n, ti—l—l,nL 1= 0, ]_, e, — 1.
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3.2. Algorithm based on equidistant mesh

From Lemma [B.32] we have that

nl)\ Zn Zn T n—1 T
>y Bl = oA Bl X[ | <

1= o 1=0 n
n—1
(azn) (6171 2 2 T
< ‘E Uzn - )\ zn ‘E i,M) tin .
5 o) g, ot XD
n—1
(azn> (ﬁzn T
< g )\(%, ’EH i,n H EH i,n (tl,n)) ’ 'n
ln Z?’L T
Z‘ (o B — Atin) 'EHC(ti,mX(ti,n))HQ T
n—1
< 0(1 n XM, X0
>_C(1+ s 1K 0|+ 52 1X0) o)
v T
X ||Xn (tz,n) - X(tlvn>H22(Q) : g
n—1
+ Co 11/ Moo = Al = D2 (IMBi) = Alti)]
i=0
T
+ M) = M)l ) -
By and Fact [B.30| we have that [0,7] 3 t — A(t) - E|c(¢, X (¢ H is continuous

and we arrive that

ngrwa—“;’g?%ff”) B (U

SRR

:/)\(t)-IEHc(t,X(t))Wdt. (3.25)

By (3.13)), (3.20)), (3.23)), (3.22)), and (3.25)) we have that

lim fnf - (%) > it B oo
n—1 my 2
TR 1/2 -
= lmjatn (;;EH” Wl

,\ /2
4 Bo(U,) - A AMin) T—)

A(Vin) 6n2
‘ ‘ T n—1 T
= i VE(Z B0 [

1/2
2 )\azn ﬁi,n T
* ZE” m )'E>
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3.2. Algorithm based on equidistant mesh

1/2
E(Y (t))dt) : (3.26)

Therefore, by (3.26) we obtain

liminf (cost,(X)) 2

n—-+00
which ends the proof of (3.7)) in the case when b # 0 and ¢ # 0.
If b # 0 and ¢ = 0 then cost,,(X) = m,, - n which yield

cen(X) = (my + 1DY2 . C

MD)

1/2

liminf (cost,(X)) '™ - e,(X) = (m W)

n—-+00

If b =0 and ¢ # 0 then cost,(X) = n, which yield
lim inf (costn(f())l/2 cen(X) = 0.
n——+oo

For b = 0 and ¢ = 0 we obtain a trivial lower bound. That ends the proof. |

Theorem 3.2. Let us assume that the mappings a, b, c, and X\ satisfy the assumptions

(Aup) = (Eyp), then for X € {XM XTin=MY we have the following upper bounds.

(i) If b#£ 0 and ¢ # 0 then

lim sup (costn()f())l/2 cen(X) < (my + 1DY2. 0%, (3.27)
n——+o0o
(i) If b £ 0 and ¢ = 0 then
lim sup (costn(X'))l/2 cen(X) < (my)Y? - 0% (3.28)
n—-+00
(ii1) if b=0 and ¢ Z 0 then
lim sup (costn(X))1/2 cen(X) < O (3.29)
n—-4o00
Proof. Firstly we prove — for XM We have that
en(XCM) - HX XCMH»:? Qx[0,77))
< HX o XMH£2 (Qx[0,1)) + Her\z/[ —IE(XfLV[ | No(W, N))Hf:?(gx[o,T])
< O+ [ H | e oy + 11 L e2aioary
< Cn7l+ HHTJLWHSQ(QX[O,T])' (3-30)
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3.2. Algorithm based on equidistant mesh

Follow by steps analogously as in proof of Theorem we have that

ﬁn HQQ(QX[O,T])

limsupn'/? . e, (XM) < limsupn'/?
n——+00 n——+oo

And then by (3.30]) and (3.31]) we have that

lim sup (cost, (X))

n—-+o0o

That ends the proof of (3.27) in the case when b # 0 and ¢ # 0.

If (b# 0 and ¢ = 0) then cost,(X®) = m,, - n which yield

lim sup (costn()_(d‘/f))l/2 e (XM < (my) Y2 Ccl

n—-+00
If (b =0 and ¢ # 0) then cost,(X) = n, which yield

lim sup (costn(f(d\/[))l/2 cen( XMy g o

n—-+o0o

That ends the proof of (3.27) — (8.29) in a case of X = XM .

Now we analyze the error of X = X "M Note that

Rf‘{[(t) — XfLM(t) _ XT[L/in—M(t)
A(t.t: o
= ¢(U,) - ANy, - (t, tin) _ t—tin
A(ti+l’n’ tl’") ti+17n - ti,n

1 :
+ 5 Z lebp(Ui,n) ’ ([ti,n,tiﬂ,n(Wju W ) + Iti,n

J1,J2=1

(t—tin) (t —tiz1n)
(tivin —tin)?

— (e
=CHL.

1/2 (XCM) (m + 1)1/2 Ceq

(3.31)

W, 175)

7ti+1,n( 2o

+ Z Lflbjl (Ul,n) ’ ([ti,n,ti+1,n (Wj17 N) + Iti,n,tiJrl,n (N? le))

Jji=1
Lim — A(tivin,t)

Atizin, tin)
At tin)

X
tivin —tin

+ Lflc(Ui,n) ’ Iti,mtiﬂ,n (N’ N) ) ((A(t'+1 t: )

for t € [ti,nati+1,n]7 1 = O,l,...,k’n
Lt (Uip), L-1c(Ui,) are Fi,, -measurable for all ji,js

2
t _
Litvin

ti,n
- ti,n ’

— 1. By the fact that c(U;,), L;jb?(Un),
e {1,...,

my} and
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3.2. Algorithm based on equidistant mesh

ANZ}W ]ti,n7ti+1,n(Wj17 VVJQ): Iti,nati+1,n(N’ N>’ Iti,nyti-!—l,n (N> VVJi)v ]ti,n,ti+1,n<Wj1) N) are
independent of 7, . Together with Lemma we have that

2
_ 2 A(t, tz’n) t - ti7n
E|| Ry ()|” < ElleUin)|? - EJAN; > - |- — -
A(tz-l-l,na tzm) tz+1,n tz,n
. . 5
+ 5 Z EHLﬁbD(Ui,n)HZ .E|Iti,n7ti+1,n(le’ W?Q) + Iti,n7ti+1,n(Wj27 W71)|
J1,j2=1

2
(t—tin) (t —tiz1n)
(tiv1n — tin)?

+ Z EHL—lbjl (UZ,TL) H2 ’ ]E‘Iti,n:tH—l,n (Wj17 N) + Iti,n,ti+1,n(N7 VVJ'1)|2

J1=1
tim — 1 A(tizin,t)
tivin —tin Ativin,tin)
2
+ E|lL_1c(Uin)|)? - E| Ly, N, N)|

X

JLitln (

2
A(t, t@n) t—1in

X S — A —

Altivain, tin) tivin —tin

In addition, by Fact we have that

2

)

At tin) =t
Altizin tin)  tisin —tin

<O osup MO —A$)| < Cr-@(\T/n), (3.32)

t,5€[ti nytit1,n]

for t € [tin.tiv1n), © = 0,1,...,n — 1. By the Lemmas and [B.28) and (3.32) we

have that

E|| RN (t)

I

< G- (@AT/m)" (L n)
+Cy-n 2 (1+nh). (3.33)

Since, from ([3.33]) we have

nl/2 e (X LMY /2. €n<XcM)‘ <nl/2. |’R7J\LJ||22(

Qx1[0,11)
1/2

<O o\ T/n)- (L4+n")
+Cyon 2 (1407 )

We obtain the same asymptotic behavior for X"~ like for the method XM . So we

have that

limsup (cost, (X" ")) M2,

n—-+o0o

en(XLinfM) < (mw + 1)1/2 . Cﬁ%-
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3.2. Algorithm based on equidistant mesh

This ends the proof of (3.27)) in the case when b # 0 and ¢ # 0.
If b # 0 and ¢ = 0 then cost,(X*"~M) = m,, - n which yield

limsup (cost,, (X" ")) e,

n—-+o0o

en(XM)y <ml/2.ce
If (b =0 and ¢ # 0) then cost,(XF"=M) = n, which yield

lim sup (costn()_(Li”_]\/[))1/2 e (XETMYy L o

n—-+o00

This ends the proof. |

From Theorems and we obtain the following results on the asymptotic

performance of the methods XM and XF"—M,

Theorem 3.3. Let us assume that the functions a, b, ¢ and X\ satisfy the assumptions

(Aup) — (Ewp) and let X € { XM XEn=ML Then we have the following estimations.

(i) If b £ 0 and ¢ #Z 0 then

12

Hm ((my +1)-n)"" e (X) = (my + 1)Y?- 0.

n—-+4o0o

(i) If b# 0 and ¢ = 0 then

lim (my, - n)1/2 cen(X) = (mw)1/2 -CFL.

n—-+oo

(11i) If b=0 and ¢ £ 0 then
lim n'/?.e,(X) = C%,.

n—-+o00

Finally, by Theorems [3.1]and [3.2] we get the asymptotic behavior of the nth minimal

error in the class x®.

Theorem 3.4. We have that
lim n/?.e(n) = C

MD?
n——+oo

and the methods XM and XM are asymptotically optimal in the class x°9.
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Chapter 4

Basics information about CUDA C
programming language and numerical

experiments

Approximation of solutions of SDEs requires simulations of many independent
trajectories, what is computationally very demanding. Luckily, parallel computations
are becoming more and more popular and the architecture of the Graphics Processor
Unit (GPU) allows to significantly decrease the time of computations. That was the
primary motivation to develop a CUDA C library. The library is dedicated to parallel
simulations on GPUs of many independent trajectories of solutions of system stochastic
differential equations with jumps. We named it by cuSTOCH. There is ongoing effort
to develop and document a stable code version which can be released. Code and
implementation are not the main subject of this thesis, but we mention it due to
the fact that the results of simulations presented in Section were obtained based
on algorithms developed in CUDA C (then incorporated as a part of the library). In
order to better understand the code shown in Section [4.2] the Section has been
developed. We show in Section short introduction and basic tools of the CUDA C

programming language.
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4.1. An introduction to CUDA C programming language

4.1. An introduction to CUDA C programming

language
In this section we present the programming tools of CUDA C, which are employed
in the library and simulations. We also assume that the reader has a basic knowledge

about programming, e.g. C/C++. For more details and specification we recommend
[74] and documentation of CUDA C [47].

4.1.1. Basic notation and definitions

We start with introduction to CUDA C notations used in this work. We will
consider CPU and GPU (central processor unit and graphic processor unit), which
we can divide into two parts host and device. Host represents standard CPU together
with dedicated CPU memory RAM. By device we mean GPU which consists of several
parts. In the Figure [4.1| we show example of discussed architecture, where we have
one CPU and one GPU. As we can see in Figure [{.I] GPU consists of multiple
parts: various memory types and multiple processing units. Our description starts
with CUDA application components as a kind of abstract structure, then we describe
the processing unit. Finally, we describe types of memory.

As we simply describe CUDA C concept we should discuss three abstract structures
which build programs which are run on GPU. There are thread, block of threads (or
block) and grid. Thread is the smallest part of that structure. It is a single unit which
performs given operations. Threads build a block of threads which is an independent
copy of the kernel and is placed in the same stream processor. Locations in the same
block give threads possibility to communicate with each other by a special part of
memory. Multiply blocks are combined to bigger form in this structure, this form is
named grid. All blocks in the same grid have the same number of threads. More details
about definition of thread and block are presented in Section [4.1.3

To understand the roots of the architecture, we present such a brief of history.
Graphics processing unit (GPU) is a type of computer chip that rapidly performs
specific mathematical calculations. The primary usage is for the purpose of rendering
images. In the early days of computing, CPU was performing these calculations but
when more graphics-intensive applications were developed, their demand put strain
on the CPU and degraded performance. GPUs were developed as a way to offload
those tasks from CPUs and free up processing power. Nowadays, graphics processors

are being adapted to share the work of CPUs and for example solve computation
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Local memory —
Texture memory — ——

N\ DMA transfer /S .
Main CPU memory
/ PCIExpress 2.0 16x \

bandwidth & GB/s

bandwidth 25.6 GB/s ] [

Constant memory

4
|

6 memory controllers
bandwidth 76.8 BG/s

Register
8K x 32bits

(16K on cc1.31\

Multicor 1 Corel

out of 24
(=3x8) Core2 Cachel3  12MB
Core3
Cored Cache L2
Core5
Coreé
Cache L1 /
Core?7 32KB
Core8
Special functions units —— c’og c'oq_ C,O

Double precision unit —

{only on €C1.3) Intel Xeon E5630

"’/ NVidia Quadro FX 4800

Figure 4.1: CPU + GPU structure.

consuming tasks like molecular chemistry simulations or training deep neural networks
for Al applications. A GPU may be easily integrated with a CPU on the same circuit,
on a graphics card or in the motherboard in both personal computer or server. The
major players in the GPU market are NVIDIA, AMD, Intel, and ARM (recently
announced to be acquired by NVIDIA).

The last part that should be explained is the memory structure. Graphic cards are
equipped with several types of memory. Each of them are designed to perform different
tasks. We summarize memory specification in Tables we show comparison of
memory sizes. In Table we present how to define variables in selected types of

memory. We have the following memory types:

e register memory
It is the fastest type of memory available on the graphic card. Register memory
is used to store data by the threads. Stored data is accessible only by the thread
which wrote it into memory, and is available only for the lifetime of that thread.
e shared memory
This type of memory is more complex than register memory. Data stored there are
accessible to all threads within a block of threads. Variables are available until the
end of the block existence. This type of memory allows threads from one block of

threads to communicate and to share data between each other.
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4.1. An introduction to CUDA C programming language

constant memory

For the data that will not change over the lifetime of kernel execution we can use
constant memory. Available for a grid during lifetime of application.

texture memory

It is one of the special types of memory. It is a variety of read-only memory on
device which is used to reduce memory traffic in specific situations. Available for
grid during lifetime of application.

local memory

Local memory has the same scope as registers, but the difference is that local
memory is slower than register memory. It is the largest part of available global
memory.

global memory

This type of memory is the most universal. Device as well as host processes
can manage data stored here. Data is available during the lifetime of the host

application. This type of memory takes the biggest part of whole memory.

Type Read/write | Scope | Lifetime Speed
Global read /write grid application | slow, but cached
) o cache optimized for
Texture | read only grid application
2D /3D access pattern
) o where constants and kernel
Constant | read only grid application
arguments are stored
Shared read /write block | block fast
used when it does not fit in to
Local read /write thread | thread registers part of global memory
slow but cached
Registers | read/write thread | thread fast

Table 4.1: Summary of properties of particular types of variables
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4.1. An introduction to CUDA C programming language

Type RTX 2080 Ti | Titan V | GTX 950M
Total global memory 10989 MB 12037 MB | 2004 MB
Texture alignment 512 B 512 B 512 B

Total constant memory 64 KB 64 KB 64 KB
Total shared memory per block | 48 KB 48 KB 48 KB
Total registers per block 64 KB 64 KB 64 KB

Table 4.2: Comparison of memory size

Type Declaration

Global __device __ int globalV
Texture see [82]

Constant | constant__ int constantV
Shared __shared _ int sharedV
Local int vArray|10]

Registers | int v

Table 4.3: Declaration of individual types of variables
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4.1. An introduction to CUDA C programming language

4.1.2. Differences between C/C++ and CUDA C

Now we discuss a simple example, which shows us the main differences between
C/C++ and CUDA C programming language.

#include <stdio.h>
#include <cstdio>
#include <cstdlib>

#include <iostream>

__host  void CPUFunction () {
printf("This function is invoke on CPU and run on the CPU");

}

__device  void GPUFunction (){
printf("This function is invoke on GPU and run on the GPU");

}

__global  void kernelFunction () {
printf("This function is invoke globally and run on the GPU");
GPUFunction () ;

}

int main(){
CPUFunction () ;
kernelFunction <<<1,1>>>();

cudaDeviceSynchronize () ;

/ /RESULTS:
//

// This function is invoke on CPU and run on the CPU
// This function is invoke globally and run on the GPU
// This function is invoke on GPU and run on the GPU

/!
Listing 4.1.1: Comparision between C/C++ and CUDA C — main code and results

In the example we highlight fragments, which are especially important in the
context of CUDA C programming language. Firstly, we can see that CUDA C requires
qualifiers to the standard C/C+-+ function (lines 6, 10, 14 in Listing [4.1.1]). There
are three different qualifiers  global ,  host , and _ device . It is a
mechanism which informs the compiler to know where a function will be compiled

to run. Now we describe each of them.
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e host  void CPUFunction()
Function marked with a qualifier _ host _ can be invoked only by host functions
and their executions is also on host. It means that the whole processes and
declarations included in the function are done in a host context.

e device  void GPUFunction()

The  device _ function can be invoked both by other  device  and
__global __ function. Execution of this function is purely on the device. It means
that the whole processes and declarations included in the function are done in a
device context.

e global  void kernelFunction()

The  global  function named also as kernel can be invoked (we say also that
’kernel is launched’) by host code (for example, in main() function) but their
execution is on device. It means that the host timeline launches the kernel function,
but the whole calculations are performed on the device. The kernel function has

access to __device__ functons but does not have access to  host __ functions.
Another modification is a special way of calling kernel function (line 21 in Listing|4.1.1))

e kernelFunction<<< 1,1 >>>>();
In this line we specify execution configuration parameters. Every time we launch
a kernel we have to define the number of blocks as well as number of threads per

block. This configuration looks like
<< < numberO f Blocks, numberO fThreadsPerBlock >>>

where these two parameters in one-dimensional case are of type int. This tool
allows to define hierarchy of threads for the launched kernel. Configuration as well
as threads hierarchy will be discussed in the Section in more details.

The last novelty introduced in the example (line 22 in Listing [4.1.1]) is a special

function which comes from run _time api.h library (see [47]) .

e cudaDeviceSynchronize();
In a standard timeline generated by C/C++, kernels are launched as asynchronous
processes. It means that the host code continues execution without waiting for the
kernel to complete the tasks. It is needed to inform the compiler that the execution
should wait for the kernel to be completed. We inform the compiler that it will wait
with the function cudaDeviceSynchronize() used after the definition of the kernel.

What is more, calling this function may occur after several independent kernels.
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4.1.3. CUDA thread hierarchy

Definition of thread hierarchy can be specified by user and it should be matched
to the problem. The grid and the thread blocks can be 1, 2 or 3-dimensional.
The choice of dimension depends on the problem that we want to solve. For
example, two-dimensional blocks of threads are used in matrix multiplication and
three-dimensional blocks of thread are always used in graphical simulations, where the
dimensions correspond to the definition of color representation, i.e. RGB (Red, Green,
Blue). It is also important to know that a 1-dimensional case means that the size of the
second and third dimension is equal to one. In our work we mostly use one-dimensional
case so we show more details about this case.

We present different definitions of execution configuration and we illustrate how we
can imagine these blocks and threads. To define size of a block and number of threads in
each dimension we have to use structure which allows us to represent three-dimensional
vector type. The most common structure to define the grid and block dimensions in
a kernel invocation is type dim3. It is an integer vector type object that comes from
vector _types.h (for more see [47]). In Figures [1.2| and [4.3| we show the structure of
the generated grid and blocks. For transparency, we use white rectangle in Figure 4.2
to represent threads in blocks. We can replace it by one of the thread structures from
Figure 4.3

The structure of the launched kernel is not arbitrary. There are certain limits on the
number of blocks and threads in each block. First limit follows from the architectures of
available devices and should be less than 2! —1, and the number of threads in block is
bounded by 2! — 1. We calculate the size of the grid as well as blocks by multiplying
individual dimensions. For example, we can run (1023,1,1) blocks of threads, but
(1024,1,1) is not available.
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dim3 block(4, 1, 1)
kernel<<< block,* >>>();

[=][eTel {(0X0X0)]

Block(1,0,0)

Block(2,0,0)

Block(3,0,0)

(a) One-dimensional grid with size (4,1,1).

dim3 block(4, 2, 1)
kernel<<< block,* >>>();

Block(0,0,0)

Block(1,0,0)

Block(2,0,0)

Block(3,0,0)

Block(3,1,0)

(b) Two-dimensional grid with size (4,2,1).

dim3 block(4, 2, 4)
kernel<<< block,* >>>();

Block(0,0,3)

Block(0.0.1)
Block(0,0,0)

Block(0.1.3)
u

Block(0.1.1)
Block(0,1,0)

Block(1.0,3) Block(2.0.3)
u ]
Block(1.0.1) Block(2.0.1)

Block(1,0,0)

—

Block(1.1.3)
n

Block(1.1.1)
Block(1,1,0)

Block(2,0,0) ¢!

Block(3.0.3)

Block(3.0.1)
Block(3,0,0)

Block(2.1.1)
Block(2,1,0) &

Block(3.1.3)
=

Block(3.1.1) m
|
Block(3,1,0)

(c) Three-dimensional grid with size (4,2,4).

Figure 4.2: Example of grid visualization.
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dim3 thread(4, 1, 1)
kernel<<<*, thread>>>();

blockldx.x=0, blockldxy=0, blockldx.z=0

Thread(0,0,0) Thread(1,0,0) Thread(2,0,0) Thread(3,0,0

(a) One-dimensional thread with size (4,1,1).

dim3 thread(4, 2, 1)
kernel<<<*, thread>>>();

blockldx.x=0, blockldx.y=0, blockldx.z=0

Thread(0,0,0) Thread(1,0,0) Thread(2,0,0) Thread(3,0,0)
Thread(0,1,0) Thread(1,1,0) Thread(2,1,0) Thread(3,1,0)

(b) two-dimensional thread with size (4,2,1).

dim3 thread(4, 2, 4)
kernel<<<*, thread>>>();

blockldx.x=0, blockldx.y=0, blockldx.z=0

hread(0.0.2) 0. 0. hread(3.0.2)
hread(0.0.1) hread(1,0.1) hread(2.0.1) hread(3.0.1)
hread(0,0,0) hread(1,0,0) hread(2,0,0) hread(3,0,0)

hread(0.1.2) hread(1.1.2) hread(2.1.2)

hread(3.1.1)
hread(3,1,0)

(c) Three-dimensional thread with size (4,2,4).

Figure 4.3: Example of threads visualization. 62
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kernel<<< 4,5 >>>(); gridDim.x= 4;
blockDim.x = 5;

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3

0
1
2
%
4
0
1
2
3
4
0
1
2
B3
4
0
1
2
3
4

threadldx.x
threadldx.x
threadldx.x
threadldx.x
threadldx.x
threadldx.x
threadldx.x
threadldx.x
threadldx.x =
threadldx.x
threadldx.x
threadldx.x =
threadldx.x
threadldx.x =
threadldx.x
threadldx.x =
threadldx.x
threadldx.x
threadldx.x
threadldx.x

Figure 4.4: CUDA thread hierarchy identification of value of build in variables in grid.

We know how to define a thread hierarchy. Another important topic is managing
the threads and blocks. CUDA technology gives us a built-in system which allows us
to manage threads and blocks during writing the program code. When we launch a

kernel in our program, this system generates built-in variables. We have:

e gridDim.x — returns total number of block in *-axis
e blockIdx.x — returns block ID in the x-axis of the block that is executing the given
blocks of code,

e blockDim.x — returns the block’s dimension (i.e., the number of threads in a the

block in the x-axis),
e threadldr.x — returns the thread ID in the x-axis of the thread that is being
executed by the particular block,

where x € {x,y,z} is a dimension coordination. In the Figure we present
specification of these variables when we launch a kernel with configuration

<<< 4,5 >>>.

4.1.4. Management of parallel threads

Each thread from one-dimensional block with one-dimensional structure of threads

can be identified by the following expression
tid = threadldz.x 4 blockIdx.x - block Dim.x. (4.1)

So for the configuration from Figure (<<< 4,5 >>>) we have that the tid
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e in block 0 has a number from range 0 — 4,

e in block 1 has a number from range 5 — 9,

e in block 2 has a number from range 10 — 14,

e in block 3 has a number from range 15 — 19.

In Listing we present code where we have three functions. Based on it we show

how to manage threads and blocks. We also present how to deal with the following

three cases

1. when we use less threads than defined in the grid,

2. when we use the same number of threads as defined in the grid,

3. when we perform more tasks than threads which are defined in the grid.

#include <stdio.h>
#include <cstdio>
#include <cstdlib>

#include <iostream>

__global  void identifyThread () {
int tid = threadldx.x 4+ blockldx .x =

printf("Block ID: %d, Thread ID %d, TID: %d\n",

__global  void lessThanThread (int N){
int tid = threadldx.x 4+ blockIdx .x =*
if (tid < N){

blockDim .x;

threadIdx.x, blockIdx.x, tid);

blockDim .x;

printf("Block ID: %d, Thread ID %d, TID: %d\n", threadldx.x, blockldx.x, tid);

___global  void moreThanThread(int N){

int tid = threadldx.x 4+ blockldx.x * blockDim.x;

while (tid < N){

printf("Block ID: %d, Thread ID %d, TID: %d\n", threadldx.x, blockldx.x, tid);

tid 4= blockDim.x * gridDim.x;

int main(){
identifyThread <<<4,5>>>();

cudaDeviceSynchronize () ;

lessThanThread <<<4,5>>>(3);

cudaDeviceSynchronize () ;

lessThanThread <<<4,5>>>(40);
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cudaDeviceSynchronize () ;

moreThanThread <<<4,5>>>(40) ;

cudaDeviceSynchronize () ;

}

Listing 4.1.2: Identification and managing with possible scenarios — code.
In Listing main function consists of evaluation of four functions, i.e.

1. identifyThread <<< 4,5 >>> ();
This function prints information about blockld and threadld, and calculates
identification numbers based on the equation (4.1).

2. lessThanThread Number <<< 4,5 >>> (3);
The second function checks if the variable tid is less than a given parameter N
in this case N = 3. When condition is true, the function displays identification
parameters.

3. lessThanThread Number <<< 4,5 >>> (40);
Here the kernel was launched with configuration <<< 4,5 >>> which means that
we generate 20 threads in a grid. As a parameter we put number 40. This means

that each generated thread displays its message.

But what if we would like to run jobs with parameter larger than 207 Next function

gives us a solution to this problem.

4. moreThanThreadNumber <<< 4,5 >>> (40);
In the last function from Listing we have "while’ instead of if’ condition. At
the end of the while loop we increase the #id number by the total number of threads
in blocks. This allows us to call as many tasks as we give as a function parameter
in the case when we have less threads than the number of these tasks. We use
this method to generate cycles of work length. Moreover, the number of operations
that we want to perform, is not limited by the available number of threads. In the
Figure [4.5] we present a simple example where each task performed by the same

thread was colored by the thread’s color.
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W - R e s s

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3

4
0
1
2
1
2
8
4
0
1
2

threadldx.x =3
threadl|dx.x
threadldx.x
threadldx.x

threadldx.x
threadldx.x
threadldx.x
threadl|dx.x
threadl|dx.x
threadldx.x
thread|dx.x
threadldx.x

Figure 4.5: CUDA thread hierarchy identification of value of build in variables in grid

and performed tasks.

4.1.5. Memory allocation

When we conduct processing on GPU, but the used variables are kept in host’s
memory, we spend much more time with connection between host and device. In
C to allocate memory we apply malloc() function. In CUDA C we use dedicated
functions cudaMalloc() and cudaMallocManaged(), which behave very similar to

function malloc().

o cudaMalloc(void** devPtr, size_t size)
This function behaves similar to the standard C function malloc(). The first
argument of function void** devPtr is a pointer to the allocated device memory.
The size in bytes of the allocated memory is given as a second parameter. Variable
type size t is the unsigned integer type. The return type of this function is
cudaError_t for more details see [47].

e cudaMallocManaged(void**  devPtr, size t size, unsigned int flags =
cudaMemAttachGlobal)
Allocates memory, that will be automatically managed by the Unified Memory
system. Unified Memory is a single memory address space accessible from any

processor in a system. This hardware/software technology allows applications to
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allocate data that can be read or written from code running on either CPUs or
GPUs. First and second parameters are the same as in the previous function.
Parameter flags must be either cudaMemAttachGlobal or cudaMemAttachHost.
The former allows any stream device to access memory. However, the latter does
not allow any stream on any device to access memory. The return type as well as

in the previous function is cudaFError_t.

To support cudaError t, we define a simple function checkCuda(). This function

simply detects that the call has returned an error, and prints the associated error

message.

When we would like to use a function cudaMalloc() it is important to know a

function which allows us to copy our variables (part of memory) between different

locations.

e cudaMemcpy ( void* dst, const void* src, size_t count, cudaMemcpyKind kind)

This function as a first parameter takes the memory address. Source memory
address is given as the second parameter. As a third parameter we give size of
memory to copy in bytes. As a last parameter we give type of transfer which can
be one of directions

— HostToDevice — when we want to copy from host to device.

— DewviceToHost — when we want to copy from device to host.

— DewviceToDevice — when we want to copy from one device to another device.
— HostToHost — when we want to copy from one host to another host.

This function also returns cudaError t type which we can handle. For more

specification see [47].

In Listing we present a simple example where we show how to use the

presented function to manage memory in the program.

#include <stdio.h>

#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result){

10 }

if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert (result = cudaSuccess);

}

return result;

__global  void initArrayWithValue(float num, float *a, int N){
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int tid = threadldx.x 4+ blockldx.x % blockDim.x;
if(tid < N)

a[tid] = num;

void displayArray(float xa, int N){

for(int i = 0; i < N; +4i){
printf("%f, ", ali]);
}

printf("\n");

int main()

{

// Number of bytes of an N — values vector
const int N = 5;

size t size = N x sizeof(float);

// Allocate memory for two vectors
float =xa;

float =*b;
checkCuda(cudaMallocManaged(&a, size));
checkCuda(cudaMalloc(&b, size));

// Definition of block and thread size
size t threadsPerBlock = 256;
size t numberOfBlocks = (N + threadsPerBlock — 1) / threadsPerBlock;

// Call GPU version of vector initalization
initArrayWithValue<<<numberOfBlocks, threadsPerBlock >>>(3, a, N);
initArrayWithValue<<<numberOfBlocks, threadsPerBlock >>>(4, b, N);

// Wait for the GPU to finish before proceeding
checkCuda(cudaGetLastError());
checkCuda(cudaDeviceSynchronize ());

// Dispaly array which was allocated by cudaMallocManaged ()

displayArray(a, N);

x // displayArray (b, N);

* This execution of displayArray(b,N) caused Memory error. It is
* becouse of fact that host do not have acces to device memory

* in this situation

*/

// Dispaly array which was allocated by cudaMalloc ()
float =xcpu_b;
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cpu_b = (float x)malloc(size);

checkCuda (cudaMemcpy ((void *) cpu_b, b, size, cudaMemcpyDeviceToHost));
displayArray (cpu_b, N);

// Wait for the GPU to finish before proceeding
checkCuda(cudaGetLastError());
checkCuda(cudaDeviceSynchronize () );
// Free all our allocated memory
checkCuda(cudaFree(a));
checkCuda(cudaFree(b));
free (cpu_b);
}
//RESULTS:
// 3.000000, 3.000000, 3.000000, 3.000000, 3.000000,

// 4.000000, 4.000000, 4.000000, 4.000000, 4.000000,

Listing 4.1.3: Managing with memory between CPU and GPU

4.1.6. Examples from numerical linear algebra

To illustrate how to easily use CUDA C for known problems we present the

following example of linear algebra. In Listing we show the program code which

is connected with matrix multiplication. Here large speed up can be observed. In this

example we present code for both CPU and GPU implementation of algorithms. At

the end of the program we also check performance in both cases.

#include <stdio.h>
#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result){
if (result != cudaSuccess) {
fprintf(stderr , "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert (result = cudaSuccess);

}

return result;

__global  void matrixMulGPU(int * a, int % b, int x ¢ , int N){
int val = 0;
int row = blockldx.x x blockDim.x + threadldx.x;
int col = blockldx.y % blockDim.y + threadldx.y;
if (row < N && col < N){
for (int k = 0; k < N; k++){
val += aJrow * N + k] = b[k = N + col];
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c[row * N + col] = val;

void matrixMulCPU(int * a, int % b, int * ¢, int N){

int val = 0 ;
for (int row = 0; row < N; row++){
for(int col = 0; col < N; col++){
val = 0;
for(int k = 0; k < N; ++k) {
val += a[row * N + k] % b[k = N 4+ col];

}

clrow = N + col] = val;

int main() {

// Initialize pointer to array

int *a, xb, *c_cpu, *c_gpu;

// Number of bytes of an N x N matrix
int N = 64;

int size = N % N % sizeof (int);

// Allocate memory
checkCuda(cudaMallocManaged(&a, size));
checkCuda(cudaMallocManaged (&b, size));
checkCuda(cudaMallocManaged(&c_cpu, size));
checkCuda(cudaMallocManaged(&c_gpu, size));

// Initialize both matrix with values and zeros for results matrices
for (int row = 0; row < N; row++){
for(int col = 0; col < Nj; col++){
a[row * N + col]| = row;
b[row * N + col] = col + 2;
c¢_cpu[row * N + col] = 0;
¢ _gpu[row * N + col]| = 0;

// Definition of block and thread size
dim3 threads per block (16, 16, 1); // A 16 x 16 block threads
dim3 number of blocks((N /threads per block.x) + 1, (N /threads per block.y) + 1,1);

// Call GPU version of matrix multiplication

matrixMulGPU<<<number of blocks, threads per block>>>(a, b, ¢ gpu, N);

// Wait for the GPU to finish before proceeding
checkCuda(cudaGetLastError());
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checkCuda(cudaDeviceSynchronize ());
// Call the CPU version to check our work
matrixMulCPU(a, b, c¢_cpu, N);
// Compare the two answers to make sure they are equal
bool error = false;
for (int row = 0; row < N && !error; ++row){
for(int col = 0; col < N && !error; ++col){
if (¢_cpu[row * N + col] != ¢ _gpu[row *= N 4+ col]){
printf("FOUND ERROR at c[%d][%d]\n", row, col);
error = true;
break;
}
}
}
if (lerror) {
printf("SUCCESS! Matrix are multiplied correctly .\n");
}
// Free all our allocated memory
checkCuda(cudaFree(a));
checkCuda(cudaFree(b));
checkCuda(cudaFree(c_cpu));
checkCuda(cudaFree(c_gpu));
}

Listing 4.1.4: Matrix multiplication

4.2. Implementation of algorithm X ICL;”_M in CUDA C

In this section we present the full code of one of the algorithms considered in
Chapter 2. We divide full code into smallest part. It is because beter understanding

of problem.
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4.2. Implementation of algorithm Xij"*M in CUDA C

Definition of problem Specification

double X0 = 0.1;

___device  double
___device  double
__device_ _ double
___device__ double
___device  double
___device__ double

___device__ double

___device  double

___device_ _ double

___device  double

___device__ double

___device  double

___device  double

___device__ double

___device  double

__device__ double

___device  double

X000 = 0.1;

MI = 0.5;

SIGMA = 1.0;

PC = 1;

LAMBDA = 1;

a(double t, double x){ return MI * x; }

b(double t, double x){ return SIGMA % x; }

c(double t, double x){ return PC x x; }

a_ (double t, double x){ return MI; }

b_(double t, double x){ return SIGMA; }

¢ (double t, double x){ return PC; }

Lib(double t, double x){ return b(t,x) *= b _(t,x); }
Llc(double t, double x){ return b(t,x) * c_(t,x); }

L 1b(double t, double x){ return b(t,x + c(t,x)) — b(t,x); }
L 1lc(double t, double x){ return c(t,x + c(t,x)) — c(t,x); }

lambda(double t){ return LAMBDA x t; }

intLambda(double t 1, double t 2){ return LAMBDA = (t_2 — t 1); }

Listing 4.2.1: Definition of problem Specification.

Additional Functions

inline cudaError_t checkCuda(cudaError_t result) {

if(result != cudaSuccess) {
fprintf(stderr , "CUDA Runtime Error: %s\n", cudaGetErrorString(result));

assert (result =— cudaSuccess) ;

}

return result

___global _ void initState(float seed, curandState tx states, int size) {
int tid = blocklIdx.x * blockDim.x + threadldx.x;
while (tid < size){
curand init(seed, tid, 0, &states[tid]);
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tid 4= blockDim.x * gridDim.x;

void compensate(double xApp, double results , int size){
results=0;
for(int i=0; i < size; i++){
results += App|[i];

¥

void saveToFileArray (ofstream &o, double t, double xarray,

int size){
o << t << "y

for(int i = 0; 1 < size; i++){
0 << array[i] << ";";

}

30 o << "\n";

Listing 4.2.2: Additional Functions.

Main Algorithm

device

double milsteinCommutative (double t, double x, double dt,

double res

double dw, double dn) {
x + a(t,x) = dt + b(t,x) * dw + c(t,x) * dn +

Lib(t,x) * (dw = dw — dt) / 2 + L 1lc(t,x) * (dn = (dn — 1)) / 2 +
L _1b(t,x) % dw x dn;

ot

return res;

}
___global__ void calculateApproximation (double t, double t_prev,

10 curandState t* states normal,
curandState t* states poisson,
double *Xalg, int size){

int tid blockIdx .x % blockDim.x + threadldx.x;
register double step (double) (t — t_ prev);
15 while (tid < size){
double DW;
int DN;
DW = sqrt(step) * curand normal double(&states normal[tid]);
DN = curand poisson(&states poisson|[tid],intLambda(t prev, t));
20 Xalg[tid | = milsteinCommutative(t prev, Xalg[tid]|, step, DW, DN);
tid += blockDim.x % gridDim.x;
}
}

¥
3
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4.2. Implementation of algorithm Xij"*M in CUDA C

___global _ void calculateApp (int n, double t, double *gpuXLinM, double xgpuApp,

int size){
int tid = blocklIdx.x % blockDim.x + threadldx.x;
while (tid < size) {
gpuApp[tid] = b(t, gpuXLinM[tid]) * b(t, gpuXLinM[tid]) +
lambda(t) % c(t, gpuXLinM|[tid]) = c(t, gpuXLinM[tid]);
tid 4= blockDim.x * gridDim.x;

double calculateNextT (double eps, double app, double T, int n){

if (eps < app)
return T / (n * app);
else

return T / (n * eps);

void oneDimMilsteinStepSize(int numberOfTrajectories, int numberOfSteps,

double cModule, double T, string fileName){
size t threadsPerBlock = 256;
size t numberOfBlocks = (numberOfTrajectories + threadsPerBlock — 1)
/ threadsPerBlock;
double eps = pow({(double) numberOfSteps, cModule});

// allocate space on the GPU for the wienner random states
curandState t* states normal;
curandState tx states poisson;
checkCuda(cudaMallocManaged (( void*x) &states normal,
numberOfTrajectories % sizeof(curandState t)));
checkCuda(cudaMallocManaged (( void*x) &states poisson,

numberOfTrajectories * sizeof(curandState t)));

// initiate states for both proceses

initState <<<numberOfBlocks, threadsPerBlock >>>(time(NULL), states poisson,
numberOfTrajectories);

checkCuda(cudaDeviceSynchronize () );

initState <<<numberOfBlocks, threadsPerBlock >>>(time(NULL), states normal,
numberOfTrajectories) ;

checkCuda(cudaDeviceSynchronize () )

/* allocate space on the GPU for all needed lists =/

double *App;

double *xXLinM;

checkCuda(cudaMallocManaged (( void**) &App, numberOfTrajectoriesxsizeof(double)));
checkCuda(cudaMallocManaged ({ void+x) &XLinM,numberOfTrajectoriesxsizeof (double)));

double xt;
double *t_prev;

double xresults;
checkCuda(cudaMallocManaged ((void**) &t , sizeof (double)));
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4.2. Implementation of algorithm Xij"*M in CUDA C

checkCuda(cudaMallocManaged (( void*x*) &t prev, sizeof(double)));
checkCuda(cudaMallocManaged (( void*#%) &results , sizeof(double))) ;

int kn = 0;

// set all starting values for elements in arrays

for(int i = 0; i < numberOfTrajectories; i++){
XLinM[i] = XO0;

}

memset (t, 0, sizeof(double));

memset (t prev, 0, sizeof(double));

2
checkCuda(cudaDeviceSynchronize () );

//open file to save results and save first point
ofstream plik;

plik .open(fileName);

//main part of algorithm
while (xt < T){
saveToFileArray (plik , *t, XLinM, numberOfTrajectories);
kn += 1;
*t_prev = xt;
calculate App <<<numberOfBlocks , threadsPerBlock >>>(numberOfSteps, xt, XLinM,
App, numberOfTrajectories);
checkCuda(cudaGetLastError());
checkCuda(cudaDeviceSynchronize () );
compensate (App, xresults, numberOfTrajectories);
#t += calculateNextT (eps, #results , T, numberOfSteps);
calculateApproximation <<<numberOfBlocks, threadsPerBlock>>>(xt, %t prev,
states normal,
states poisson ,
XLinM,
numberOfTrajectories) ;
checkCuda(cudaGetLastError());
checkCuda(cudaDeviceSynchronize () );
}
xt = T
calculateApproximation <<<numberOfBlocks, threadsPerBlock>>>(xt, *t_ prev,
states normal ,
states poisson , XLinM,
numberOfTrajectories) ;
checkCuda(cudaGetLastError({));
checkCuda(cudaDeviceSynchronize () );

saveToFileArray (plik , *t, XLinM, numberOfTrajectories);

// free allocated memory
cudaFree (states normal);
cudaFree(states poisson);

cudaFree (App) ;
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cudaFree (XLinM) ;

(
cudaFree(t);
cudaFree(t_prev);
(

cudaFree(results);

Listing 4.2.3: Main Algorithm.

4.3. Numerical experiments

4.3.1. Problems

Scalar Problem

First, let us consider the following linear scalar SDE used in the Merton’s model

{ AX (1) = pX ()dt + o X ()AW () + cX (t—)dN(t), t € [0,T], 43

X(O) = Xy,

where ¢ > —1 and zgo0 > 0, u € R. The exact solution of problem (4.2)) has the

following form
L, N()
X(t) =z - exp (u—§a>t+0W(t) (14 )™,

We have E(Y(1)) = 22 (02 + ¢ - A(t)) exp (z(u 4 o2/2)t + (e + 2)m(t)) for ¢ € [0, 7.

Multidimensional Problem

For multidimensional problem we consider the case when

Ul’le(t) 0'1’2X1(t> v O.l,mle (t)
0'2’1X2(t) 0'2’2X2(t) s O'Z’mWXQ(t)

dX (1) = X (£)dt + _ , . AW (1) + X (t=)AN(t),
O'd’le(t) O'd’sz(t) s O-d,mde<t)

X(0) = 20, te€[0,T]

\

(4.3)
where ¢ > —1 and 0™/ > 0fori € {1,...,d}, j € {1,....,my}, p € R, 2y € RL.
The exact solution of problem (4.3)) has the following form

Xi(t) = X;(0) - exp<<u - %(%a”)g)IH— fnw aiﬂ'wj(t)) (1 + )N,

J=1
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4.3. Numerical experiments

By the considerations presented at page the problem (4.3 satisfies jump
commutative conditions (D). On the Figure we show sample of approximations
of trajectories for solutions of problem (4.3)) in one and two-dimensional case and on

Figure [1.7] we present three dimensional case.

Figure 4.6: Examples of SDEs trajectories.

Figure 4.7: Examples of SDEs trajectories.
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4.3. Numerical experiments

4.3.2. Error criterion

Now we define the way how we calculate error. We take as an estimator of the error

of || X — Xa| e2ax[o,77), for one-dimensional case

1/2
(an < ZQTL ’X j,kn’2)) )

¥ L1 M— L1 M L1 M—
where X, c [Xfm=Me X[ Mzea xpli=han=de | di=Lin=M=eq For

multidimensional case we use the same estlmatlons, but only for method Xfm M—eq

K 1/2
v Lin—M—e 1 v Lin—M—e
ex (X q>=<fz@n<uXm—Xé>,nM qu?)) .
j=1

In both methods of estimations (), is the composite Simpson quadrature based on
the knots {5, 45,..... &5 b U {(E, + 15 1,)/2}._ 0d...k,_1 for a one-dimensional
case. For multidimensional case, when we consider only equidistant mesh we use
{to,n,h,n,--. nn} U { im + tivin /2}z oLl We assume that X(J is the jth
(simulated) trajectory of the solution both problems (4.2) and (4.3) and XLin—M—eq
is the piecewise linear interpolation of the classical Milstein steps performed at the
equidistant discretization ¢;* n =T /n,fori=0,1,... nfor jth trajectories. (Hence, we
use the same number of steps for X,/ ~*"* and X,fj"foeq.) In one-dimensional case we
also compare the error of the method X ,frf”_M * with the error of X ,f:"_M_eq performed
at equidistant points t; = iT'/k,, i = 0,1,..., k,. The improvement, observed in the

numerical experiments, is defined by

impy ,, = 5K(X’,€L§"*M*)/gK(Xijnfoeq), (4.4)
imp = e (XTHmM) e (XT M e), (4.5)
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4.3. Numerical experiments

4.3.3. Results of numerical experiments

Numerical experiments for method X /"""

We have performed numerical experiments for the following particular cases of (4.2)

for regular method.

1. =008, 0=04 c=-003At) =2, 29=5, T =3, K = 60000.

n kn EK(Xijn_M*> 5K(XkLZn_M_eq) impK,kn

7 2.37 2.36 1.004 42
10 23 6.30 x 107" | 6.34 x 107! 9.93968 x 107!
32 70 1.87 x 107" | 1.88 x 107! 9.96256 x 107!
102 | 230 |550x1072 |5.70 x 1072 9.64749 x 107!
326 | 757 | 1.67x107% | 1.75x 1072 9.54349 x 107!
1043 | 2433 | 5.15x107* | 5.31x 1073 9.69894 x 107!
3338 | 7842 | 1.61x 1073 | 1.63x 1073 9.89644 x 107!
10682 | 24871 | 5.07 x 107* | 5.61 x 1074 9.03390 x 107!
34182 | 87332 | 1.70 x 10~* | 1.80 x 10~* 9.45998 x 107!

Table 4.4: Results of calculated error and improvement.

------ 1.01 *x-1.17

step size
uniform

2 3
logio(kn)

=
=]
o

improvement
o o o
©o © o
S o )

o
©
N

0.90

2 3 4

logio(kn)

Figure 4.8: Left figure — comparison with theoretical rate of convergence, right — figure

improvement calculated by (4.4]).
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4.3. Numerical experiments

2. u=10=07c=1 At)=0.1, 20 = 10, T = 0.25, K = 60000.

n kn é?K(XijnfM*) é?K(XijniMieq) Impy .

28 5.77 x 1072 6.06 x 1072 9.52741 x 10!
10 92 1.77 x 1072 1.94 x 1072 9.09378 x 107!
32 294 3.36 x 1073 4.04 x 1073 8.32343 x 107!
102 932 8.26 x 1074 8.40 x 104 9.84158 x 1071
326 2877 2.67 x 1074 2.72 x 1074 9.81255 x 1071
1043 | 9253 8.33 x 107° 8.47 x 107° 9.83717 x 1071
3338 | 30287 | 2.54 x 107° 2.58 x 107° 9.83227 x 1071
10682 | 98321 | 7.85 x 1076 7.94 x 1076 9.88980 x 1071
34182 | 307098 | 2.50 x 107 2.55 x 1076 9.82182 x 1071

Table 4.5: Results of calculated error and improvement.

1.08 *x - 0.25
step size
uniform

1.5

2.0 2.5 3.0 3.5

l0g10(kn)

4.0

4.5 5.0 5.5

1.000

0.975

0.950

improvement
o o
o o
o N
o w

o
©
N
o

0.850

0.825

15 2.0

(a)

2.5

30 35 40
log1o(kn)

4.5

5.0

5.5

Figure 4.9: Left figure — comparison with theoretical rate of convergence, right figure

— improvement calculated by (4.4).
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4.3. Numerical experiments

3. u=10,0=3,c=—-09, \(t) = 1.5, 2y = 5.75, T = 0.25, K = 60000.

n ky, €K(X/€Lfn7M*) é?K(XijniMieq) impy 4.
434 5.88 x 10! 4.90 x 10* 1.19912
10 1620 6.76 x 10! 1.22 x 10! 5.525 69
32 4976 1.99 4.79 4.16843 x 1071
102 19780 3.32 x 107! 2.32 1.43187 x 107!
326 47558 1.05 x 107! 1.64 x 107! 6.38289 x 107!
1043 | 169508 | 1.68 x 1072 5.02 x 1072 3.35085 x 107!
3338 | 1065420 | 4.08 x 1073 7.41 x 1073 5.50801 x 107!
10682 | 1405330 | 2.88 x 1073 2.05 x 1072 1.40599 x 107!
Table 4.6: Results of calculated error and improvement.
------- 1.32 % x-5.42 P~ .
2 o— step size
- uniform o wa
1 o [}
E s éa
& o S
(] Q5
T kS
-1 1 \\/\///\
_22.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 02.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 4.10: Left figure — comparison with theoretical rate of convergence, right figure

logio(kn)

— improvement calculated by (4.4).

logio(kn)




4.3. Numerical experiments

4. p=-1,0=151c=0,\t) =0, 2o =0.1, T = 1, K = 60000.

n ko | ex(XEmM) | e (X" ™M) | impyy,
3 6.76 x 1072 2.52 x 1072 2.67537
10 5 3.00 x 1072 1.80 x 1072 1.668 50
32 11 1.73 x 1072 1.17 x 1072 1.48560
102 23 6.50 x 1073 4.91 x 1073 1.32475
326 50 1.23 x 1073 1.02 x 1073 1.206 75
1043 | 149 |2.10 x 1074 1.08 x 1073 1.93579 x 107!
3338 | 536 | 5.17x107° 5.76 x 107 8.96919 x 107!
10682 | 1696 | 1.67 x 107 2.70 x 107 6.176 00 x 107!
34182 | 6239 | 3.94 x 107° 7.13 x 107° 5.52470 x 107!
Table 4.7: Results of calculated error and improvement.
------- 1.32 *x + 0.55 e 25
3| —e— step size o
- uniform . =20
Sa 2
EL’, ' é 1.5
=) - >
53 S
[e) Q
_| ’/, § 1.0
2 Zad
, e 0.5
0.5 1.0 15 loZg.(;-O(an).S 3.0 3.5 0.5 1.0 1.5 IOZQ(;O(an).S 3.0 3.5

Figure 4.11: Left figure — comparison with theoretical rate of convergence, right figure

— improvement calculated by (4.4)).
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4.3. Numerical experiments

Numerical experiments for method X;7 """

1.

1=0.08, 0 =04 c=—003 \t) =2, 29=1, T =5, K = 60000.

n [k [l S [erEE imp,

3 2.53 1.79 1.41049
10 6 8.25 x 107! 8.04 x 1071 1.025 82
32 17 2.13 x 107! 2.53 x 107! 8.39674 x 107!
102 | 52 5.07 x 1072 5.55 x 1072 9.14576 x 107!
326 | 169 | 1.69 x 1072 1.76 x 1072 9.591 50 x 107!
1043 | 568 | 4.11x 1073 4.61 x 1073 8.92929 x 1071
3338 | 1676 | 1.42 x 1073 1.73 x 1073 8.24752 x 107!
10682 | 5902 | 4.05 x 10~* 4.45 x 1074 9.09942 x 107!
34182 | 17044 | 1.41 x 10~* 1.60 x 10~* 8.79091 x 107"

Table 4.8: Results of calculated error and improvement.

1.11*x-0.76
o— step size
uniform

0.5 1.0 15 2.0

2.5 3.0 3.5 4.0

log10(kn)

=
»

[
w

=
N

improvement
= =
o [

o
©

0.8

0.5

1.0

15

20 25 30 35
logio(kn)

4.0

Figure 4.12: Left figure — comparison with theoretical rate of convergence, right figure

— improvement calculated by (4.5)).
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4.3. Numerical experiments

2. u=10=07c=1 At)=0.1, 20 = 10, T = 0.25, K = 60000.

n K, exc( XgifmeM*) ex( X’zlifLinfoeq) imp%kn

29 5.76 x 1072 6.05 x 1072 9.52242 x 107!
10 94 1.69 x 1072 1.92 x 1072 8.82098 x 107!
32 287 3.39 x 1073 4.02 x 1073 8.44403 x 107!
102 898 8.61 x 1074 8.70 x 1074 9.89451 x 107!
326 2946 2.62 x 1074 2.65 x 1074 9.87263 x 107!
1043 | 9397 8.22 x 107° 8.32 x 1075 9.88445 x 107!
3338 | 30675 | 2.51 x107° 2.56 x 107 9.82592 x 107!
10682 | 96359 | 7.99 x 1076 8.12 x 1076 9.84698 x 107!
34182 | 309389 | 2.49 x 10~° 2.54 x 1076 9.82408 x 107!

Table 4.9: Results of calculated error and improvement.

1.08 *x-0.26
o— step size
uniform

15 2.0 2.5 3.0 3.5

4.0 4.5 5.0

l0g10(kn)

5.5

15

2.0

2.5

30 35 40 45 50
log1o(kn)

5.5

Figure 4.13: Left figure — comparison with theoretical rate of convergence, right figure

— improvement calculated by (4.5)).
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4.3. Numerical experiments

3. u=008,0=04,c=—0.03 \t) =2, 2o = 10, T = 3, K = 60000.

Figure 4.14: Left figure — comparison with theoretical rate of convergence, right figure

n k. e (XgifmeM*) ek (X’zlifmeMfeq) imp%kn

15 3.89 3.90 9.98008 x 10!
10 49 1.07 1.09 9.80573 x 107!
32 154 3.30 x 107! 3.38 x 107! 9.758 61 x 107!
102 | 490 1.00 x 107! 1.05 x 10! 9.55514 x 10!
326 | 1560 | 3.16 x 1072 3.34 x 1072 9.458 77 x 107!
1043 | 5066 | 9.75 x 1073 1.03 x 1072 9.47937 x 107!
3338 | 16492 | 3.15 x 1073 3.29 x 1073 9.57043 x 107!
10682 | 56293 | 1.02 x 1073 1.09 x 1073 9.31508 x 107!
34182 | 175734 | 3.45 x 10~* 3.84 x 1074 8.97561 x 107!

Table 4.10: Results of calculated error and improvement.

0.99 *x -1.70
o— step size
uniform

1.0 15 2.0 2.5 3.0

3.5 4.0 4.5 5.0

l0g10(kn)

— improvement calculated by (4.5)).

improvement
o
©
e

o
©
N

o
©
o

1.0 15

2.0

2.5

3.0 3.5 4.0 4.5

l0g10(kn)

5.0
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4.3. Numerical experiments

Numerical experiments for method X "~*~¢ in multidimensional case

a(t,z) =0.5

A(t) = 1.1245¢, 2 =

X1
X2
€3

Ty

Ts
0.075x4
0.254x,
0.109x3
0.027z4
0.623zx;5

0.22x4

0.634x5
0.333x3
0.577xy
0.097x5
1

—_ = =

0.741x,
0.925x5
0.825x3
0.924
0.438x5

0.57 *x - 3.64

uniform

1.0

15 2.0

25 30
logi0(n)

3.5

4.0

0.172x4
0.9012,
0.273x3
0.461x4
0.275x5

, T'=5, K = 60000.

Figure 4.15: Comparison with theoretical

rate of convergence.

Table 4.11: Results of calculated error.

0.01zq T
0.943x, To
0.256z5 |, c(t,x) = 1.25 | x4
0.867x4 x4
0.682x;5 Ts

n e je (X Lin—M—eq)

10 3.08 x 103

20 6.40 x 102

40 4.50 x 102

80 3.42 x 102

160 2.14 x 10?

320 8.65 x 10!

640 9.34 x 10!

1280 | 6.44 x 10!

2560 | 6.99 x 10!

5120 | 3.24 x 10!

10240 | 1.57 x 10!

20480 | 3.46 x 10!




4.3. Numerical experiments

2.

a(t, x)

0.5 <x1> b(t, )

(0.0751:1 0.222, 0.741z, 0.172z, 0.01951),
c(t,z) = 1.25 (x1> A(t) = 5, w0 = (1) T —2.25. K = 60000.

—logio(error)

0.60 * x - 8.65
uniform

Figure 4.16: Comparison with theoretical

1.0

15 20 25 30 35
logi0(n)

rate of convergence.

4.0

n ex (X Lin=M=eq)
10 2.16 x 107
20 2.06 x 10°
40 4.31 x 107
80 9.64 x 107
160 | 3.64 x 107
320 2.00 x 107
640 | 3.24 x 106
1280 | 6.64 x 108
2560 | 8.51 x 108
5120 | 4.47 x 10°
10240 | 3.81 x 10°
20480 | 1.25 x 106

Table 4.12: Results of calculated error.
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4.3. Numerical experiments

b(t, x)

ot
8
=)
|
—_

0.227,
0.634x5
0.333z;
0.5774
0.097x5

—_

—_

0.741x4
0.925x4
0.825x3
0.924
0.438x5

0.82 *x-9.41
uniform

1.0

15 2.0 25 3.0

logio(n)

3.5

4.0

0.172x4
0.901x4
0.273x3
0.461z4
0.275x5

, T = 2.25, K = 60000.

Figure 4.17: Comparison with theoretical

rate of convergence.

Table 4.13: Results of calculated error.

0.01z, 1
0.943z4 Ty
0.256x3 |, c(t,z) = 1.25 | x4
0.867x4 Ty
0.682x5 Ts

n e (X Lin—M—eq)

10 7.82 x 108

20 7.93 x 108

40 2.85 x 107

80 2.26 x 107

160 6.94 x 107

320 2.94 x 107

640 2.98 x 10°

1280 | 2.64 x 107

2560 | 5.14 x 10°

5120 | 1.70 x 10°

10240 | 4.48 x 10°

20480 | 2.71 x 10°
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4.

T
T2
a(t,x) =0.5 | x4

Lyq

X5

A(t) = 1.1245¢, 2 =

—_ = = e

0.07524
0.254z4
0.109z3
0.027x4
0.623x5

T =2.25, K = 60000.

-0.75
------- 0.57 *x - 3.17

—1.00 & uniform

g -1.25
e

S 150 ;
) '
S-175 Y
o
o
[ —2.00 o

-2.25 -

-2.50 4_»

10 15 20 25 30
logio(n)

3.5 4.0

Figure 4.18: Comparison with theoretical

rate of convergence.

Table 4.14: Results of calculated error.

T

T2

, c(t,x) =1.25 | x4

Ly

Ts

n | ex(XEin—M—eq)
10 | 359 x 102
20 3.21 x 102
40 1.59 x 10?
80 1.10 x 102
160 1.02 x 102
320 5.78 x 10!
640 4.25 x 10!
1280 | 2.46 x 10!
2560 | 2.86 x 10!
5120 | 6.73
10240 | 8.34
20480 | 5.61




Chapter 5

Conclusions and future work

In this section we shortly summarize results presented in the thesis. We also identify

some open problems corresponding to the equation (L.1)).

5.1. Summary of results

In the thesis we considered problem of optimal strong approximation of stochastic
differential equation with jumps. In the first part of thesis we investigated scalar
problem driven by one-dimensional Wiener and Poisson processes. We analyzed
algorithms based on the path-independent adaptive step-size control. We proved that
these algorithms are asymptotically optimal in considered class of methods.

In the second part of the thesis we investigated systems of SDEs driven by
multi-dimensional Wiener process and one-dimensional Poison process. We considered
piecewise linear interpolation of the classical Milstein scheme based on equidistant
mesh.

In the last part of the thesis we discussed CUDA C programming language and its
application to simulation of stochastic processes. We also presented results of numerical

experiments preformed on GPUs.

5.2. Open problems

(OP1) In the future work we would like to investigate algorithms based on
path-independent and path-dependent adaptive step-size control in the case

when the driving Wiener and Poisson processes are multidimensional.
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(OP2) Analysis of (OP1) without assuming jump commutative conditions.

In [23] we investigated the problem of optimal approximation of stochastic integrals
T
IX,W) = [X(t)dW(t), where T > 0 and W = {W(t)}>o is a standard
0
one-dimensional Wiener process. We were aiming at methods that were based only

on discrete values of X and W which were, additionally, corrupted with some noise.

Hence, it is natural to investigate the following problem:

(OP3) Investigation of ((1.1)) in the case when the coefficients a, b, ¢, as well as the driving

processes N and W, are corrupted with some noise.

Inspired by a practical applications we plan a further development of the cuSTOCH
library. We also think about application of DNN (deep neural network) into stochastic
problems. In [2| we proposed the first solution which was the hybrid model. It combined
appropriate methodology for performing fast Monte Carlo simulations on GPUs with
application of DNNs to approximating prices of some financial derivative instruments.

We plan to go deeper into that topic in the future.



Appendix A

Basic information on stochastic
processes and stochastic differential

equations

In this section we present basic definitions about random variables, stochastic
processes, stochastic integration, stochastic differential equations, and auxiliary
results. We have collected here the most important information about the topic

discussed in this thesis.

A.1. Random variables and conditional expectation

Definition A.1 ([77]). Let X be a set, 2% represents a power set of X. The subset
F C 2% is called o-algebra if

e XcFand e F,
e forall Ac F, X\AecF,
o forall Ay, Ay,... € F, UX A, € F.

Definition A.2 ([77]). Let Q be a set, and A be a family of subsets of
Q (i.e. A C 29%). The smallest in terms of inclusions o-algebra contains sets from

A is called o-algebra generated by family A. We denote it by o(A).

We say that pair (X, F) is a measurable space. If X is a topological space, then
the o-algebra generated by all open sets in X (we denote it by Top(X)) is called the
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A.1. Random variables and conditional expectation

Borel o-algebra on X and we denote it by B(X). The element A € B is called Borel

sets.

Definition A.3 (|77]). Let (F,Fr), (G,Fg) be a measurable space. The product
Fr ® Fg of g-algebras Fr and Fg on F x G is defined as

Fr @ Fo ;:g({AxB: AGIF,BE«FG})'

Definition A.4 ([77]). Let (©2, F) be a measurable space and G, H be a sub-c-algebra
in F. The sum of G, H is defined as

GVH :=0(GUH).

Definition A.5 (|77]). Let (2, F) be a measurable space, mapping P : F — R is

called probability measure if

e 0 <P(A) <1, forall Ae F,
e P(Q) =1,
e forall Ay, As,...€ F, A;NA; =0 for i +# j then

IP’(GAZ) — iIP’(Ai).

Definition A.6 (|77]). Let (€2, F) be a measurable space and function P : 7 — R be
a probability measure defined on F. A triple (Q, F,P) is called probability space.

Here Q is a sample space, a set A € F is an event and P(A) is a probability of

event A.

Definition A.7 ([1]). The probability space (2, F,P) is called complete probability
space if for all A C B such that B € F and P(B) = 0 we have that A € F and
P(A) =0.

Definition A.8 (|5]). Let (2, F,P) be a probability space, and let {Ai}z‘ef be an

indexed family of events. The events A;, i € I are called independent if for each finite

subset Iy C I we have

P( N Ai> S 15:%0)

i€lp i€lp
Definition A.9 (|1]). Let (F,Fr), (G,Fs) be measurable spaces. Mapping
f:(F, Fr) = (G, Fg) is called a Fp/Fg-measurable if for all A € F; we have that

f_l(A) e Fp.
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A.1. Random variables and conditional expectation

If G is a topological space equipped with the Borel g-algebra Fo = B(Top(G)),

where Top(G) is a collection of all open set in G, we say that f is Borel measurable.

Definition A.10 (|37]). Let (X, F, ) be a space with o-finite measure and a Banach
space E with a norm || - ||. A function f : (X, F) — (E,| - ||) is called strongly

measurable (or Bochner measurable) if there exists a sequence of simple functions

{fn}nen such that
| fo(z) — f(2)|| =0
for almost all x € X.

Based on [27] if space E is separable then every E-valued Borel measurable function
f is strongly measurable. It follows from the fact that a subset of separable metric space

is itself separable. Moreover, if f : X — E' is Borel measurable then mapping
Xex—=|[f(@)] € (0,00

is F/B(RY)-measurable, we also write F-measurable in a case of Borel set when

E = R

Definition A.11 ([1]). Let (Q,F), (R% B(RY)) be measurable spaces. Mapping
X (QF) = (RY,B(RY) is called random wvariable if it is a F-measurable. We
write X : Q — RY.

Definition A.12 ([1]). Let (Q,F,P) be a probability space and X : Q@ — R is a
random variable defined on it. The g-algebra generated by X is given by

o(X):={X'(4): A€ BRY}.

Definition A.13 (|5]). Let {X"}iel be an indexed family of random variables defined
on (9, F,P), and with values in the measurable space (R? B(R%)). The random
variables X;, i € I, are called independent if for each choice of sets A; in B(R?),
i € I, the events X, '(4;) are independent.

Definition A.14 (|5]). Let (2, F,P) be a probability space, and let {]:i}iel be an
indexed family of sub-o-algebras of F. The o-algebras {]:i}ie ; are independent if for

each choice of sets A; € F;, where ¢ € I, the events A; are independent.

Fact A.15 (|5]). If {Xi}ief is an indexed family of random wvariables defined on a
probability space (2, F,P), then the random variables X;, where i € I, are independent
if and only if the o-algebras {O(X’i)}iel are independent.
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A.1. Random variables and conditional expectation

Definition A.16. Let (X, F, u; E') be a measured space where E is a separable Banach
space with norm || - ||, and let p € [1,00). We define space

(X, F,;E)={f:X — E| f — Borel measurable,/Hf(m)”p,u(dx) < 00}
b

If we identify functions which are equal p-almost everywhere, then £°(X, F, u; E) is

Banach space with norm

1/p
1flleo(x.F ) = (/Hf(fff)”pu(dx)) :
X

We use the following notation for the £ spaces.

Definition Shortcut
Norm
£2(Q, F,P;RY) £2(;RY) or £2(Q)
1/2
X ez ome = E(IX12) Y
22([0’T]’B([07T])7)\1;Rd) £2([07T]3Rd)
T 91 \1/2
Hf||£2([O,T];]Rd) = (‘of I1.f ()l dx)
£2(Q % [0,T], F @ B([0,T]),P x A\;;R?) £2(Q x [0, T);R?) or £2(22 x [0,T])

T 1/2
Iflsoetoesy = (B 17 @)Paz)
£2(Q x [0, T], 6 (N (W, N)) @ B([0,T]), P x Ai;RY)  £2(Q x [0, T]: RY) or £2(Q x [0,T])

T ) 1/2
|7l exxtomyz = (B 1) IPde)

Definition A.17 (|36]). Let X be an integrable random variable defined on probability
space (2, F,P) it means that E|X| < co. Suppose G is a o-algebra and § C F. The
conditional expectation of X given G is defined to be the unique random variable Y

(up to P-measure one) satisfying the following conditions:

1. Y is G-measurable,

2. fXdIP’:de]P’for all A € G.
A A

We use E(X | §) to denote the conditional expectation of X given G. We recall that
the notion E(X | Y) = E(X | o(Y)) formally refers to conditioning given o-algebra

generated by the random variable Y.

Proposition A.18 ([29,49|). Let X, Y be integrable random variables on (2, F,P),

and a, b be real numbers. Then:
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A.1. Random variables and conditional expectation

a) E(aX +0Y |9)=a-E(X|9)+b-E(Y |9),
b) [E(X | 9)] <E(IX]]9),
c¢) if X is G-measurable then

E(X |9 =X,
d) if §,H are o-algebras such that H C § C F, then
E(E(X |5) | 9) =E(E(X | 9) | H) =E(X | 9),
and in particular E(E(X | §)) = E(X).

Proposition A.19 (|29]). Let X be a random variable defined on (€, F,P) with
EX? < co. Let § C F be a sub-g-algebra of F. Then E(X | §) is the orthogonal
projection of X on £2(2, G, P). That is, for any G-measurable random variable Y with
EY? < oo,

E(X -Y) > E(X ~E(X | 9))’

with the equality if and only if Y = E(X | 9).

Lemma A.20 ([6]). Let X be integrable random variable on probability space (Q, F,P),
let G, F be a sub-o-algebras such that H1lo(o(X)UG) then

E(X | GVH) =E(X | 9).

Definition A.21 ([6]). Let (2, F,P) be a probability space and let Fy, Fo, F3 be a
three sub-o-algebras of F. F; and F3 are called conditionally independent given Fy if

E(Y Y3 | o) =E(Y; | Fo) - E(Ys | Fo),

where Y7,Y3; denote positive random variables measurable with a respect to the

corresponding o-algebras Fi, F3. We will mark it as Flﬂfzfy,.

Theorem A.22 ([6]). Let Fios = Fi V Fo. Then Fy and F3 are conditionally
independent given Fo if and only if

E(Yj} | .Flg) = E(Y:; ’ .FQ), a.s.

for every F3-measurable and integrable random variable Ys.
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A.2. Basic fact from the theory of stochastic processes

Proposition A.23. Let (€2, F,P) be a probability space and let Fj, Fa, F3 be a
three sub-o-algebras of F which satisfy flﬂfg}"g. Let Y1,Y3 : 2 — R be a random
variables and o(Yy) C Fi, o(Y;) C F3. We assume that E|Y)| < +oo, E|Y3| < 400
and E|Y7Y3| < +o00. Then we have that

E(Y1Ys | 7o) = E(Y1 | F2) - E(Yz | F2) a.s. (A1)

Proof. Let Y; = Y;" —Y;” fori = 1,3. We have that 0 < Y;*, Y, and 0 < V;*/~ < |Yj.
o(Y;7) c o(Y;) C F; for i = 1,3. We also have that 0 < Y,/ V;"/~ < v1va.
So random variables Y;", —Y,7, Y,t, —Y;~ are positive and integrable. From assumption
about conditional independence Fillrz F3 and integrability of defined random

variables, we have

EMYs | F2) = E((0" -Y7)- (Y = Yy) | )
= E(Y | B) - By | B) —EOTYS | ) +E(OYS | F)
= E<Y1+ | -7:2)'E(Yé+ | ‘Fz)_E(Yf | F2) - E(Ys | F2)
~E(T | B) E(G | B) +EOY | B) E(Yy | F)
= E(Y | R (B(GT | F) —E0G | 7))
+E( | B) - (BOG | F) —EOY | F))
= (B R) 0T | B) - (BOG | F) —E(Y | F)
= E(1 | o) -E(Y3 | o).

That ends the proof. [ |

A.2. Basic fact from the theory of stochastic

processes
Let (Q,F,P) be a complete probability space. Let B([0,+00)) be a o-algebra

of Borel sets defined on [0,00). Now, we recall the definitions of a filtration and a

stochastic process.

Definition A.24 ([38]). A filtration is a family {F;}+>o of increasing sub-o-algebras
of F,ie. F, C Fy C F for all 0 <t < s. The filtration is called right continuous if
Fi = (Nyoy Fs for all t > 0. For a complete probability space the filtration is said to
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A.2. Basic fact from the theory of stochastic processes

satisfy the usual conditions if it is right continuous and F{ contains all sets of zero

measure.

Let us define Fo, = J(Utzo .7-}).

Definition A.25 ([38]). A family X = {X(¢)}, of R%valued random variables is

£>0
called a stochastic process with the parameter set R, and the state space ).

For any parameter ¢t € [0, +00) we have a random variable
Q5w X(w,t) € R
For a fixed state w € €2, a function
0, +00) Dt — X(w,t),
is called a sample path of the process.

Definition A.26 (|38]). A stochastic process X is continuous if for almost all w €

the function X (w, - ) is continuous on [0, +00).

Definition A.27 (|38]). A stochastic process X is cadlag if the process has right
continuous paths and left limits almost everywhere. A stochastic process X is caglad

if the process has left continuous paths and right limits almost everywhere.

Definition A.28 ([38]). We say that a process X is adapted to filtration {F,},_ if

i
£>0
for all ¢ > 0 the random variable X (¢) is F;-measurable.

Definition A.29 ([38]). Let O (resp. ) denote the smallest o-algebra on Q x Ry
with respect to every cadlag adapted process (resp. caglad) is a measurable function
of (w,t). A stochastic process is said to be optional (resp. predictable) if the process

regarded as a function of (w,t) is O-measurable (resp. PB-measurable).

Theorem A.30 (|38|). Every caglad and adapted to filtration {]:t}t>0 stochastic

process X 1s predictable.

Definition A.31 ([38]). We say that a stochastic process X is measurable if the
process regarded as a function of two variables (w,t) from Q x [0,+00) — R? is

F @ B([0,4+00)])-measurable.

Definition A.32 (|38]). A stochastic process X : Q x [0,400) — R? is
called progressively measurable if for every ¢t > 0 the function Xlgyy is

F: ® B([0,])/B(R?)-measurable.
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A.2. Basic fact from the theory of stochastic processes

Theorem A.33 (|38]). Every {]:t}t>0 progressively measurable process is measurable
and adapted to filtration {E}

£>0°

Definition A.34 ([38]). A natural filtration {F;*} _ of a process X is defined as

t>0

Any stochastic process is adapted to its natural filtration.

Definition A.35 ([38]). Let (€2, F,P) be a probability space with filtration {7} _ .
A standard one-dimensional Brownian motion is a real-valued continuous and

{E}t>0—adapted process {W(t)}+>o with the following properties:

(i) W(0) =0 a.s.,
(i) for 0 < s < t, the increment W (t) — W (s) ~ N(0,t — s),
(iii) for 0 < s < t, the increment W (t) — W (s) is independent of Fs.

Any Brownian motion is adapted to its natural filtration {F}" };>0. Moreover, if
{'Ft}te[o,T] is (in terms of inclusion) 'larger’ filtration, i.e. F}V C F; for all ¢ > 0, and
W (t) — W(s) independent of F, whenever 0 < s < t < oo, then W (t) is a Brownian
motion with respect to the filtration {]—}}t>0.

The o-algebra
Fr=0(F"U{AdeF:P(4) =0}).

It is called an augmentation under P of the natural filtration {ftw}t>0 generated by

Brownian motion W. The augmentation is a filtration on (2, F,P).

Definition A.36 ([38]). An my-dimensional process {W (t) = (Wi (t),..., W, (t))T}t>0
is called an my,-dimensional Brownian motion if every {W;(¢)},. s a one-dimensional

10
Brownian motion and {W;(t)} AW, (t)}t>0 are independent.

>0

Definition A.37 ([61]). Stochastic process {N(¢)} _ is called the non-homogeneous

£>0
+

Poisson point process, with intensity function A(¢) > 0 and [ coA(t)dt < +oo when it
0

satisfies the following conditions

(i) N(0) =0,
(ii) has independent increments,

(i) N(t) — N(s) ~ Poiss(A(t, s)),
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A.3. Stochastic integration with respect to square integrable martingale

where

A(t,s) =m(t) —m(s), t,s € [0,T].
By the Definition we have the following properties.

Proposition A.38 (|61]). For the homogeneous Poisson point process {N(t)}
have for all ¢ > 0 that

>0 Ve

Definition A.39 ([61]). The compensated Poisson process N = {N(t) }icjo7] is defined
as follows

N(t) = N(t) —m(t), tel0,T). (A.2)

Fact A.40 ([61]). The compensated Poisson process N = {N(t)}icjo.r) is a martingale

(see Definition .

A.3. Stochastic integration with respect to square

integrable martingale

Definition A.41 (|38]). A real valued, {F;},_ -adapted integrable process { M (t)}
(i.e. E|M(t)] < oo for all t) is called a martingale with respect to {F,}

t>0

1> (or simply,
martingale) if

E(M(t) | Fy) = M(s) a.s.,
forall 0 < s <t < o0.

Definition A.42 (|78]). Let {M(t)}
that {M(t)}

1> De a martingale such that M(0) =0, we say

>0 18 square integrable martingale if for all t = 0

E(M?(t)) < oc.

By M? we denote a space of square integrable martingale. If additionally {M (t)} >0

is continuous we say that {M(t)} is square integrable continuous martingale, and

t>0

by M?¢ we denote space of square integrable continuous martingale.
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A.3. Stochastic integration with respect to square integrable martingale

Definition A.43 (|38]). A random variable 7 : Q — [0, co] (it may take the value co)

is called an {]—'t} -stopping time (or simply, stopping time) if

>0

{w T(w) < t} € F,
for any t > 0.

Definition A.44 (|38]). A right continuous adapted process M = {M(t)}t>0 is called
a local martingale if there exists a non-decreasing sequence {7x}r>o of stopping times

with 73, 7 0o a.s. such that every {M (7, At) — M(0)},_ is a martingale.

t>0
Definition A.45 (|78]). A right continuous adapted process M = {M(t)}t>0 is called
a locally square integrable martingale if there exists a non-decreasing sequen_ce {7k} k>0
of stopping times with 7, 1 co a.s. such that every {M(7x A t)}t>0 e M2

By M2!¢ we denote a space of locally square integrable marti;lgale. If additionally
{M(t)}tzo is continuous we say that it is locally square integrable continuous
martingale, and by M>°“¢ we denote space of locally square integrable continuous

martingale.

Definition A.46 ([25]). An cadlag adapted process X is said to be a semi-martingale
if X can be decomposed into X = M + A where M is an cadlag local martingale and
A is an cadlag process whose paths have finite variation on [0, 7] for all T' < co. We

call this decomposition D-M (Doob-Meyer) decomposition.
Proposition A.47 ([78]). Let {M(t)}tzo’ {M(t)}tzo € M? then
o {MQ(t)}tzo has a unique D-M decomposition as follow
M?(t) = martingale + (M)(t),

where (M)(t) is a natural (predictable) integrable increasing process, and it is
called (predictable) characteristic process for M (t).
o {M(t)- M(t)}t>0 has a unique D-M decomposition as follow

M(t) - M(t) = martingale + (M, M)(t),

where (M, M)(t) is a natural (predictable) integrable finite variational process, i.e.
it is a difference of two natural (predictable) integrable increasing processes and
it is called the cross predictable characteristic process (or (predictable) quadratic

variational Fi-adapted process) for M (t) and M (t).
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A.3. Stochastic integration with respect to square integrable martingale

Now we show partial construction of stochastic integral with the respect to square

integrable martingale. For the full concept we refer to [78|.

Definition A.48 (|78]). By £°(Q x [0,T], F ® B([0,T]),P x A\;;RY) we denote the

space of all real-valued, {]—}} -adapted processes such that exists decomposition

>0
0=t <t <...<t, <...— +oo and exists 1;(w) Fy,-measurable such that

sup; (ess sup ||¢;(w, t)]|?) < +oc and we can write f as simply function

f(w7 t) ﬂt 0 + Z wl 17‘6 (ts, t1+1]( )

Fact A.49 (|78]). £°(Q x [0,7T],F ® B([0,7)),P x A;RY) is dense in
£2(Q x [0,T], F@ B([0,T]),P x A\;; R?) with the respect to complete norm

o0

1
[flle2 = Z Q_R(HfH}Q:?(Qx[O,T}) A1)

n=0
Definition A.50 (|78]). We denote by £32, the space of all real-valued,
{E}t>0—adapted processes [ = {f(t,w)}t>0 such that for all ¢t > 0 we have
that

1120yt = E /uwW«wa < too.
0

Fact A.51 (|78]). £° is dense in £3, with the respect to complete norm

[e.9]

1
=Y 5 (1 Rsaxpar A L).

n=0
Definition A.52 (|78]). Let M € M?. For every f € £° we define a It6 integral for

tp <t <tpy1,n=0,1,...as

n

I(f)(w,t) = /f(was)dM(waS) =D filw) - (M(w,tip) = M(w, 1),

1=0

and we can write as a infinite sum

/f )dM (s Zfz (tigr At) — M(t; At)).

Definition A.53 ([78]). Let M € M? and let f € £2, and {fn} be a sequence of
processes from £° such that ||f — f|le2.2s — 0 when n — oo. We deﬁne a Ito integral

as a limit for

I(f)(t) = lim I(f)(t),

n—0o0
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A.3. Stochastic integration with respect to square integrable martingale

and we write
t

1)) = [ F5)a(s).

0
Fact A.54 (|78]). If f € £* then the Ité integral I(f) belongs to M?*.

Theorem A.55 ([26,[36,38,148,78,83|). Let M, M € M?, f,g € £3, and h € L2 then

for all T > o o,7 — stopping time, for all t,s > 0 we have that

o E (ff ) =0,
. E ff(t)dM(t)) B J ORI,

'j (t)dM (t) is Fs-measurable,
(T rewavi - 1 sooanw) | ;rg) b,

o [ 100+ glu)dM () = [ Fu)dbr() + bfg<u>dM<u>

- E((ff(u)h(u)d<M M) (u)| ]-")

Let & is a real-valued Fy-measurable random variable then

/éf )M (u 5/f )M (u

Stochastic integral defined in this section can be extended for more general
stochastic processes (see [78]). It turns out that any caglad processes are integrable with
respect to a semi-martingale. Tt is because of the fact that it compensator is absolutely
continuous. By this fact whole considered in thesis processes (N and W) satisfy all the

necessary assumptions and can be integrated with the respect to semi-martingales.
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A.3. Stochastic integration with respect to square integrable martingale

Lemma A.56 (|38|). Let Wy, Wy be a one-dimensional Wiener processes and N be

non-homogeneous Poisson process. Then we have that

t,
0,

(Wi, W) (t)
(W, Wa)(t)
(W, NY(#) = 0.

In the thesis we also use multidimensional Wiener process so we have to define a

multidimensional Ito integral.

Definition A.57 ([38]). Let M; € M? for j € {1,...,my}. Using matrix notation,

we define the multi-dimensional It6 integral for f

t fUHs) fRA(s) oo fE™(s) dM(s)
21(g 22(g) ... fEmw(g dMs(s
= [ty = [ | 7O O £ || v

0 0

f ) f22(s) o fEm(s) dMp, ()

where f9 ¢ S?V[j, i€ {l,...,d}, j € {1,...,my}. Defined in that way stochastic
integral I(f)(t) is the d-dimensional column-vector-valued process whose ith

component is the following sum of 1-dimensional It6 integrals,

mz / F9(5)AM; s).

Lemma A.58. Let f = (f',..., f™) be a function where f7 € £%V],, je{l,...,my}
and W; for j € {1,...,my} be a Brownian Motion. Then we have the following It6

1sometry

. E (jf(t)dW(t)) ~& [l
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A.3. Stochastic integration with respect to square integrable martingale

Proof.

/Sf(t)dW(t) - E(Z/fﬂ )W, (s

7j=1

_ iE(/fj(s)de(s) i
+ 2]EZIE<</ $)AWi(s)) - (/fj(s)de(S)>>

1<J 0

= f:ﬂ-«:/t(fj /llf )||dt.
=1 %

This ends the proof. [ |
In this thesis we consider also stochastic integrals with respect to the Poisson process
N. The process is a semi-martingale and for any caglad process f the stochastic integral
with respect to N is defined as follows (see [83]) for all s, > 0

/f )dN (u /f )dN (u /f

where N is defined in Definition Note that the integral with respect to N is a
stochastic integral with respect to the square-integrable martingale N. Moreover, due
to the fact that the trajectories of N and N are of finite variation, the above stochastic
integrals with respect to N and N are equivalent to Lebesgue-Stjeltjes integrals (for
more see [62]).

Now we can show a multidimensional version of the It6 formula for semi-martingales

with jumps, see, for example, 78| or [62].

Lemma A.59 (|19]). Let us assume that the mappings a, b, ¢ and X satisfy the
assumptions (Blyy), (B2ub), and (Eyy). Let a function U : [0,T] x RY — R? belongs
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to C12([0,T] x RY). Then for the solution X of (1.1)) it holds that

t

U(t,X(t)) = U(0,X(0)) +/(%U(S,X(S)) + V.U(s,X(8)) - a(s, X(s))
d 52

1 T
t3 2 gy g, U BXE) (ils X)) DR, X(5))) )ds

J1,J2=1

)) - (s, X(s))dW (s)

+ =)+ els, X(5-)) = Uls, X(5-)) AN (s),

+
o\ o .
<
=

and the kth component is given by

¢ d

Uit X ) = G0,XO) + [ (GUalos X6+ 3 57Ul X(6) a5 X(5)
d 2
+ %”Z 1 —axfa% Uy(s, X (s))

X Z VI (s, X (s ij’j(s,X(s)))>ds

my L od
. 1/ 3 U X6 X0V 9

ox;
]:

+ <Uk(s,X(s—) +e(s, X (s—))) — Uk(s,X(s—)))dN(s).

S —

A.4. Stochastic differential equations

Followed by [25] we show here basic theorem about existence and uniqueness of

solutions of SDEs. At the beginning we have to describe notations used in this section.

Definition A.60 (|27]). Sequence f,, converges to f in topology of uniform convergence

on compact sets (ucc topology) if

sup [ fat) = F@B)]| = 0 Vrcoo.
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A.4. Stochastic differential equations

Definition A.61 (|27]). Let (7,7) be a topological space and (Y,dy) be a metric
space. A sequence of functions f, : T — Y, n € N, converge compactly as n — oo to

some function f : T — Y if, for every compact set K C 7T,

Jim sup dy (fu(x), f(2)) = 0.

By D, we define space of function with topology of uniform convergence defined as
follows

Dy = ]D)([O, oo),]Rd) = {f :[0,00) = RY| f —is cddldg}.

Let Y1,Y,,...,Y, be a cadlag semi-martingales with the respect to filtration
{E}t>0' We will consider SDEs of the following form

dX(t) = Z(-,t,X)dY(t)
X(0) = €0,
where the functional Z is given as follows. Let B(D,) be the smallest o-algebra defined

on Dy under which coordinate mappings 6, given by
0,(v) =7(t), y€Dy 0<t< 00,

are measurable, (B(Dy) = 0(0; : 0 < t < 00)).
Let

2 Q% [0,00) x Dy — R,
be such that for all ¢ € [0, c0),
(w,7) = z(w,t,7) is Fr @ B(Dg) — measurable. (A.3)
For all (w,v) € Q x Dy,
t— z(w,t,7) is an cadlag mapping. (A.4)

Suppose that there is an increasing cadlag adapted process x such that for all

YY1, V2 € de
sup [|z(w,s,79)[| < w(w,t) sup (1+ [Iy(s)]), (A.5)
0<s<t 0<s<t
sup [12(8,7) — 2w, 5,00 < Kl t) swp ()~ (A6)
0<s<t 0<s<t

Let Z: Q x [0,00) x Dy — R¥* be given by

Z(w, s,7) = 2(w, s—,7). (A7)

The Theorem gives us knowledge about existence and uniqueness of the solutions

of stochastic differential equations with respect to multidimensional semi-martingale.

107



A.4. Stochastic differential equations

Theorem A.62 (|25]). Let Y1,Ys,..., Y} be a cadlag semi-martingales with the respect
to filtration {]:t}t>o7 Y = (Y1,Ya, ..., V)T, Let z satisfy assumptions (A.3) — (A.6)
and let Z be deﬁne_d by . Let H be an adapted cadlag process. Then there exists
an adapted cadlag process X such that

X(t) = H(t) —i—/é( -, 5, X)dY (s).
0+

Now let us check that the definition in ([1.1)) under considered in thesis assumption
has unique solutions. Let (€, F,[P) be a complete probability space with filtration
{Fi}iso- Let W(t) = (Wi(t),..., W, (t))" be an my-dimensional Brownian motion
defined on that space and N(t¢) be one-dimensional Poisson process. Let 0 < T' < 400,
90 € R Let a: [0,T] x RY = R4 b: [0,T] x R — R>*™ and ¢: [0,T] x R? — R?
be Borel measurable functions and satisfy the following assumptions.

For function f € {a,b, c}, exists K > 0 such that

(A) feC(o,T] xRY),
(B) for all t,s € [0,7] and all y, z € R
(BY) |If(t;y) = f(t,2)]| < Ky — =]

Consider the d-dimensional stochastic differential equation of Ito type
dX(t) = a(t, X(t))dt + b(t, X (t))dW (t) + c(t, X (t—))dN(t) on 0<t<T,

with the initial value X (0) = zo. This equation is the notion for the following stochastic

integral equation

t t t

X(t) = xo +/a(s,X(3))ds+/b(s,X(s))dW(S) +/C(8,X(S—))dN(S) t €10,7).

0 0 0 (A8)

We refer to a,b and c as to drift, diffusion and jump coefficients, respectively. Problem
(A.8) can be rewritten as an SDE driven by the multidimensional semi-martingale
Y =0W,N)'=0t,Wy,...,Wh,,N)T

X(t) = zo +/F(s,X(s—))dY(s), t € 10,17, (A.9)
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where
a; bYL B2 .. plme ¢
» as b1 bP2 . 2 g
F(t,y) = (F”J(t,y)>1§§d7 e P T R
ag bR b2 . pdmw o

(A.10)
Defined function F : [0,7T] x RY — R**(+mw) Under the assumptions (A), (B) we
have that F' € C([0,7T] x R?) and for all t € [0,T], z,y € RY,

IF(t x) = F(t,y)|| < Kllz =yl
Let us define function z : [0, 00) x Dy — R4*(Z+mw)

2(t,y) = F(t,7(1),
and then
() = 2(t=,7) = F(t=7(t=)) = F(t,7(=))-

Now, let us check that the defined function z satisfies the conditions - .

Let’s start with explaining (A.3)). For ¢ < T we have that mapping v — F(¢,7(t))
is B(Dy)-measurable. By assumption (Ayp), F(¢, - ) is continuous and it is also
Fi-measurable. By the definition of B(D,) coordinate mapping is B(ID,)-measurable.
Moreover, mapping F'(t,7(t)) does not depend on w. Combining it together we have
that (w,vy) — F(t,~(t)) is F; ® B(Dy)-measurable.

To show (A.4), let (w,7) € Q x Dy. We have that mapping t — F(t,7(t)) is cadlag

as a submission, because F'is continuous and ~ is cadlag.
By Lemma we have that

sup [[z(w, s,7)I < sup [[F(s,v(s))]]
0<s<t

0<s<t
d 24+mw N 1/2
< s (303 IFY(sAs)I?)
Ossst *9 =1

< kK(t,w) sup (L4 [|v(s)]]),
0<s<t

which proofs that definition of z satisfies condition (A.5]).
By assumption (B1) we have that

sup [[2(w, 5,71) — 2(w,5,7)[ < sup [[F(s,71(s)) = F(s,72(5))]]
0<s<t 0<s<t

< ol o It = ()

I
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which proofs that definition of z satisfies condition (A.6]).

In Chapters 2 and 3 we use stronger assumptions so the existence and uniqueness
also holds. By the above considerations and Theorem there exists a unique
solution X () of the equation (A.8)), and the solution belongs to M?([0, T]; R?).

We also have the following estimates for the solution X under the additional
assumptions (B2), (E). For function f € {a,b,c}, and X exists K > 0 such that

(

for all t,s € [0, 7] and all y, 2 € R,

(B2) [[f(t,y) = f(s, )l < KL+ [[yl))]t — s,
(E) X e C([o,T]).

Lemma A.63 ([62]). Let us assume that the functions a, b, ¢ and X\ satisfy the
assumptions (A), (B1), (B2) and (E). Then there eists positive constants Cy, Cy such
that

X(t H <Oy,
tiféglu Ol <

and for all t,s € [0,T]

[ X (1) = X (5)]| go() < Calt = 5|2

A.5. Random elements with values in Banach spaces

In stochastic analysis it is important to have tools which allow us to switch
between two possible ways of looking at a stochastic process. Firstly, we can consider

a stochastic process as a product measurable function
Q x [0,+00) 2 (w,t) = X (w,t) € R

On the other hand, if almost all trajectories of process X belongs to (E, &) where
(E, &) is some functional space equipped with a g-algebra €, we can consider mapping
X : Q — E defined in the following way

X(w)=X(w, -), we (A.11)

If X is F /E-measurable then we say that the process X generates the random element
X in (E, ). Moreover, the law of u of X is a probabilistic measure induced by X in
the measurable space (E, €).

Theorem A.64 (|11]). Let E = £2([0,T7]), equipped with the norm || - ||e2(o,r7), and
E=BE). If X € £2(Q x [0,T],F®@B([0,T]),P x A1), then it generates the random
element X in £2([0,T1]).
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A.6. Auxiliary results

Having a random element X in some functional space E it is natural to ask if
there is a product measurable stochastic process X satisfying (A.11]). In the case when
E = £2([0,T)) the answer is provided by the Theorem

Theorem A.65 (|37|] Proposition 2, page 741). Let X be a random element in
£2([0,T]). Then there exists a product measurable process X such that for almost all

w, the equality X (w,t) = (X (w))(t) holds almost everywhere on [0,T].

Note that X € £%(Q x [0,T],F ® B([0,T]),P x A;). Hence by Theorem [A.64] the
solution X of the SDE generates their representation element X :— £2([0, T]; R?)
which is F/B(£2([0, T]; R?))-measurable. In the thesis we use tha same symbol X for
the product measurable solution of SDE as for it representation as a random
element in £2([0, T]; RY).

By and we have that X, : Q —  £%[0,T;R%) is a
o(N,(W, N))/B(L£%([0, T]; RY))-measurable random element in £2([0, T]; R%).

By Theorem there exists o(N,,(W, N)) ® B([0, T])/B(R¢)-measurable process
Xn such that for almost all w € €

Xo(w, 1) = (Xa(w))(t)

holds for almost all ¢ € [0, T]. In particular, this implies that for almost all ¢ € [0, T

the random variable
Q3 X,(-,t) = R?

is (N, (W, N))-measurable. Again, we do not distinguish between X,, and X,,.

A.6. Auxiliary results

A.6.1. Properties of Frobenius norm

Let A = [ai’j]g’le be the d x k real matrix. Then the Frobenius norm of A is defined

as

1Al = (Ed:i Ia”'!?) 1/2-

i=1 j=1

In the special case, when z is a vector of length d,
J 1/2
b = (3 )
i=1
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is just the Euclidean vector norm.

Now, if we denote jth column of A by a’, and ith row of A by a; , then the norm

m 1/2 d 1/2
1Al = (Z HajH2> = <Z HaiH2> :
j=1 i=1

The Frobenius norm has a useful property of submultiplicity.

can be expressed as

Lemma A.66 ([81]). Let A = [ai’j]zg-zl and B = [b”];njil be matrices of sizes d X m

dk

and m x k, respectively. Then the the product C' = [¢*];"_, of matrices A and B is an

d X k matriz and

IC1 = [IABI < [[A[ll|B]-

A.6.2. Gronwall’s inequality

Theorem A.67 ([38]). Let T > 0 and ¢ > 0. Let u(-) be a Borel measurable, bounded,
and nonnegative function on [0,T], and let v(-) be a nonnegative integrable function

on [0,T). If
u(t) <ec+ /v(s)u(s)ds for all t€[0,T],

then
t

u(t) < c-exp /v(s)ds for all te€[0,T].
0



Appendix B

Time-continuous Milstein

approximation

In this section we show basic properties about time continuous Milstein
approximation which is used in this thesis. We will provide definition of approximation
in two cases, first which use information about first derivative, and second which
corresponds to derivative free version of Milstein scheme. Then we prove main
theorems which say about the rate of convergence of both algorithms. We also
show here the useful Lemmas and Facts which help to prove Theorem and
Theorem [B.13

B.1. Time-continuous Milstein approximation for

system of SDEs

Let m € N and
O:t0<t1<...<tm:T, (Bl)

be an arbitrary discretization of interval [0, 7). By

we denote the increment of stochastic processes Z € {N,VV,Wl, .. .,me}, where

1 =20,1,...,m — 1, it is both a vector or a number depending on process structure.

113



B.1. Time-continuous Milstein approximation for system of SDEs

Followed by [61] the time-continuous Milstein approzimation XM = {X%(t)}tem 1
based on the discretization (B.1)) is defined as follows. We set

X (0) = o, (B-2)

and for ¢t € [t;,t;11],7=0,1,...,m—1,

X (t) = X5/ (t:) + a(Us) - (t — 1) + b(U') S(W(t) —W(t)

+ C(UZ) : (N<t) Z L]leQ It t(W]NVVh)
Jj1,J2=1
+ Zlec<Ui)'[t (Wi, —i—ZL 1b]1 Iy, (N, W)
J1=1 ji=1
+ Lflc(Ui) ’ [tz‘,t(N7 N)v (Bg)

where U; = (ti, XM (tl)) and multiple stochastic integrals defined as

m

LY, Z) = //dY VdZ (s (B.4)

forY,Z e { N, Wy, ..., me}. For more properties about multiple integration we refer
to Appendix[B.4] where we consider basic properties about multiple stochastic integrals
in a way when partial information about processes are known.

We stress that for any m € N the approximation { X (t) in our model of

Ve
computation (even under the commutative conditions (D)), is Z[o’t ]an implementable
numerical scheme, since computation of a trajectory of )Z'ﬂ]‘f requires complete
knowledge of a corresponding trajectories of N and W. However, if the conditions
(Dyp) holds, by Lemma , we can compute values of )N(n]\f at the discrete points
using only function evaluations of W and N at (B.1]).

For every m € N the process {X%(t)}te[o 71 18 adapted to {‘Ft}te 0.1]

paths. Furthermore, under the commutative conditions (D,,) the random variables

and has cadlag

{X%(ti)}io are measurable with respect to the o-algebra
U(Nm(Na W)) = U(N<t1)7 N(t2)7 SR N(tm)v W(t1)7 W(t2)> R W(tm))7 (B5)

and the upper bound on the error of XM is given by Theorem . We provide an
auxiliary result concerning an upper bound on the error for the continuous Milstein
approximation XM, A similar result has been justified in Theorem 6.4.1 in [61],

however, under slightly stronger assumptions. In particular, in this thesis we do not
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B.1. Time-continuous Milstein approximation for system of SDEs

assume the existence of continuous partial derivative 0f /0t for f € {a,b,c} and we
do not assume any Lipschitz conditions for the second order partial derivatives of
f=ft,y), f € {a,b,c}, with respect to y. Moreover, we consider non-homogeneous
Poisson process, while in [61] in Theorem 6.4.1 has been shown only for homogeneous

counting processes.

Theorem B.1. Let us assume that the mappings a,b,c and X\ satisfy assumptions
(Aup) — (Cup) and (Eyyp). Let m € N and let (B.1) be an arbitrary discretization of

the interval [0, T]. Then for continuous Milstein approximation X%, based on the mesh

(B.1) we have that

tzé%!!X%(t)ng(m <Cy, (B.6)
and
sup || X(t) — )N(n]\f(t)HSQ(Q) < C2o<riri%§1(ti“ —t;), (B.7)

t€[0,T)

where C1,Cy > 0 do not depend on m.

As a proof of Theorem is long we decide to divide it into smaller parts. We also
proof some lemmas, which are repeatable in the main proof. Firstly we show results

following from the given assumptions (Ayp) — (Cup)-

Lemma B.2. Let f : [0,T] x R? — R? satisfy (Ayp) — (Bup) then for all
(t,y) € [0,T] x R, exist Ky > 0 depends only on || f(0,0)||, K and T such that

17l < Ka(1+ o). (B.9)
olel
| B TR (B.9)

where o € N, and |a| = Y0, .. We also have that
|V f(ty)||< d- K. (B.10)
Moreover if function f satisfy assumption (Cyy) we have that for all (t,y) € [0,T] x R4

max { | Lo f(t )l [LofE )l [ L, fE I} < Ka(L 4 lyll),  (B.11)

with Ky = KK;. (For f:[0,T] x RT — R™™~ the statement (B.8)) also holds.)
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B.1. Time-continuous Milstein approximation for system of SDEs

Proof. Firstly we show (B.8). By Cauchy-Schwarz inequality and by assumption (Byp)

we have that

18 y) = £QO, 9+ [17(0, ) — F(0,0)[ + [[£(0, 0)]

LFE Il <
< K+ lyll)-

Let e, = (0,...,0,1,0,...,0)7 for k € {1,...,d} be a d-dimensional vector where
non-zero element is on ith position. We have that ||e;|| = 1. Then we go to proof

in case when || = 1. By assumptions (B1,,,) we have that

f(t>y+h'ek>_f<tay)

K||h-
h < i Kl ]

< .
h0  |h S K

e
Now, we go to proof of when |a| = 2. For ky, ks € {1,...,d} it follow that

o (ty +hew) = 5 f(ty)
h

I

t, = lim
aykl aka ( y) H

h—0

The (B.10) is a natural consequence of (B.9). Finally we prove (B.11). Hence by (Bluy)

and (B.8)) we have

ILooftll = |fty+cty) — fEy)l
< Klly+ct,y) —yll < KK (1+]yl]).

Then, directly from for j € {1,...,my} we have
1L fE )l < [|Vaf @ )| - ([P y)]] < KE(1+ ).

This ends the proof. [ |

Let f € {a,b',..., 0™ ¢} and (B.1) be a discretization of interval [0,7T]. Let
w € [t tinq] for i € {1,...,m}, then we can define functions «;, 5;,v; by

ai(f,u) = Vo f(ti, X(u)) - alu, X(u))

5 2 g 1 X)X ) - B, X (). (B12
B.0F,w) 1= Ve (1, X () - Do, X (w), (B.13)
) = Pl X )+ o, X(um)) = F b X (w). (B.14)
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B.1. Time-continuous Milstein approximation for system of SDEs

By Lemma[A.59] (It6 formula) applied to function U(z) = f(t;, ), by Definition [A.39]
(B.12) — (B.14) we can write that

S S S

fti, X(s)) — f(t;, X () = /ai(f,u)du—i—/@(f, w)dW (u) —i—/%(f,u)dN(u).

t; t;

(B.15)

Based on given assumptions about function f (A,p) — (Cup), we have the following

estimations.

Lemma B.3. Forie {1,...,m}, for all u € (t;,t;11] we have that
i, w)||” < 1+ [IX (w)])" (B.16)
Proof. By the Lemma we have that
las(f )l < [|Vaf (t X () - alu, X ()]

#5C Z H%WX@)) by X (w) - B (6, X )|

J1,J2=
< IV f (s X () - llalu, X (w))]*
d
1 af 2 T 2
+3 OZ |5t XD 0 X ) - 0 X ()
Now, by (B.8]), and assumption (B2,,) we have (B.16) and this ends the proof.
|
Lemma B.4. Fori e {1,...,m}, for all u € (t;,t;11] we have that
2 2
[8:(fw)||” <O+ [X(w)]])" (B.17)
Proof. By the Lemma we have that
2 2
16:(fw]]” < ||Vaf (s, X (@)||” - 16w, X (u)].
Now, by (B.8)), we have (B.17) and this ends the proof. [ |
Lemma B.5. Fori e {1,...,m}, for all u € (t;,t;11] we have that
2 2
[ (f )" < O+ X (w)ll) ™ (B.18)

117



B.1. Time-continuous Milstein approximation for system of SDEs

Proof. By assumption (B1,,,) we have that
2

Now, by (B.8)) we have (B.18) and this ends the proof. [ |

Lemma B.6. For i € {1,...,m}, for all u € (t;,t;11], for f € {bl,...,bmW,c} for
kEe{l,2,...,my}, U= (ti,X,],‘f(ti)) we have that

E”(ﬁi(ﬁ — Ly f(U H <C (EHX n]‘f(ti)H2+(u_ti)+(U_ti)2>'
Proof. By the assumption (Cyp), Theorem (B.8), we have that

E||(5i(f,w)" — LefU)]]° < E[(Bif.u)" = Lif( tz,X )|
+ E||Lif(ti, X (w)) — Ly, f(U ||
< E(vati,X(u))H? 16 (u, X (w)) = B (i, X (u))]?)
+ K E||X(u) - XMt
< KE(1+ X)) u—t
+ KE|| X (u) — X (&) + KE|[ X (t;) — XM (t,)]|
C(E|| X (t:) = XM ()|]” + (w—t:) + (u— t:)?).

2

N

That ends the proof. |

Lemma B.7. For i € {1,...,m}, for all uw € [t;t;s1] we have that for
fe bt v el fork e {1,2,...,my}, U = (t;, XM (t:)

E/ (1) — Ly f(U3)]Pdu < C(EHX(t,») — XM+ (tir — m?).

Proof. Firstly we show estimation for H%’(f, u) — L71f(Ui)||2 for all u € [t;,t;11] By

the assumption (Bly,), we have that

[7i(fuw) = Loaf(UD)]] < || £t X (u=) + (u X( =) = f(ti, X! (t:) + ¢(U2) ]|
+ [ £( t X(u i
< CHX u—) — X, (t; H +CH (u, X (u—)) —c(Ui)H
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B.1. Time-continuous Milstein approximation for system of SDEs

< Ol (=) = X(@)|| + [|1x (1) - X )|
+C(]EH (1, X (u=)) = efti, X (u))
T le (o X(0) - teall)
C(||x (k) = X z‘H

+ X (=) = X ()| + (1 + X (w)]]) - u—ti]).

Then we have that

E/H%(f,u)— U)|fdu < C]E/HX X ()| Pdu
+CIE||X D= XM (s — 1)

+ CE/(1+ 1X () ) - (u — t5)2du

ti
S

CE /(u —t;)du+ CTE||X(t;) — XM(t,)|

t;

2

N

—i—C(l—i— supEHX()H) (s—t)

0<t<T

By Theorem [A.63]
IE/ [ (fu) = Laf(U)|'du < Cltipr — t:)> + CE||X(4:) — XM(5:)]|*.
This ends the proof. |

The solutions of problem (1.1)) given by X = X(¢) and time continuous Milstein

approximation X = XM (¢) can be decomposed into

X(t) = o+ Alt)+ B(t)+C(1), (B.19)
XMty = zo+ AM(t) + BM(t) + CM (1), (B.20)
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B.1. Time-continuous Milstein approximation for system of SDEs

where
A(t) = / ia(s,X(s))ﬂ(ti,tw](s)ds, (B.21)
B(t) = / 3 s, X () Lt (5)IV ), (B.22)
cl) — / A_ (5 X (5)) L 1,1 ()AN (5), (B.23)

and
fl%(t):/ ._ a(Ui)IL(tithl](s)ds, (B.24)

t;
Lemma B.8. Let us assume that the mappings a,b,c and \ satisfy assumptions

(Aup) — (Cup) and (Eyp). Let m € N and let (B.1) be an arbitrary discretization
of the interval [0, T]. Let A(t) and AM(t) are given by (B.21), (B.24). For allt € [0,T]

we have that

0<i<m—1

t m—1

E||A(t) — AX (1)||” < C’/ZEHX(Q)—)N(f,‘f(ti)||21(ti,ti+ﬂ(s)ds+0 max (ti41—t;)°
=0

’ (B.27)

Proof. W have that for all t € [0, 7]

2

BlA0) - O < B [ Y (06 X)) — alt)) L)

< 3(EJAN, ()] + | AL + E|AL0]°).
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B.1. Time-continuous Milstein approximation for system of SDEs

where

3
L

E|AY, 0)|* = E (a(s, X(5)) — alts, X(5))) Ly ()5

Y

01

O\w O\.,w

EHA%,Q(IS)HQ = E Z_( (tivX<8))_a(tivX(ti)))ﬂ(tutiﬂ](‘s)ds 27
E||AY, ()| = IE/ alts, X (1)) — alts, XM () Larn (5)ds|

Now, by a Holder inequality, Lemma and assumption (B2,,) it follows that for
all t € [0,

2

E|| A (1) = EH/le ) — alti, X(5))) Lpson (s)ds

N

7=

C’Z]E/Ha 5 X(5)) — alt X ()] Lne, (5)ds

mlt

CZ/K2s—t E(1 4 |X ()] 140,01 (5)ds

< € max (tin —t)* (B.28)

N

By decomposition (B.15)) and decomposition of N given by ({A.2)) we have the following

estimation

2

BIALO1 = B [ Y (00 X06) - alt X))

< C(B|L @ + B[N0 + B L0 + EIIALLO]),
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B.1. Time-continuous Milstein approximation for system of SDEs

where

E[ML@lf = E

E|MY,@0)|° = E

MLl = E

t;

E[AL@)” = E

N

From Holder inequality and Lemma we have that

E!’M%l(t)HQ = ]EH/Z /04Z a,u du) (titira] (8)ds i

< /Zs—t / (14 1 @) du) L, (3)ds,

z

Then, by Theorem we have that

Bl ML )]

< C max (ti+1—ti)2. (B29)

0<i<m—1

By the definition of Euclidean norm we have that

EHMn]%(t)HQ - Ei(/z / Bﬁau dW(“))ﬂ(tutiH}(S)dS)

11=0 Ji=1

</m 1 /% (Bi(a, w)) " W, (u )>1(t” tzl+1](81)dsl>
0
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B.1. Time-continuous Milstein approximation for system of SDEs

The multiplication is non zero only when i; = 75, so we have that

B0 = Z( / / S35 / (510, )" a0, )

i=0 j1,j2=1 i
7

X / (Bi(a, u))k7j2de2 (U)) ]]'(ti,ti+1}2 (81, 52)d81d52> .

ti

By Theorem and Lemma

d tot. 4 M S$1/A\S2 ‘
IEH]\;[,7]‘142(25)“2 = Z (//ZZE( / ((ﬁi(a,u))k’J>2du)Il(thtiH]z(sl,sg)dsldsg)
k=1 g 3 =0 j=1 7

5182

IE( / ||5¢(CL, u) HQdu) Lt t00172 (51, 52)ds1dss.
t;

m—1

Then, by Lemma [B.4] and Theorem

t tm_1 S1/A\S2
]EHM%Q(OHQ < //ZE( / C(1+ HX('U/)H)Qdu>1(ti’ti+1]2(31,52)d31d32
0o o =0 t
< C max (ti—i—l_ti)Q' (B?)O)

0<i<m—1
Analogously as previous by Theorem[A.55] Lemma[B.5] Theorem [A.63]and assumption
(E\p) we have the following estimation

CERAY-D)

tLotma
EHMTJ)L/[?)(t)Hz = //ZE( / H'yz'(a,u)”?)\(u)dU)ﬂ_(ti7ti+1]2(81782)d81d82
0o o =0 ti

t t m—1 S1/A\S2
< //ZE( / C(1+ HX(u—)H)2du>]l(thtimz(sl,32)d51d52
o o =0 i
< C max (ti+1 — tl)2 (B31)

0<i<m—1
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B.1. Time-continuous Milstein approximation for system of SDEs

By the Holder inequality Lemma assumption (F),,) and Theorem we have
that

S

B0 - B / > / 3, A} L 1, (5)ds

0o = t;

2

/AN
Q
=
o
gM‘
T
2
=
<

duH Lt t,,01(5)ds

S

m—1
< C/Z (s—t) (/(1+ 1 ()l ) L, (5)ds
=0 t
é C(Ogrz%%r)z(—l(ti—i_l_ti)? (B32)
By the (B.29) — (B.32) it follows that
E||[AM,0)|F < € max (ti —t)% (B.33)

0<i<m—1

By the Holder inequality, assumption (B, ), Lemma [B.5] and Theorem we have

C [ YR — XL (B.34)

Finally, from (B.28)), (B.33), (B.34) we proof that (B.27) holds. That ends the proof

of (B:27). n

Lemma B.9. Let us assume that the mappings a,b,c and \ satisfy assumptions
(Aup) — (Cup) and (Eyp). Let m € N and let (B.1) be an arbitrary discretization
of the interval [0,T). Let B(t) and BM(t) be given by (B.22), (B.25). For all t € [0,T]

we have the following estimation

m—1
EHB(t) B B”A"i[(t)||2 < C/ Z EHX(tZ) _szxl(ti)Hz]l(ti,tiﬂ](‘g)ds+Co<ri2%zal(ti+l _ti)Z'
=0 -
(B.35)
Proof. Let U; = (ti,)z,],‘f(ti))

E|B() - BYWI* < 3(EIBN.0°+E| B0+ E|BL0]).
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B.1. Time-continuous Milstein approximation for system of SDEs

where
~ ) My ¢ m—1 ' 2
BB = B3 [ 3 (06 X(6)) = Ut X(6)) Lt (W)
j=17% =0
My Ot m—1
E||BY, )| = EHZ/ (V01 X(5)) — W (8, X (1),
j=179 =0
mw 5 ' g ' 2
=3 [ LU — [ Ll )N () L (AW )|
k=1 ti ti
_ ) my el . 2
BB = B[S [ 0t X(0) V0 L ()W)
j=17 =0
By the Ito isometry (see Theorem [A.57)), and assumption (By,)
Mw t m—1
BB < OB [ Y66 X(5) Bt XD Loser(5)ds
j=1 =0
t mil
< CE [ K35 6B+ X (6) )L (5105
0 =0
< C max (tiy1 — )% (B.36)

0<i<m—1
Then, by decomposition ([B.15]) applied to functions &’ for j € {1,2,...,my} and (A.2)
we have the following estimation

2

E|BM0° < C (B[R + B[Nk + BN, @)* + B 0|),

t o1 s

Z (/ai(bj’u)du)ﬂ(ti»twl](s)dwj(s)

2

)

s
w m—1 M

(Z/ ((5¢(V,U))k - Lkbj(Ui)>de(U)>

j=17Y =0 k=1

2
X ﬂ(t¢,t¢+1] (S)de(S) ” )

el =€) 3 mZ ( / (V1) = LW (UD)AN (1)) ()W)
SO =B 3 [5Gt 0) - Lo )3 o)
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B.1. Time-continuous Milstein approximation for system of SDEs

Next, by the Ito isometry, Lemma and Theorem we have that

My tm—l S 9
j=1 =0 b

< C/Z (s —t;) / (14 X (s)[) *dul s, (s)ds

l

C' max (ti-i-l —tl)Q (B37)

0<i<m—1

N

Then, by the It isometry, Lemma and Theorem [A.63] it follow that

m—1 my

E| 2,0 < 0%/221@“/ (5.7, )" — L () ) Wi (w)|

=0 k=1

XL, 05,(8)ds

tiy1]

m—1 my

CZ/ S0 [EIEE.0) - L ] duts g (s)ds

=0 k=1 i

VAN

i
m—1 9

ciﬂj/tZ/(EHX(ti)—X%(tiW

j=1 0 1=0 4

K3

N

+ (u—t;) + (u— ti)2>dul(ti,ti+l](s)ds

N
Q
—
]
i)
Jad
T

H L, tz+1]( s)ds

+ 02 HlaX (ti+1 — tz)Z (B38)

0<i<m—1
By the It6 isometry, Lemma [B.7]and fact that ) is continuous (assumption (FE,y)) we
have that

E|MY 0 < CZ/ZEH/ (¥ u) — Lot (U))dN (w)

Jlo =

S OZ/Z]E/H% bj u) ‘(UZ)H2)‘(u)dUIL(ti7ti+1](S)dS

Jlo

l(t terl]( )d

N

08 5 (Blbcteo - SHI+ -0 o

=1 0
m—1
S 2
< C/ Z E”X(tz) - X%(tl)H ]]'(ti,ti+1}(s)ds + CQOSI%%}L(_l(ti-‘rl _ tz)2

(B.39)
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B.1. Time-continuous Milstein approximation for system of SDEs

Then, by the [t6 isometry, Lemma by the assumption (E,;) we have the following

estimation

Mw tm—l S 9
ENM )2 < CZ/ZEH/(%(N,u) — L (U))A)du| T (5)ds
7j=1 1=0
< CZ/ZE/H% (V) — Lo (U) P du
Jj=1 0 = i
x / M) Pdul g, (s)ds
t;
m— 1
< C/ ]EHX(tz) H z—i—l 2>1(ti,ti+ﬂ(8)d8
1=0
m—1 oy N )
< O/ZE||X<tz> _Xm (tz)H I]'(ti,twl}(s)ds+C2O<gi%§_l<ti+1 —tl) .

0 =0

(B.40)

By the (B.37) — (B.40) we have that

m—1
H:;:”Bi\n/{?(t)”2 < G / z_: E”X(tl) - Xr]nw(ti)Hzﬂ(ti,tiﬂ}(s)ds + 020;%%(_1(%-&-1 - ti)z'

(B.41)
Then, by the It6 isometry and assumption (B1,,,) it follows that
my  Lm—1
B BL07 < ¢ / S|t X (0) = P00 [ L)
lemol =0
c/ STEIX(t) = XM ()| et (5)ds. (B.42)
0 =0

Finally, by the estimations (B.36)), (B.41)), (B.42)) we have that

0<i<

m—1
E||B(t) - BYt)|* < c/ZEHX@Z-)—X%(ti)nﬁ(ti,w( Jds+C max (ti —t:)”

This ends the proof of (B.35]). [ |
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B.1. Time-continuous Milstein approximation for system of SDEs

Lemma B.10. Let us assume that the mappings a,b,c and \ satisfy assumptions

(Aup) — (Cup) and (Eyp). Let m € N and let (B.1)) be an arbitrary discretization of

the interval [0, T)]. Let C(t) and CM(t) be given by (B.23)), (B.26). For allt € [0,T)] it
follow that

t
E|[C(t) - CH @) < C/mZ_IEHX(ti) —X%(ti)||2]1(ti,ti+ﬂ(s)ds+Cogr%%1(ti+1 —t;)%
o (B.43)
Proof. We start with decomposition
Ellc) - ol < s(E|CHLOIP +E[CLOI" +EICY)]°),

where

2

)

E|[CM, )| = EH/E(C(S,X(S))—c(ti,X(s)))Il(thtiﬂ](s)dN(s)‘

B|CL O = B [ 3 (et X(o) - et X(0)

E|CM, )] = EH/ ™ (el X(8)) — e(U9) L, (5)AN ()

Now, by decomposition (A.2)), It6 isometry, and Holder inequality, Lemma and

assumption (B2,;) for all ¢ € [0,7] we have the following estimation

E|Cah @ < c(er / mz (e, X()) = elti, X(5)) L () s)||-

7=

+ EH/ A_ (C(S’X<S)) _C(tivX(S)>)l(ti,ti+1}(8)>\(s)ds 2)
s C</ZEHC<S>X(3))_C<ti7X(S>)H2ﬂ(ti7ti+1]<3))\(3)ds
+ /iEHC(S’X(S))_C(ti’X(S))Hzﬂ(ti7ti+1]<8)ds'/|/\(S)|2ds>
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B.1. Time-continuous Milstein approximation for system of SDEs

t

m—1
C /K2(8 —t;)? - ]E(l + HX(s)H)Q]l(ti,tm](s)ds
=0 0
< € max (tia — 4" (B.44)

By decomposition (B.15)) applied to function ¢ we have that

E[|Cols(t)

I

< C(BML )] + BIIRLO| + B 0I),

where

B0 - E /
0

E[ML0))° = E

3

2

JIM

/az ¢, u)du) g, 4, (s)AN (s)

123

3

% / (Bi(c,u)) jc(Ui))de(u))ﬂ(tiytiJrl](s)dN(s)HZ,

klt

H\g

S

</ (%(c, u) — L_lc(Ui))dN(u)> Lt t0001(8)AN(s)

ti

[y

3

2

E[Ma0))* = E

o\“ o\

I
o

i

Now, by decomposition of N given by (A.2)), It6 isometry, and Holder inequality,
Lemma [B.3] Lemma [A.63] assumption (E,;,), we have that for all ¢ € [0, 7]

E”M%l(t)HQ < CEH/Z (/Oéz c,u) du> (t: 7ti+1](s)d]§[(s) 2
+ C]EH/le /8042 (c,u du) (titirn] (5)A(s)ds i
<

m—1 9
C’/ZE”/ai(C,u)duH Lt 5,1 (5)A(s)ds
0 =0 t;

Lm—1 s 9 t
+ C’/ZEH/ozi(c,u)du Il(tivtiﬂ](s)d&/|/\(5)|2d5
=0 0

< /Z s —t;) / (1+ ]| X (u )H)4du]1(ti,ti+l](s)ds

< C’OSI%E}%(_I(QH L) (B.45)
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B.1. Time-continuous Milstein approximation for system of SDEs

and

<C/§§EH/S((@(C,U)) —ch(UZ)>de(u)H2IL(t ()M (s)ds
e O/ 3 “EH / ((Bute )" — Lie(U) ) aWiw)|| L., (s)ds

1=0

— ~ 2
S C/ Z ]EHX<t1) - Xr]r\z/[(tl)” l(ti,ti+1}(8)d8 + CQOSI%%fil(tZ#l - ti)Q' (B46)
0

Now, by decomposition of N given by (A.2)), Ito isometry, and Holder inequality,
Lemma [B.7 Lemma [A.63] assumption (E,,,), we have that for all ¢ € [0, T

B0 < CE| / mzl( / (i, w) = Loae(U:))AN (1) )L, gy (5)AN (5)

t;

n OEH /mi (/ (e, u) — L_lc(Ui))dN(U)>]l(ti,tiﬂ}(s))‘(s)ds‘r

0 =0 ti

2

ﬂ(tivti-&-l] <S>)‘(5)d5

< C/EEH/S(%(C,u)—L1c(U,-))dN(u)

e / meEH / ((e,u) —L_lc(U,-))dN(u)HQﬂ(timl}(s)ds. (B.A7)

t;
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B.1. Time-continuous Milstein approximation for system of SDEs

So analogously like (B.40) we have that

t m—1
MM%@WféO/E;WMM—X%memm@m+q£g4mrwﬁ
0o =
(B.48)

Finally, by the (B.45) — (B.48) we have that

tmfl
EHCN(TAR{Q(t)H2 < C/ z; E”X(tl) - Xr]r\z/[(ti)||21(ti,ti+ﬂ(5>d5 + Cogring%i(—l(t”l - ti)Q'
0o =
(B.49)

Now, by decomposition of N given by (A.2)), It6 isometry, and Holder inequality,
assumption (Blyy), (Eyp) we have that for all ¢ € [0, 7]

el < o] [ et x0)-cn) e
+Wj:memwmmmmm@wﬁ
<4]$M%xmwmm%mwwm8
+]§W%XMPWMWMAW&ﬁWW@
< C / §E}}X<ti> = XM ()" L1 (5)ds, (B.50)

Finally, by the estimations (B.44), (B.49), (B.50)) we have that

0<i<m—

t m—1
EHC(t) B éﬂﬂf(t)w - C/ Z EHX(tl) _X%@»HQH(tmtiH](S)dS"’—C max 1(t,;+1 _ti>2'
0 =0

This ends the proof of (B.43]). [ ]
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B.1. Time-continuous Milstein approximation for system of SDEs

B.1.1. Proof of Theorem

Proof. of Theorem Let U; = (L, X,],‘f(tl)), we have that Lj f(U;) is
F, -measurable for f € {b',... 0™ c}, 1 € {1,2,...,my} U {—=1} because XM(t,)
depends only of evaluation of processes until ¢;. Firstly, we show that

sup ||XM
te[0,T]

M g2y < o0 (B.51)

At the beginning, we show a first step of induction for ¢y (i = 0). We have that

- 1/2
12 o)l ey = E(1X2 (t)||*) ™ = llaoll < . (B.52)
Now we assume that for [ = 1,2,...,4, there is that HX%(Z&I)HEQ(Q) < 0o0. We show
that for [ =1,2,...,i and t € [t;,t;41] we have the following estimation
| X2 0) = K5 )] oy < C(1+ | KA )| gy ) - (£ = 00 (B.53)

By Hoélder inequality we have that

10 (1) = X2 (0130 < C(Ellah) - (¢ = )" + E[Jp(wn) - (W(t) = w(w) |

+ () (V) = Ne) |+ B 30 L (00 LW W)

Ji,g2=1

2 T , 2
+EHZLJ1C U To(Wo, N |+ B[ S0 £t @) - 1,8, 7)

Jj1i=1 Ji=1
+ B[ Lael0) - Lua (N, N)|[).
By we have that
2
Ella(@d) - (¢ = )] < K2T(t = t) - (14 [ X ) | o) (B.54)

By (B.8), and fact that all b(U;) and (W () —W () are independent, it holds because
b(U;) is Fy,-measurable and W (t) — W (¢;) is independent of F;,, we have that

o) - (W) -wm)||F < Elp@)|*-E|w @) -ww)|

N

KQT(t—tl).(lJrHXM t)| e2q )2. (B.55)

Analogously by (B.8]), by assumptions (E\;,) and fact that all ¢(U;) and N (t)—N(t;) are
independent, it holds because ¢(U;) is F;,-measurable and N (¢) — N(¢;) is independent
of F,, it follows that

E|le(Uy) - (N(t) = N(&)||* = E|e@)|]*-EIN () — N(t)?
< Kz(t—tl) . <1+ HXM t HSQ )2. (B.56)
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B.1. Time-continuous Milstein approximation for system of SDEs

For consider ji,jo € {1,...,my}, by (B.11), and Fact we have that L; v2(U;)
and Iy, ,(W;,,W,,) are independent, then we have that

- . 2 AL ,
EH Z lebh(Ul)'[tht(W/jMsz) < C Z EHlebD(Ul)”z'E‘[tut(Wqu/jz)P

Ji.g2=1 Ji1.J2=1

<(ﬂﬁ—nf.<+HXMaHym).B5ﬂ

Analogously, we have that for j; € {1,...,my}, by (B.11), and Fact the pairs
L; c(U) and I, ;(W;,, N), L_1b (U) and I, (N, W;,), and L_1¢(U;) and N(t) — N(t;)

are independent. By assumptions (F\;,) we have following estimations
Mw 9
E| S L@ TnaWs 8| < SO BIL W) - Bl (175, V)
Ji=1 j1=1

2
< Ol =t (14| XY W) o)+ (B5S)

2 A ,
EHZL 1b] Ul) Itl <N7Wj1)‘ S ZE|’L*1H1<U1)||2']E|Itz,t(N7Wj1>’2

J1=1 Jj1=1

2
< Ot —t)*- (1+HXM () HSQ(Q) , (B.59)

B|[L a0 o(N, N[ < BILe(Th)? - Bl (N, N)?
< C=t)? (14| W) pey) - (B6O)

Tence by (B54) -~ (B60) we have that sup [ X2 (t)]lgx(a) < oo and in particular,

te[tl tl+1}
HXnJ‘f(tlH HSQ < 400. Therefore, we get sup || XM (¢ i)|lg2(2) < +o0 and (B.6). This
0<i<m
ends the first part of proof of (B.6). O

Now we justify (B.7). Then, by decomposition and we can write that
N 5 1/2
1X(8) = X O] g2y = (BN X (1) = KX O)
N _ 1/2
C(E|A®) - A +E|[BE) - BYO|* +E|lc®) - CXOI) "

Then, by Lemma [B.§], [B.9] [B.10] we have that

m—1
EHA(t) B Afﬂg(t)HQ < C/ 2; EHX(tZ) - Xr]\n/[(ti)H2]1(ti7ti+1}(8)d8_‘_Cogl%%il(tﬂrl - ti)zu
0 =
¢ m—1
E||B(t) - By ()] < O/ Z;EHX(@)—Xﬁf(ti)HQﬂ(ti’tM (s)ds+C' max (i =),
0o =
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B.2. Time-continuous Milstein approximation for system of SDEs under JCC

E||C(t)— M (1) < ¢ / ZE”X = M)Vt (s +C s (111 — 1)

0<:i<

Finally, if follows that for all ¢ € [0, T

sup E|| X (s) — XM (s /Z sup E|| X (u) X%(U)HQIl(thtHﬂ(u)du

0<s<t 0<u<t

+ Coglgééiiil(t%i,l ti)”.

By Lemma [A.63| and (B.6) mapping

[0,T) 3t — sup E||X(t) — XM (1)||> € R, U {0},

0<s<t

is bounded and Borel measurable. Then, by the Theorem (Gronronwall’s
inequality) we have (B.7)). This ends the proof. |

B.2. Time-continuous Milstein approximation for
system of SDEs under jump commutative

condition
In this section we show the definition of time-continuous Milstein approximation

under jump commutative condition. We discuss the most important properties about
it. Let U; = (tl,f(%(tl)) Under jump commutative condition (D) we have that
(B.3) takes the following form

XMty = XM(t) + a(U) - (t—t:) + b(U:) - (W(E) — W(t:)) +c(Ui) - (N(t) — N(t))

1 _
+ 5]]21 Lj1b]2(Uz) . <[ti7t(I/I/j17 WJQ) + Iti,t(WjQ, VV]1)>
+ Z lec [t t(VVju N)+ I, «(N, le)) + L_1c(U;) - I, (N, N).

Jj1=1

Moreover, for all i € {0,1,...,m — 1} and t € [t;,t;11], we have the following

decomposition

XM(t) —E(XM(t) | N (N, W) = HY () + RM(2), (B.61)
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B.2. Time-continuous Milstein approximation for system of SDEs under JCC

where by Fact we can write that

(@) = b(U) - (W) —EW(@) | Na(W)) )
+ o(Us) - (N() = E(N (1) | Nu(V)) ), (B.62)
RYO) = 230 L) (Bl W) + 1s(W5 W)
M—_lE(Iti,xWﬁ,vvj-» Ly (Wi W3) | N (W, 173,))
+ % Line(U) - (L (N, W5) + Iy (W5, )
]_—1 E (L, «(N,W;) + I, (W;, N) | N, (W, N)))

+ Loae(U) - (TN, N) = B(L (N N) [ N(V))). - (B.63)

Lemma B.11. Let us assume that the mappings a, b, ¢ and \ satisfy the assumptions

(Aun) — (Bun). For all t € [t;, ti11],4=0,1,...,m — 1, it follow that
E||[RY(6)|]* < Clti — t:)%, (B.64)

where C' > 0 does not depend on m nor i.

Proof. From (B.11)) and Theorem we have that for f € {b',... 0™, c} and

je{-1,1,...,my} we have the following estimation
2
E|Ls )| < C, (8.65)
where C' > 0 does not depend on m nor i. Moreover, for f € {b',... 0™ c} and

j € {-1,1,...,my} the random variable L, f(U;) is F;,-measurable. From Fact

(i) and by Lemma - we have that for ji,jo € {1,...,my} the random
variables

I, +(N, N) — E(Iti,t(N, N) | Nm(N)),
[ti7t<Wj17 sz) + [tht(V[/Jé’ Wj1> - ]E<Iti,t(vvj1v sz) + Iti,t<Wj27 V[/Jl) | Nm(WjN sz))v

Iti7t(N7 VVh) + [tmt(VlevN) - E(Iti,t<N7 VVh) + Iti7t(le7 N) ‘ Nm(N7 M/ﬁ))v
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

are independent of F;,. Hence, by (B.63)), Fact (i) and (B.65)) we have

HR%(t)”QQ(Q) < Cl Z HLﬁij(Ui)ng(Q)'HIti,t(Wqu/jz)+]ti7t(Wj27Wj1)H£2(Q)

Ji,J2=1

+ Cl Z ||LJ1C(UZ')H22(Q) ’ H[tz‘,t(N> Wj1) + [ti,t(VVju N)ng(g)

Ji=1
+ ClHLflc(Ui)Hy(Q) [ (N, N)Hzm)
< Ct—t), (B.66)
for ¢ € [t;, t;41], so that ends the proof of (B.64). [ |

From Lemma there exists a constant C' > 0 such that for all m € N and
arbitrary discretization (B.1)

sup E[|RM(1)|]° < ¢ max (i1 — t)% (B.67)
]

reloT 0<ism-—1

B.3. Derivative free time-continuous Milstein
approximation for system of SDEs under jump

commutative conditions
In this section we discuss basic properties of the derivative free time-continuous

Milstein approximation under jump commutative conditions. Note that the
derivative-free version of the Milstein scheme has to be defined in a suitable
way, since the operator £, f approximates L, f but does not commute.
Let m € N and
O=to<t1 <...<ty, =T, (B.68)

be an arbitrary discretization of interval [0, 7). By

we denote the increment of stochastic processes Z € {N, W, Wi,..., W, } where
for i € {0,1,...,m — 1}, AZ; is either a vector or a scalar depending on process
structure. For h > 0 and f € {b',..., 0™, c} we denote by

’C'k,hf(t? y) = 6ac,hf(ta y) : bk(ta y>> (tv y) € [07 T] X Rd'

Defined in that way operator approximate operator L; f. Let us define another operator

= ; 'C’ bj27 ) < . )
Ly o= {7 JES (B.69)
L, WY, g1 > Jo.
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

By the Lemma we have that operator Zjl,h commute.

Lemma B.12. We have that for ji,j2 € {1,...,my}
zjhhbj2 == Zj%hbjl.

Proof. Without loss of generality j; < j» (when j; = js it is trivial). By the definition
of operator £ jh given by (B.69) we have that

L nb? = L b2, L, b = L b2,

and that ends the proof. [ |

By the Lemma under the jump-commutativity condition (D) the
time-continuous derivative-free Milstein approximation X#—M = {X&=M(¢)} o)
based on the mesh (B.68]) is defined as follows. We set

XIM(0) = o, (B.70)
and

XMy = XEM) +aUF) - (t—t;)
+0(UF) - (W(t) =W (L)) +c(UT) - (N(t) = N(t,))

I &% ~ .
+ 5 Z le,hibD(Uidf> ’ ([tmt(leijz) + [ti,t(Wj27Wj1))

Ji,j2=1

+ Z L—lbjl(Uidf> ’ (Itmt(N? le) + Iti,t(vvjlv N))
J1=1

+ L_ye(UYY - 1, 4(N, N), (B.71)

for t € [ti,ti+1], 1= 0, 1, e, M — 1, where Uzdf = (t“XgJ:_JV](tl)) and hl = ti—i—l — tl
For every m € N the process {Xﬁ{_M(t)}te[O 71 15 adapted to {Ft}te[o 7y and has

cadlag paths. Moreover, the random variables {Xﬁf{_M (ti)}:lo are measurable with

respect to the o-algebra generated by vector of information N,,,(N, W), it is that
U(Nm(Nv W)) = U(N(tl)v N(tQ)a s 7N<tm)7 W(tl)a W(tQ)a cr W(tm>) (B72)

In [61] the authors proposed a derivative-free version of the Milstein scheme. However,

the error was investigated under stronger assumptions than imposed in Theorem [B.13]
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

Theorem B.13. Let us assume that the mappings a,b,c and \ satisfy assumptions
(Aup) — (Cyp) and (Eyp). Let m € N and let (B.68) be an arbitrary discretization of

the interval [0,T]. Then for continuous Milstein approzimation )N(ff{_M, based on the

mesh (B.68) we have that

sup HngiM(t)HSQ(Q) g Cla (B73)
t€[0,T]
and
sup || X () — XM (1) @ < CQOS%%_I(QH —t), (B.74)

t€[0,T
where C1,Cy > 0 do not depend on m.
Before we show proof of Theorem [B.13] we will focus on important auxiliary

lemmas, which help to prove the theorem. We start with additional results following

from the given assumptions (Ayp) — (Cyp)-

Lemma B.14. Let f : [0,7] x R — R? satisfy (Awp) — (Cup) then for all
(t,y),(t,2) € [0,T] x R?, exists K; > 0 depends only on ||f(0,0)||, K and T such
that

IVanf(t,o)||< Kd, (B.75)
|Vaf(t.2) = Vonf(t,2)|< Kdh, (B.76)
1Cinf (t2)]| < KEd(L+ l2]), (B.77)
and
|Lif(t, @) = Linf(t,2)|| < K|z — 2| + KK1d(1 + ||z]|)h, (B.78)
|Lo1f(t, ) — Loy f(t,2)|| < 3Kz — z]|. (B.79)

Proof. By Lemma we have that

d 5\ 1/2
- fil (t, x+h- €i2) — fil (t, IE)
x t = < Kda
Hv Vhf( I)H (2&%;1 h
and that end the proof of (B.75). O

We have that f:[0,7] x R = R% and f = (f,..., fq). For t € [0,T],2 € R? we
have that

fi(t,x+h-ej)—fi(t,x) :fi(t,xl,...,xj—I—h,...,xd)—fi(t,xl,...,xj7...,xd).
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

We can use a standard mean value theorem

filt,x1,...,xj+ h oo zg) — filt,ze, oo 2, 2q)

Ofi
= h- 8xf (21, 51,8, Tjgas - - Ta)
J
for some gij [l’j,Ij + h] Let us define gij = (1‘1, ey Tj—1, gi,j7$j+17 R l’d). It is easy
to see that ||z — & || < h. So we have that
~ 2 8]‘} filt,x+h-e;) = fi(t,z)2
IVef(t2) = Vont o) = le F ;
d
= t t,&
Z!axﬁ’ 0 - ot o)|
4,7=1
By assumption (By;,) we have that
IVof(t,z) = Vouf(t,z) ZKH:E—@]H Kdbh.
1,j=1
That end the proof of (B.76]). O

Now we go to prove (B.77)). By Lemma and assumption (B.75) we have that
L5nf D) < |[Vanf ) - 16 y)ll
< KK (1+|z]).

That ends the proof of (B.77). d

We go to prove (B.78). By Lemma [B.2] (D) and (B.76) we have that

|Lif(t o) = Linf(t.2)]| < ||Lif(ta) = Lif(t, 2) || + || Lif (8. 2) = £ f (¢, 2)]]

< Kllo— 2l + [ Vaf(t2) — Sanf 2] - I8 2]

< Klz —z|| + KdK K, (1 + ||z]]) A
That ends the proof of (B.78)). O

Finally, we go to prove (B.79)). By Lemma assumption (D,,,) and (B.76) we
have that

L1 f(t,x) = Lo f (L, 2)] [tz +c(t,2)) = f(t, 2 +clt,2)|| + 1 f(t.2) = f(t,2)]]

<
< Kz = 2] + [le(t, 2) — et 2)|
<

That ends the proof. |
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

B.3.1. Proof of Theorem

Proof. of Theorem Since the functions a, b, c, zjl,hib]?, L_v? and L_;c for
J1,J2 € {1,...,my} satisfy linear growth condition, the estimate follows from
standard arguments, as in proof of Theorem [B.1} so we skip it.

To proof (B.74), let us define Uidf = (ti,)?%_df(ti)), we have the following
decomposition XM= for all ¢ € [0, T]

XI=M(ty = gg 4+ AY=M(t) 4 BY=M (1) 4 C¥—M(¢),

where

A = / (U - Ly (5)ds,
0 7=0

M m—1
BY-M(t)y = (/Z v (UF) +Z/Lkh Y (UDYAW, (u)
j=1 3 = k=1

iy = [

Let U; = (t;, XM(t;)). Moreover, from (B.20)) we have for all t € [0, T

XM(t) = xg + AM(t) + BM(t) + CM(¢), (B.80)
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

where

+ / L,lc(Ui)dN(u)>]l(thtm](s)dN(s).

t;

From Holder inequality and assumption (Bly,) we have for all t € [0,7] the

following estimation
EHAWA{( Adf M < C/ Z ]EHXM Xg{_M(ti)HZ ) H(tz‘,tiﬂ](‘g)ds' (B.81)

Now, by Itd isometry and Holder inequality we have that
E|IBY () = BEM (O < 3(Bun(t) + Bam(®) + Bym(t)),

where

Bum(t i/ZEHb] — VU Loy (s)ds,

jlo =0

Bum(t) =Y / ZEH / (b (U) — Lo (UZ)) AN (W) T (s)ds.

Bia(t) < C / SOE| XY () - KM@ L(s)ds,  (B82)
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

and by It6 isometry, (B.78) and (B.73)),

¢ m—1

Bt < © [T (BIRY @) - X2

o =0

+hf’(1+E||)~(§{*M )| )) v (5)ds

<i<m-—1

m—1
< c/ZE”X}g(t XV Ly (s)ds + O max R
=0
(B.83)

Then, by using the decomposition N(t) = N(t) + m(t) together with martingale

isometry for the compensated Poisson process and Lemma [B.79] we have that

By (1) Z/ > / B[ Lt (U) — Lab (U)M@ - L1 (5)ds

jlon

mlS

/Z/EHL W (U;) — Lt (U | N2 (w)du - Ty, (5)ds

201L

m—1

< C / SR XY () — KEM @) L (5)ds. (B.84)

o =0

Combine together (B.82)) — (B.84)

|| B2 (1)~ B ( / ZEHXM =X [ U9+ Co a1
(B.85)

To show estimation for part IEHC’%(IS) - C‘g{_M(t)HQ we again use the decomposition
N(t) = N(t) + m(t) together with the martingale isometry and assumption (D).
Then, it follows that

E[|C(t) = CEM D" < 3(Com(t) + Comlt) + Com(D)),

where

Cim(t) /ZEH — (U Lt,,,01(8)A(s)ds

/ ZE” — U Lttt (5) (),
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

m—1 my

Cam(t) / ;Z;EH / SO = Ll U)W )| T (A5},
v / m > ] / (LAt () = Lot (W) AW0) | Ly (DX,
Conl) / m;EH / U = Leae U AN )| L (5)M:)s
+ / ”:z;EH / el ~ el BN [ (5120105

Proceeding analogously as for the term E||BM (t) — B¥~M(t)||? we arrive that

Clm < C/ZE“XM X%*JV[@Z,)”Q . ]l(ti,ti-%l}(s)ds’ (B86)
C2m S /Z E”XM Xg{_M(t’)”Z ) ﬂ(ti7ti+1}(s)d37 (B87)

Com(t) < C/ZEHXM )= XM Tgn(s)ds.  (B.8S)

Finally by (B.86) — (B.88)), we obtain that

E||CY (t) — Ca~M( /Z]EHXM ) = XTME)P - 100 (s)ds. (B.8Y)

Hence, by (B.81), (B.85) and (B.89) we have that for all ¢ € [0, 7]

t
E||Xnﬂf(t>_xg—M<t)||2<c/ sup B[ X3 ) — XM ) [Pds + O max B,
0<u<s <i<m
0

and by the Gronwall’s inequality (Lemma [A.67) we get for all ¢t € [0, 7] that

]EH)?%(]&)—XS{’M@)H <C max h.

0<i<m-—1
This implies (B.74)) and that ends the proof. [ |
For all t € [t;,t;1], ¢ = 0,1,...,m — 1 we have the following decomposition
(analogous as for XM,
Xy~ M() = E(XTY () | NN, W) = HIY () + R (1), (B.90)
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B.3. Derivative free time-continuous Milstein approximation for system of SDEs

where by Fact
B = (U (W) = W () | No(W)) )
+o(UYy - (N(t) ~E(N() | Nm(N))>, (B.91)

- 1 v o A
R%_M(t) = 5 Z Ljhhib]z(Uzdf)' <[ti7t(I/Vj1ij2)+Iti,t(Wj2’M/j1)

J1,j2=1

= BT (Wi, W) + Tt (Wi, W3, | Non(WW5,,195,)))
+ % Lyt (UF) - (1N, W5) + L (W, N)
j=1
— Bl (NW5) + L (W5, N) | Noo N, W)
4 LUy <1ti,t(N, N) —E(L, (N, N) | Nm(N))>. (B.92)
Since holds, we can show the following estimation for RY— (t).

Lemma B.15. Let us assume that the mappings a, b, ¢ and X satisfy the assumptions
(Aup) — (Eyp). Let (B.68) be discretization of interval [0,T) For all t € [t;,ti11],

1=0,1,...,m — 1 we have that
E|REMB)* < Cltipr — )%,

where C > 0 does not depend on m nor 1.

Proof. From (B.11)), (B.77) and Theorem we have that for f € {b',..., 0™ ¢}

and 7 € {—1,1,...,my} the following estimations holds

E|L-fUD)|* < C, (B.93)
E[L;, 0 (UD)? < C, (B.94)
where C' > 0 does not depend on n nor i. Moreover, for f € {b',... 0™ ¢} and

j € {-1,1,...,my} the random variables L_;f(U;) and zjhhibj? for
Ji,72 € {l,...,my} are Fi-measurable. Then from Fact (i) and by

Lemma - we have that for ji,j2 € {1,...,my}, the following random
variables

Itz‘,t(Na N) - E(Iti,t(Na N) ’ Nm(N))7
‘[tivt(m/.h’ WjQ) + Itut(vvjzv le) - E(Itut(vvju I/Vh) + Itm(szv VVh) | Nm(VVjN WjQ))’
]ti,t(N7 I/le) + Itmt(VVjN N) - E(]ti,t(N7 VVJ1) + ]ti,t(ij N) ‘ Nm(N> Vle))?
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B.4. Properties of stochastic processes on given interval and discretization

are independent of F;,. Hence, by (B.92)), Fact [B.28| (i) and (B.93)), (B.94) we have the

following estimation

|REM () e2(0)

< C Z ”zjl,hiij(Uzdf)”QQ(Q) ’ H[tz‘,t(Vlev sz) + Itut(vvjw le)Hﬂz(Q)

J1,52=1
O bl U sty - I a VW) + L oW V) s
ji=1
+ C|lL_1c(UP) | e2(0) + | Tt (N, N) |l g2
< C(t — ti),
for t € [t;,t;41], which ends the proof. [ |

By the Lemma there exists a constant C' > 0 such that for all m € N and
arbitrary discretization (B.68|)

sup E||[RYM#)|> < C max (tiq —t;)> (B.95)

te[0,7) 0<i<m—1

B.4. Properties of stochastic processes on given

interval and discretization
Now we show basic properties about stochastic processes on a given interval [0, T'|
and discretization points. Without loss of generality let W = (W;, W5)T and N be
respectively two-dimensional Wiener process and one-dimensional Poisson process. Let
m € N and let
=to<ti <...<t,=T,

be an arbitrary discretization of the interval [0,7]. We have a following vectors of

information about processes:

N (W) = [Wi(ty), Wilts), ..., Wiltm), Wa(ty), Wa(ts), ..., Wa(tm)],
N (W1) = [Wi(t), Wilts), ..., Wi(tm)],
N (Wa) = [Wa(ty), Walts), ..., Wa(t)],
Nin(N) = [N(t1), N(t2), .-, N(tw)],
No(Z1,Zs) = No(Z)UNw(Zo),  Zy1,Zs € {W, Wy, Wa, N}.
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B.4. Properties of stochastic processes on given interval and discretization

Definition B.16. Let X be a square integrable random variable. Conditional variance

by o-algebra G is defined by
Var(X | §):=E((X —E(X | )| §) =E(X?| §) - (E(X | 9))"
Lemma B.17. Let Z € {Wy, Wy, N} we have that for all t € [0,T]
Var(Z(t) — Z(t:) | No(2)) = Var(Z(t) | Nm(Z)).

Proof. By the Definition and fact that o(Z(t;)) C 0(N,,(Z)) we have that

Var(2(t) ~ Z(6) | Na(2)) = E((2() ~ Z(t) ~ E(Z(0) — Z() | N 2))) | Nou(2))
— B(20) - E(Z() | Nu(2)))
= Var(Z(t) | Nm(Z)).

That ends the proof. [ |

Lemma B.18. Let XY be a stochastic processes on probability space (Q,F,P),
X,V : Q x[0,00) = R such that both are F ® B([0,00))/B(R)-measurable and
independent (i.e. FX Il FY, where FZ = J(UtZOO'(Z(t))> for Z € {X,Y} ). We

assume that for allt >0

E|X(t)| < oo, E|Y(t)] < .

Let m,n € N and points tX,... tX t¥ .. tY satisfy 0 < ¢ < tf < ... < X,
0<tY <t <...<tY. Then we have that
FRXLL o, x ) v (0 )y (13 ) Fae- (B.96)

Proof. We set Fy = F2X and F3 = F2 and we define
Foi=0(X(t5), ..., X)), Y (t)),....Y(t)).
Lets take random variables Ys-integrable and F3-measurable. Then we have that

E0G | FVF) = BV | FEVa(X(E),.. X(E) VoY @)..... V().

H g
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B.4. Properties of stochastic processes on given interval and discretization

By the facts that

FEVa(X{HY),...,X(ty) = o(Fx Ug(X(t{(),...,X(tX))) c FX,

CFL

oY) Vao(Y(t),....Y(t))) C Fx.
W—/ . ~ J/
CFY CFY

From independence of FX 1l FY we have that
FaVa(X(t),.... X)L o) Va(Y(H]),....Y(t)).
From Lemma [A.20] we have that
E(Ys| Fio) = E(Y3 |o(Y(H),....Y(t)))-
Then by o (X (t{),..., X (ts)) C F2, we have that
c(XEHE)s . . XEN L o(Ya) v (Y(#),...,Y(t))).
And again from Lemma we have that

E(Y; | Fi2) = E(Y3|o(X(t), ..., X)) Va(Y(t]),...,Y (L))
= ]E(Y?) | -7:2>~

So we prove (B.96) and that ends the proof.

Fact B.19. We have that for all o, B, t € R, such that 0 < a<t,0< A<t

E(N(t) — N(a) | a(Nm(W N))) =E(N(t) — N(a) | c(Nn(N))),
4%

E(Wi(s) — Wi(B) | o(Nm(W, N))) = E(Wi(s) — Wi(B) | o(Nn(W1))),
E((N(t) = N(a)) - (Wi(s ) Wi(8)) | of m(Wl, )))
= E(N(t) - N(@) | o(Nn(N))) - E(W, 1(B) | o(Nim(W1))).

E((Wi(t) — Wi(a)) - (Wa(s) — Wa(B)) | o( m(WbWz)))

= E(Wi(t) — Wi(@) | o(Nm(Wh))) - E(Wa(s) — Wa(B) | (N, (W5))) (B.100)

Proof. The proof of (B.97)) and (B.98)) is a natural consequence of fact that N, 1V, are
independent. The proof of (B.99) goes as follows. Lets substitute in Lemma [B.1§



B.4. Properties of stochastic processes on given interval and discretization

X = N and Y = W, X|Y are independent and both are integrable. From
independence we have that E|X (¢)Y (s)| < oo for all ¢ > 0, s > 0. Let

Fi = FX,
Fs = Fu,
Fo = o(X(H ), X(E0), Y(H), ..., Y (1)),

and random variables

Y1 = N(t) — N(a), t>a>0
Y = Wi(s) — Wi(p), 5> 0.

Of course we have that o(Y;) C Fi, o(Ys) C Fs, and E|Y;| < oo, E|Y3] < o0
and from independence of N, W; By the (B.96) and Proposition we have that
E|Y1Y3| = E|Y1] - E|Y3| < oo the conditional expectation

E((N(t) = N(a)) - (Wi(s) = Wi(B)) | o(Nm(W1, N)))
= EWYs | R) =E(Y1 | ) -E(Y; | F2)

= E(N(t) = N(a) | c(Nm(W1,N)))
x E(Wi(s) — Wi(B) | o(N(W1, N)),

we have that

g(Wl(th),...,Wl(thZl))J 10 0((N(t)—N(a))v?(N(tiV),...,N(t,]X)), (B.101)

cF cFX

so from Lemma and by (B.101)) we have

E(N(t) = N(a) | o(Nm (W1, N))) = E(N(t) = N(a) | o(Nm(N))),

similarly
E(Wi(s) — Wi(B) | o(Nm(W1, N))) = E(Wi(s) = Wi(B) | o(Niw(W1))).
And finally we have that

E((N(t) ~ N(@)) - (W(s) = Wi(8)) | o(Nu(W1, N)))
— E(N(t) = N() | o(Nu(N)) - E(Wi(s) = Wi(8) | o(Non(W1)),

The proof of (B.100]) goes analogously as (B.99). This ends the proof. [
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Theorem B.20 (|14]). For fized m > 1, conditioned with Wi(t1),..., Wi(tm),
0=ty <t1 <...<ty, stochastic process W1 is Gaussian with mean

(t—t;) - Wiltivr) + (tign — ) - Wa(ts)
liv1 — t;

Mt 40 (t> -

Y

and covariance function

<t1+1—5\/t)(8/\t—tz)

Tts b1 (37 t) = 5

tiv1 —
on the interval [t;, t;y1] for i = 0,...,m — 1, and with mean Wi(t,,) and covariance
function
SAT—t,,
on [t,, ).

Lemma B.21. For alli=0,1,...,m —1 and t € [t;, t;11]

(i)
BV (0) | N,(13)) - (il B —0 R0
" (i1 — ) (t — L)
E([Wh(0) — E(Wa(t) | Nu(W)[ | N (W1)) = S50 —5 s,
and, in particular,
E[W,(t) — E(Wi(t) | N(W))[? = Lt O — ),
(tiv1 — )
Proof. Proof of this Lemma follow directly from Theorem [B.20] [ |
Lemma B.22. For alli=0,1,...,m —1 and t € [t;, t;+1] we have that
& N(tiz1) - A(t,t;) + N(t;) - A(tiga,t)
E(N(t) | Nu(N)) = — ’Aétm ti)l anLAZAPP (B.102)
(i)
2 Altiva,t) - AL, 4)
E([N(t)—E(N(t) | Non (N N (N) ) = (N(tio1)—N(t;))- 5— @.S.,
(1B INA) | Nn) = (W) =N8)- ==
(B.103)
and, wn particular,
E|N(t) — E(N(t) | No(N))|* = Altia t) - At ) (B.104)

A(tiya,ts)
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Proof. Let t = t;, for i = 0,1,...,m. In this case we get directly (B.102)), (B.103)
and (B.104)). Now, let t € (t;,t;11) for ¢ = 0,1,...,m — 1. From the fact that the

process N has independent increments and is based on results from [3], we obtain that

conditioned on N,,(N) the increment N (¢) — N(t;) is a binomial random variable with

the number of trials N(¢;41) — N(t;) and with the probability of success in each trial

equal to % It means that
i+1y g
B(N(E) ~ N | Na(M) = 5o - (Vi) = N (), (B.105)
Var(N(t) — N(t;) | N(N)) = % (1~ %) (N(tir) — N(t).

(B.106)

We start with proof of (B.102)), by (B.105) we have that

E(N(t) | Nu(N)) = E(N(t) = N(t) | Nn(N)) + N(t;)
= (N(tiq1) — N(t;)) - % N(t:)
N(tiy1) - A(t,t;) + N(t:) - A(tiga, t)
Altir, i) ’

which gives (B.102). Then, by Definition and (B.106) we have that

E(|N(t) = E(N(E) | Nu(N) | Nn(V))

= E(|(N®) = N(t) = E(N() = N(t) | N (N))[* | N(V))

= Var((N(t) — N(t;)) ’ Nm<N)>
Alt,t:) (1 _At) )

A(ti+1,ti) A(ti+17ti)
Altiyi,t) - At 1)

(A(tiza, t,-))Z

= (N(tiy1) = N(t;)) -

= (N(ti1) = N(t:)) -

which gives (B.103).
Since
E(N(tiv1) = N(t:)) = Altiga, ti),
and

E[N(t) = E(N(#) | N(N))|* = E(E(|N(t) —E(N() | N(N)) [ | Nm(N))>,

we have (B.104)). [ |
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Let N, Wy, W5 be an independent Poisson process and two one-dimensional Wiener

processes. We define double It6 integrals of the following form

b v—

Lav.2) = [ [ avaz)

for stochastic processes Y, Z € {N, Wy, W5} and a,b € R,.

Lemma B.23 ([61]). Let 0 < s < t, {Ti}ﬁ%) be a sequence such that 79 = 0 and
N(u) = N(v) for each u,v € [1;,T;41) then

LW ) = S (W)~ W)’ — (- 5)). (B.107)
L (Wi, W) = / / AW, (2)d W (), (B.108)
Loy (Wh, W) + Ly (Wo, W) = (Wi(t) — Wi(s)) (Walt) — Wa(s)), (B.109)
L.(N,N) = %((N(t) — N(s))* = (N(t) - N(s))), (B.110)
N(t)
I (Wi, N) = Wi(r;) — Wi(s)(N(t) — N(s)), (B.111)
J=N(s)+1
La(N,Wy) = (Wi(t) — Wils)) (N () = N(s)) = Loo(W1, N),
(B.112)
La(N,Wh) + L (Wi, N) = (Wi(e) = Wi(s)) (N(£) = N(s)). (B.113)
Lemma B.24. For alli=0,1,...,m —1 and t € [t;, t;+1] holds
(I, «(Wy, Wh) | Npp(W7)) = ( ’;—_tt) o, (Wh, W),
Proof. By Lemma we have that
E(W(t) — Wa(t,) | N(W1)) = t:_tt (Wiltin) — Wi(t)). (B.114)

By Lemma [B.23] Lemma [B.17| and Definition we have that

E<[tz‘7t(W17Wl) | Nm(Wl)) = % E((Wl(t) - Wl(ti))2 ‘ Nm(W1)> — %(t — ti)
+ 3 BV W) | % 0m) = S0 - 1)
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Finally, from Lemma and (B.114)) we have that

1 (tiy — )t —t;
t—t \° )
+ ( i ) - (Wi(tisr) — Wi(ty)) )
tiy1 — 1
t—t \°
= ( ) iyt (Wi, W),
tiy1 — 1
Which ends the proof. |

Lemma B.25. For alli=0,1,...,m —1 and t € [t;, t;+1] we have that

E([ti,t(wla Wa) + I, «(Wa, W1) | Ny (W, WQ))

t—t \°
— <t t ) . (Iti,ti+1(W17W2) +]ti7ti+1(W27W1>)-
i+l — b

Proof. By Lemma [B.109] Lemma [B.21] (like in (B.114))), independence of Wy, W, and
Fact B.19 it follows that

E (I, (W1, Wa) + I, (Wa, W1) | Nop (W3, W)
- E((Wl(t) —Wit)) - (Walt) — Wa(t)) | Nm(wl,m))

t—1; t—1;
= - (Wi(tiv) — WA(t)) - - (Wa(tivr) — Wa(ts))
ti+1 - ti ti+1 — ti
t—t; 2
= ( > : (Iti,tlurl (W17 WQ) + [ti7ti+1 (W27 Wl)) .
tiv1 — 1
Which ends the proof. |

Lemma B.26. For alli=0,1,...,m —1 and t € [t;, t;11] it follows that

E([ti,t(Wla N) + [ti,t(N7 W].) | Nm<Wl> N))
Att)  t—t

B Ativ1,ts) . lit1 — & ' (Itivtﬂrl(Wh N) + Loy (N, Wl))

Proof. By Lemma [B.22] we have that

B(N(E) = N(t) | N(N) = 500 (N (1) = N (1) (B.115)
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By Fact [B.19, Lemma [B.21] Lemma [B.23] (like in (B.114))), (B.115) and independence
of Wi, N, we have that

E(L, (W1, N) + I, s (N, Wy) | Npyp (W1, N))
= E((Wi(t) = Wi(t) - (N(8) = N (1)) | Noa(W1, V) )

(
= E(Wi(t) = Wi(t;) | Non(W1)) - E(N(t) = N(t:) | Nm(N))
t—t, . At)

(
- — (Wl( 1) — Wh(t; ) . A(tt—;lzt) . (N(tiﬂ) — N(ti))

A(ttiJrl»ti) ti+1 _ tz ( t@,terl( 1 ) + t“tz+1( , 1))
Which ends the proof. .

Lemma B.27. For alli=0,1,....,m —1 and t € [t;,t;11] we have that

E(Iti,t(N’ N) | Nm<N)) = (%) .ItiytiJrl(N? N)

Proof. By Lemma and by Definition we have that

E(Iy,«(N,N) | Nw(N)) = % E((N(t) - N(ti)>2 — (N(t) = N(t;)) | Nm(N)>
= Var(N () | Nu(N)) + 5 (BN~ N(1) | Na(N)))

1
= 5 E(N() = N(t:) | Now(N)).
Finally, from Lemma and (B.115)) we have that

E(L,+(N,N) | Np(N)) = %(A((’“’) )( tZ).(N(t,H) N(t;))
z+17
b 2
< L) o
(N z+1 )))
z+1,

By the fact that

Altivr, t) = Altipr, ti) = m(tipr) —m(t) —m(tir1) —m(t;) = —(m(t) —m(t)) = —A(¢, 1),
we get

E(Itut(Nv N) | Nm(N>) = <%> ' Iti,t'H—l (Nv N)

Which ends the proof. |
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Fact B.28. (i) There exists C > 0 such that for all 0 < s < t < T and
Y, Z € {N, W, W} we have

E|L.(Y, Z)|" < C(t — s)*. (B.116)

(i) For all0 < s <t < T and Y,Z € {N, Wy, Wy} the stochastic integral Is,(Y,Z) is
independent of F.
Proof. The proof of (i) can be straightforwardly delivered from (A.2), Lemma [B.23]
the isometry for stochastic integrals driven by martingales and by the independence
of Wi, W5 and N. To show methodology of proof, we present only the case when
(Y,Z) € { (W1, Wa),(Wy, N)}. Other cases goes in the same way.
For stochastic integral E|I, (W, W2)|? we have that

t v— t v— t v—
2 2
E}Is,t(wl,WQ)]z:E’//dwl(u)dwg(v)’ :/E‘/dwl(u)‘ dv://dudv.

(B.117)

By the (B.117)) we get (B.116|) in the case when we consider multiple stochastic integrals
for (Wl, W2)7 (WQ, Wl)
For stochastic integral E|I,,(W;, N)|* by Ito isometry for N(t) = N(t) — A(t),

Holder inequality assumption (Eyp) we have that

2

E|L,(Wy, N)[* = E’/U/dWI(u)dN(v)

< E‘ijWl(u)dN(v)r+E‘/t7_dW1(u))\(v)dv‘2

t

< / IE‘ U/dWI(u)

S

t v—
< C//dudv. (B.118)

By the (B.118)) we get (B.116|) in the case when we consider multiple stochastic integrals
for (Wla N)a (W27 N) Other cases (Wh Wl)a (WZ; WQ)? (N7 Wl)a (N7 W2>a (Na N) goes in
analogous way as (B.117)) and (B.118]). That ends the first part of proof. O

For the proof of (ii) note that directly from (B.107) and (B.110) we have that
L.(Y,Y), Y € {N,W;, W5}, is independent of F,. So the only case of interest is when

t v—
2 2
A(v)varC/E‘ /dWl(u)’ d
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(Y, Z) € {(N,Wy), (W1, N), (Wi, W)}, (Case (N, Ws), (Wy, N) are exactly the same
as considered (N, W), (Wy, N)).
Let fix s,t € [0,7T], s < t, and let A, = {®0n, Y1, -, ¥mn}, n € N, be a sequence of
discretization of [s, t] such that s = g, < 1, < ... < ., =t and hm 1AL =0,
where ||A,] = [ nax 1(ai+1,n — Qip)- "

Firstly we consuder case (N, Wp). By the definition of It6 integral we have that

t v—

/ / AN (u)dW, (v / (N(v) = N(s))dW (v).

Let us define process

3
L

Nn(u) = (N(ai,n) - N(S)) ) l(aimvai+l¢n} (u),

i

Il
o

We show that the defined process N,(u) converges in space £%, (€2) to process
N(u) — N(s).

t m_1 %i+ln
E/\Nn(u) — (N@w) = N(s)Pau= 3 / E|N(ai,) — N(w)|*du
s =0 Qim
m— a1+1n
— Z / —m(an)) + (m(u) — m(ai7n))2du
1=0 Cim
m—1 “itLn
< [ Il i) + IR (0 - i) du
=0 Qin
1 m—1 ) 1 m—1 5
< 5 Z ||)‘||00(ai+1,n - ai,n) + 5 ||)‘||?>o(04i+1,n — ai,n)
=0 1=0
1 1
< 3 M o[ AR | (£ —5) + 3 [\ [oo 1A% (= s). (B.119)

By (B.119) and assumption nl_l)rfoo |A.|l = 0 we have that

E/ | No(u) = (N(u) — N(s))‘zdu =30,

So {Nn(u)}neN is a sequence of simple processes which approximate N(u) — N(s) for

u € [s,t] so by the definition of It6 integral for simple function we have that

,_n

m—

/N dW1 Z (N(Oézﬂ) - N(U)) . (Wl(ai+l,n) — Wl(ai,n))-

155



B.4. Properties of stochastic processes on given interval and discretization

So we can define

I3(N,Wy) = ‘ (N(ain) = N(s)) - (W(aiy1n) = W(ain)).

3

@
Il
o

We have that
I (N,Wy) = lim I7,(N,W;) in £%(Q).

n—-+4o0o
Therefore, the sequence {I7,(N, W1>}neN
independence of the increments of N and W, every random variable I7;(N, W) is
independent of F;. Hence, the limit I, (N, W) is also independent of F,. By
we have that also I, (W, N) is independent of JF.

converges also in probability, and by the

Let us define process

3
L

Win(u) = (Wi(ain) = Wi(s)) - Lias o (W)

i

I
o

We show that the defined process Wi, (u) converges in space £%, () to process
W1<U> — W1<8).

t m—1 Qitl,n
E/|W1,n(u)—(Wl(u)—wl(s))}Qdu = > / E| W (a;,) — Wi (u)| du
s =0 Qim
m—1 Qi41,n
= (i — u)du
=0 Cim
1 2
< SlAP(E = ). (B.120)

By (B.120)) and assumption nglfoo |A,|| = 0 we have that

t
IE/ (Wi (u) — (Wi(u) — )‘ du =% 0.
So {W; (u)}neN is a sequence of simple processes which approximate Wy (u) — Wi(s)

for u € [s,t] so by the definition of It6 integral for simple function we have that

m—1
/Wln sz Z W1 Oézn Wl(u)) : (WQ(OéiH,n) - W2(04i,n))-
=0
So we can define

m—1
s (Wi, Wa) = Z (Wilain) — Wi(s)) - (Waltiz1n) — Walain))-
=0
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We have that
[s,t(Wla WQ) = 1_1}1_{1 [;l’t(Wl, WQ) in 22(9)

Therefore, the sequence {]Zt(Wl,Wg)}neN converges also in probability and every

random variable I7}(W;, W) is independent of F,. Hence, the limit I, ((Wy, W) is
also independent of F,. This ends the proof. [ |

The proof of the following fact is straightforward.

Fact B.29 (|70]). Let the mappings a,b,c and X satisfy the assumptions (B1), (B2)
and (E).

(i) There ezists a constant Cy > 0 such that for all f € {b,c} and t,s € [0,T] we have
E|f(t. X ()P —Elf(s, X ()| < Cilt — s['%.
(ii) The mapping
0, 7] 5t —=E(Y(t)) € R U{0},

1S continuous.

(i11) There exists a constant Cy > 0 such that

E( sup Y(t)) < Cs.

te(0,7)

The proof of the following fact is straightforward.

Fact B.30. Let the mappings a,b,c and X\ satisfy the assumptions (Blyy), (B2yp) and
(Byp)-

(1) There exists a constant Cy > 0 such that for all f € {b',..., 0™ c} andt,s € [0,T)
we have

E[ f(t. X —Elf(s, X())I*] < Cult — s['2.

Proof. By the Jensen and Hélder inequalities we get,

LAt X (W) ~ B (s X < E|(7EXO)] ~ 17 X))
x (I X+ 117, X))
< (Elirexe - 1 xeif) "

< (B[ xoni+ s xenif )
(B.121)
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By the assumption (Blyy,), (B2yp) and Fact we have that
/
(Bt 0) — s X))
< K(E||x(1) - X(S)HQ)”2 +TK (14 (BlX(s))2)) It - 5]
<

Clt — 5|2, (B.122)

c(1+ E||X (1) )1/2)
Clt — s|'/2. (B.123)

NN

So by the (B.121)), (B.122)) and (B.123)) we get that

ELF( X W) - Bl XEDIE| < Cilt = s[2

This ends the proof. |

Fact B.31. Let 0 < a < B8 < T, for all A € C([0,T]), A : [0,T] = (0,400) we have
for all t € [a, f] that

A(t, a) t— « 1
AG.a)Boal S gEam 2y N T

te[0,T

Proof. From the fact that A is continuous function on interval [0, 7] and it is separated
from O we have that
A(B,a) = inf ANt)(B—a) >0, (B.124)

t€la,B]
and of course for all ¢ € [«, (]

b
inf A(%)

te[0,7)

< 4o0. (B.125)

By the mean value theorem we have that for s,t € [, 3], s <t

Alt,s) = (t — s) - M€), (B.126)

where & € (s,t). By (B.124]), (B.126]) we have that
Ata) t—al _ [B=0)-E=a)- M) = (B—a)-(t—a) - AN&)|

AB,a) B—al tei[rol,fT])‘(t)'w_O‘y
1 _}(6—04)'(75—(1)“ B
tei[%,f:r]A(t) (B — a)? A1) = A&2)]
1

—— 7 S ) = Als)l,
f
Al MO e
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where 51 € [Cl/,t], 52 S [O‘aﬁ]‘ u

Lemma B.32. For f € {b',... ™, c} we have that for all i € {0,1,...,m}, it holds
that
£t Xt (t)I12 — ENLf(h X (8))]1]
<1+ sup 1XYWl + sup [1X(0)]ez(e)
t€[0,T]

t€[0,T]

x sup || XM (8) = X (1)l exe). (B.127)
te[0,7)

Proof. By the Jensen and Holder inequalities we get,
E|| f(t:, X2t — B f (8, X (t:)) ||
<E|(|l£t, XY@ - |11t X @)

(A EA )]

< (Il XY 00) ~ 7o X))

x (B (]|t X )| + 1 X (2)])) )1 (B.128)

By the assumption (Bly,), (B2y,) we have that

- 1/2 - 1/2
(BN i T i) = S (i, X)) < K (B ZY (1) = X (1))
< K sup || X() = X (1)lleo),
t€[0,T]
(B.129)
~ 1/2 ~
(Bl XY Ed|) < O(1+ ®IXY @) )
< C(1+tSEéI; 1X3 )l e2@) (B.130)
and
1/2
(Elf i xE)[F) " < 1+ E1XEIH)
< O+ swp [XWlew). (B3]

So by the (B.128]) and estimations (B.129)), (B.130)), and (B.131]) we get (B.127) and

that ends the proof. [ |
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Lemma B.33. For scalar function f € {b,c} we have that for all i € {0,1,... k,},

tin defined by (2.4) and (2.38) it holds that

EL s X2 F)) 2 = LS (G X (E5))

<O+ sup [ XM )|l sup | X ()] e20)
te[0,7) t€[0,T]

x sup [|X (1) — X (1) e20-
te[0,T]

The proof of Lemma goes analogously as proof of Lemma |B.32[so we skip it.
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