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Abstract—To provide fast traffic recovery upon failures, most
modern networks support static Fast Rerouting (FRR) mecha-
nisms for mission critical services. However, configuring FRR
mechanisms to tolerate multiple failures poses challenging algo-
rithmic problems. While state-of-the-art solutions leveraging arc-
disjoint arborescence-based network decompositions ensure that
failover routes always reach their destinations eventually, even
under multiple concurrent failures, these routes may be long
and introduce unnecessary loads; moreover, they are tailored to
worst-case failure scenarios.

This paper presents an algorithmic framework for improving
a given FRR network decomposition, using postprocessing. In
particular, our framework is based on iterative arc swapping
strategies and supports a number of use cases, from strengthening
the resilience (e.g., in the presence of shared risk link groups)
to improving the quality of the resulting routes (e.g., reducing
route lengths and induced loads). Our simulations show that
postprocessing is indeed beneficial in various scenarios, and can
therefore enhance today’s approaches.

I. INTRODUCTION

Communication networks have become a critical infrastruc-
ture of our digital society: enterprises which outsource their
IT infrastructure to the cloud, as well as many applications
related to health monitoring, power grid management, or
disaster response [1], depend on the uninterrupted availability
of such networks. To meet their dependability requirements,
most modern networks provide static Fast Rerouting (FRR)
mechanisms [2]-[5]. Since FRR mechanisms pre-configure
conditional failover behaviors, they enable a very fast traffic
recovery upon failures, which only involves the data plane but
not the (typically much slower [6]) control plane.

However, while allowing to pre-configure conditional failover
behavior is the key benefit of FRR, enabling the fast response to
failures, it is also the key challenge when it comes to designing
algorithms for such mechanisms: as the conditional failover
behavior needs to be configured before the failures are known,
the algorithmic problem of how to optimally configure the
failover rules at the different routers, for all possible failures,
seems inherently combinatorial. The problem is particularly
challenging in scenarios where packet headers cannot be used
to carry meta-information about encountered failures: such
header rewriting is often undesired and introduces overhead
(related to header rewriting itself, but also in terms of additional
rules required at the routers to process such information).

While FRR technology has been used for many years already
in modern communication networks, a major algorithmic result
on how to configure FRR mechanisms is relatively recent:
Chiesa et al. [7], [8] showed that by decomposing the network
into arc-disjoint spanning arborescences [9], highly resilient
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FRR configurations can be defined. However, Chiesa et al.’s
conjecture that for any k-connected graph, there exists a failover
routing resilient to any k— 1 failures, remains an open problem.
What is more, while this network decomposition approach
ensures connectivity, the failover routes may be far from
optimal regarding latency (i.e., route length) and congestion.

The goal of this paper is to improve the network decom-

position approach, in terms of resilience, performance, and
flexibility. In particular, we are motivated by the observation
that in practice, additional information about failure scenarios
and failover objectives may be available, e.g., about shared
risk link groups [10]-[12] or about critical flows for which it
is important to be routed along short paths, even after failures.
Existing optimizations of arborescence-based failover schemes
are oblivious to such aspects.
Model. In a nutshell, we consider the problem of pre-defining
(static) conditional failover rules at network’s nodes (i.e.,
switches or routers), which define to which link to forward
an incoming packet. These forwarding rules can only depend
on the destination ¢, the in-port at which a packet arrives at
the current node, as well as the status of the links directly
incident to the node. At the same time, they should not depend
on non-local failures or the packet source. In particular, we do
not allow for packet tagging (i.e., header rewriting) or carrying
failure information in the header.

More specifically, we consider FRR mechanisms leveraging
arc-disjoint arborescence network decompositions [7], [8]: for
each destination, a set of arborescences are defined which are
rooted at the destination and span the entire network without
two arborescences sharing an arc. As long as no failure is
encountered, a packet can travel along an arbitrary arborescence
towards the root, being the destination. When encountering
a failure, a packet is rerouted onto the next arborescence
according to some arbitrary pre-defined order. The logic of the
latter is defined by the arborescence routing strategy.
Contribution. This paper presents an algorithmic framework
for postprocessing state-of-the-art FRR mechanisms based on
network decompositions, to improve resilience, performance,
and flexibility, of fast rerouting. The framework relies on
an iterative swapping of arcs, hence changing the network
decompositions towards a certain objective. More specifically,
such swapping operations can be used to account for specific
failure scenarios (e.g., given by shared risk link groups), to
improve traffic engineering properties of failover paths (such
as load and stretch), or to flexibly adjust the failover routes
to the specific requirements or priorities of flows (and their
applications).



We show that we do not limit ourselves by focusing on arc-

disjoint arborescence network decompositions by proving that
arborescence-based decompositions are as good as any deter-
ministic local failover method. Furthermore, we demonstrate the
potential of our arc-swapping framework in four different use
cases: two related to routing (i.e., improving stretch and load),
and two related to properties of the decomposition (namely,
depth and independence of paths). We report on extensive
simulations using synthetic network topologies, which illustrate
the benefits of our approach.
Organization. The remainder of this paper is organized as
follows. Section II provides intuition on why focusing on
arborescences-based network decompositions is not a limitation.
Our postprocessing framework is described in Section III. We
discuss and evaluate case studies in Section IV. After reviewing
related work in Section V we conclude in Section VI.

Due to space constraints, and in order to improve the paper’s
structure, some parts are deferred to the Appendix or to the
full version.

II. IMPOSSIBILITY OF BEATING ARBORESCENCES

We first motivate our focus on failover algorithms based
on arborescence network decompositions, showing that this
approach does not only provide a high resilience but also
competitive route qualities (in terms of lengths).

In general, while the static fast rerouting algorithms consid-
ered in this paper have the advantage that they do not require
header rewriting nor control plane reconvergence, the resulting
failover routes may have a high additive stretch. More formally,
the (additive) stretch of a failover route from v to ¢ is defined
as the difference between the number of hops taken 1) along
the failover route from v to ¢ and the hops 2) along the shortest
route from v to ¢t. The additive stretch of the routing scheme
is then the maximum stretch along all failover routes.

We will see that this a feature inherent to all local fast
failover algorithms, though as the later evaluation sections
show, it is more of a rarely occurring worst-case scenario.

We start with some definitions for arborescence-based re-
routing. Let (u,v) denote a directed arc from node u to v.
A directed subgraph 7' is an r-rooted spanning arborescence
of G if (i) r € V(G), (i) V(T) = V(G), (iii) r is the only
node without outgoing arcs and (iv), for each v € V' \ {r},
there exists a single directed path from v to . When it is clear
from the context, we use the term “arborescence” to refer to a
t-rooted spanning arborescence, where ¢ is the destination node.
A set of arborescences 7 = {T1,...T})} is arc-disjoint if no
pair of arborescences in 7 shares common arcs, i.e., if (u,v) €
E(T;) then (u,v) ¢ E(Tj) for all ¢ # j. A set of t-rooted
arc-disjoint spanning arborescences is a valid arborescence-
based decomposition. See Fig. 1 for two examples of such
arborescence decompositions. In arborescence-based routing,
packets follow an arborescence towards its root. In case of
encountering failures on its path to the root, the packet switches
to another arborescence. Let the blue dashed arborescence be
failover route for x if its direct link to ¢ fails. In this case the
additive stretch is 3 for the decomposition 77, while it is 1 for

Fig. 1. Example network from [13] with two different ¢-rooted arc-disjoint
spanning arborescence decompositions, 77 left and 72 right. In both of
them one arborescence is drawn with dotted red arrows, while the second
arborescence is depicted with dashed blue arrows. Note that the mean path
length of the arborescences of 77 is 2.5, while it is less than 2 in T3.

T>. This illustrates that the choice of the decomposition has
an impact on the quality of service in case of failures.

In the following, we show that the arborescence-based
routing scheme depicted in Fig. 2 may lead to a detour of length
Q(n), even though a constant-length detour is available. In our
example, the arborescences (depicted with different colours
and line patters in Fig. 2) to be used have been constructed
such that a certain set of failures leads to a long detour for
packets emitted by node 22, even though 22 is very close to
the destination t. The only link out of node 22 belongs to an
arborescence that takes this long detour if no other links fail
as the packet will stay on this arborescence until it reaches ¢.

In general though, no failover algorithm can obtain a better
stretch than Q(n) for three failures: an adversary could fail the
links (22,¢),(21,11), (23,13), in which case even algorithms
with global information would take a detour of length Q(n).

However, what happens when we strengthen the definition
of additive stretch to a competitive [14] point of view? In the
failure example of Fig. 2, an algorithm with global information
could simply take a tour of length 5 from 22 to ¢, as already
pointed out above. Is it possible to find better deterministic
local failover algorithms that can outperform arborescence-
based routing in this example?

In this context, a deterministic algorithm makes all decisions
on which out-port is used by a packet entirely depend on
available information only, no randomness is used, e.g., when
switching to another arborescence. An algorithm is local if its
failover decisions do not take the state of other routers into
account, but only the locally available information (src, inport,
dst). In particular a router does not know where in the network
other failures have happened.

Succinctly stated, the answer is no—all deterministic local
fast failover routing schemes perform badly in such cases, i.e.,
they do not outperform arborescence-based routing. To this
end, we will show that there are k-connected k-regular graphs
where every deterministic local algorithm has to take large
detours, even though short routes are available.

The intuition behind this statement lies in the fact that even
with the freedom of taking other decisions, there are cases
that lead to long detours and/or high load when only local
knowhow can be used (i.e., router do not know where else
failures have happened). Thus the power of algorithms that
make deterministic decisions without knowing anything about



Fig. 2. Example of a (4, r)-clique-torus (see Definition 1), with 4 ¢-rooted
arc-disjoint arborescences, in blue (dotted), red (dash-dotted), (dashed),
and olive (loosely dashed). Three links (striked out) incident to 22 have failed
in this scenario, forcing a circular scheme to use the o/ive (loosely dashed)
arborescence at 22, which takes a tour of length at least 7 — 1, even though a
short 5-hop alternative is available.

the state of other flows and routers coincides with the power
of arborescence based algorithms. For our proof we define the
following graph class: start with a cycle of r nodes and replace
each link with k£ — 1 parallel links. Observe that these graphs
are k-connected and k-regular, but have parallel links between
neighboring nodes. In order to obtain a simple graph without
parallel links, we expand each node into a clique of k — 1
nodes, preserving connectivity and regularity. For example for
k —1 =3, this results in a 3 X r torus graph, as in Fig. 2.

Definition 1. Ler k¢ € N with k > 3, ¢ > 3. A (k,{)-
clique-torus is a graph with (k — 1)¢ nodes and (¢(k — 1)) +
(6%) links, constructed as follows: create { cliques
Cj, 1 <j <t of k—1 nodes, i.e., so far every node has
degree k — 2. Denote the k — 1 nodes of each clique C; as
V15,025, --,Vk—1,5. Next and last, for each 1 < i < k —1
and each 1 < j < £, connect v; j With V(; mod £)+1,;-

We show that every deterministic local fast failover algorithm
sometimes has to take detours with a length in the order of
the diameter of the graph, even though a route with a constant
number of hops is available. We note that our results here refer
to deterministic algorithms. The technical proof of Theorem 1
is deferred to the full version due to space constraints.

Theorem 1. For all k > 3, { > 6: for deterministic local
fast failover algorithms ALG resilient to k — 1 failures on
k-connected k-regular graphs, matching on in-port (from which
link the packet arrives) and destination, the competitive additive
stretch of ALG vs. a globally optimal algorithm is > ¢ — 6.

Combining the fact that no deterministic local algorithm can
have a better competitive additive stretch than €2(¢) with the
fact that a (k, ¢)-clique-torus graph has (k — 1)r nodes, i.e.,
r € Q(n/(k—1)), yields the following:

Corollary 1. For all k > 3, deterministic local fast failover
algorithms resilient to k — 1 failures, matching destination and
in-port, have competitive additive stretch of Q(n/(k — 1)).

III. THE POSTPROCESSING FRAMEWORK

This section presents our algorithmic framework to postpro-
cess arborescence-based network decompositions for improved
resilience and performance. In the following, we first present
the general framework, before we discuss concrete use cases.

Algorithm 1: Basic Arc-Swap Operation

Input: valid arborescence-based decomposition
Output: modified valid arborescence-based
decomposition
1 given a node v and two outgoing arcs e, ¢’
2 if arborescence conditions hold for e, e’ then
3 swap arborescences

In particular, we do not make any assumptions on the given
arborescence-based network decompositions nor the (re)routing
strategy used, which can be arbitrary (specific examples will
be considered in our simulations).

The framework can be used to optimize a large set of
objectives. We consider two classes of objectives in this paper
and present two examples each. In the first class, we aim
to improve traffic-engineering metrics of failover routes (like
load or stretch) or account for flow or application priorities,
given certain assumptions about a traffic scenario and failure
model, without sacrificing maximum resilience. As a shorthand,
we will refer to this first class as the fraffic scenario. In the
second class, the concrete routing mechanism is ignored and
properties of the decomposition, e.g., depth and independence,
are improved, which can lead to shorter paths and higher
resilience respectively.

We will refer to this second class as the decomposition. In
the remainder of this section, we introduce our framework
without concrete instantiations of objective functions, which
we will cover in the next section.

At the heart of our postprocessing framework lies an arc-
swapping algorithm which can come in different flavors,
depending on the use case. All the different variants of the
arc-swapping algorithm have in common that they always
preserve connectivity: if a source-destination pair features a
certain property that influences the objective, then this property
can only be improved in each arc-swap operation. In particular,
these swaps must maintain the arborescence character of the
decompositions, i.e., they cannot introduce cycles.

The general principle is quite simple (see Algorithm 1):
we only swap the arborescences of two outgoing arcs of the
same node v and ensure that no cycles are generated. For
simplicity we refer to the set of arcs that do not belong to
any arborescence as the 0-arborescence, even though they do
not form an arborescence. This allows us to treat all arcs in a
uniform manner and simplifies the description of our algorithm.

More formally, we revisit the approach use to generate
arborescences as in e.g. [9], where arcs are added to ar-
borescences incrementally until no further arcs can be added.
When this situation is reached, arcs belonging to different
arborescences and possibly the 0-arborescences are swapped to
allow the process to continue. The (incomplete) arborescence
set is denoted by {T7, ..., T} }. When growing an arborescence,
the following minimal conditions must hold when swapping
e = (u,v) € 0 — arborescence with ¢’ = (u,v') € E(T}) to



Before swapping After swapping

Fig. 3. Introductory example with three nodes where growing arborescences

sequentially can end in a deadlock. On the left side, the dotted blue arborescence

uses both arcs to ¢, leaving no possibility for the remaining dashed red

arborescence to route to the destination. However, after swapping (v, t) with

(v2,v1), the dashed red arborescence may use the link (v2,t) on the right

side (and subsequentially, the link (v1,v2) to complete the construction).

ensure that the resulting arborescences are valid [13]:!

(1) w has a neighbor v € V(T})

(2) e = (u,v) does not belong to any arborescence yet, i.e.,
e ¢ UpzlukE(Tp)

(3) u ¢ V(T

4) 34, s.t. e = (u,v') € E(Ty)

(5) v e V(T})

(6) v’ is not on the path to from v to the root in 7).

Let us consider an example. Let us assume that arborescences
have different colors. In Fig. 3, when we swap the dotted
blue arc (vq,t) to the unused arc (vy,vs), the dashed red
arborescence may now take over (v, t), removing the current
deadlock situation. In general, when we cannot add an arc
to T; in the normal round-robin fashion, we can check for
candidate arc pairs e = (u,v),e’ = (u,v’) leaving node v if
we could perform a swapping operation. Analogously to the
above conditions we can formulate the criteria for swapping
two arcs belonging arborescences T; and 7.

In contrast to the swapping checks necessary when construct-
ing arborescences, we do not have to test whether each node
is incident to an arborescence in this case: this is guaranteed
already by the existing decomposition (condition (1,4,5)). Thus,
in contrast to the swapping conditions during the arborescence
decomposition, there are two cases to consider.

Case (i): e = (u,v) € E(T;),e¢ = (u,v") € E(Tj). From
the above correctness conditions (1,4,5) are always satisfied,
while (2,3) are irrelevant. In addition to (6), it must hold that
v is not on the path to from v’ to the root in T;. If these
conditions are satisfied, then e can be added to T and e’ can
be added to 7;. An example is provided in Figure 4, which
improves the depth of both arborescences.

Case (it), e = (u,v) € E(T;) and € = (u,v’) does not
belong to any (real) arborescence, ¢’ ¢ U,—1. xE(T},). In this
case, (1) is always satisfied and (2-6) are irrelevant. Instead,
to be able to remove e from 7; and replace it with e’ it must
hold that v does not belong to the path from v’ to the root in
T;. An example is provided in Figure 5, which gives a better
depth for the dashed red arborescence.

If the conditions are met, then the arborescence set after the
swap is still valid. The time complexity of picking all candidate
pairs is in O(n?A), where A is the maximum node degree.

Based on this arc-swap operation, the idea of our algorithmic
framework is then to swap arcs only if it improves a certain

! [9] and similar approaches use additional criteria which are immaterial to
this discussion
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Fig. 4. Example for the swapping in Case ().

After swapping

Before swapping
Fig. 5. Example for the swapping in Case (7).

objective function, see Algorithm 2. Recall that we denote
the set of all arcs that do not belong to an arborescence the
0-arborescence and consider it to be always valid (satisfying
the condition of line 2 in Algorithm 1). Observe that when two
arcs are swapped, they must be outgoing from the same node v:
else, if v loses an outgoing arc from some arborescence 7T,
then node v no longer has a way to route to t.

Observation 1. When exactly two arcs e, e’ are swapped in a
given valid arborescence decomposition, both must be outgoing
from the same node v, else at least one arborescence will be
disconnected, i.e., the decomposition is invalid.

Note that we do not need to check the validity of the
arborescence conditions from scratch. It suffices to check if
following the outgoing arcs from v, a sink (node without
outgoing arcs) before or beyond the destination was created
or a cycle was added, as we started with a valid arborescence-
based decomposition. In order to generate a new sink, namely
a node without any outgoing arborescence links, some node
besides the destination must be in some arborescence without
a corresponding outgoing edge. Algorithm 1 does not violate
this condition as both edges are outgoing from v, i.e., no new
sink will be generated. It remains to check for cycles, which
can only appear in the two affected arborescences and must
contain the arc e or €’. Recall that we do not need to check the
0-arborescence. Hence, we can efficiently validate a swap by
simply following the unique outgoing edges of the respective
arborescence outgoing from v, terminating if either the original
v (cycle) or the destination ¢ is reached. The length of such a
path is limited by the prior depth of the arborescence, plus an
extra hop for the arc e or €.

Observation 2. Checking if a swap is valid in Algorithm 1
can be performed in a runtime in the order of the depth of the
arborescence, hence in O(n).

We now show that Algorithm 2 is correct:

Theorem 2. The algorithmic framework in Algorithm 2 never
introduces cycles and always converges.



Algorithm 2: Generic Post-Processing Algorithm

Input: valid arborescence decomposition
Output: improved (if possible) decomposition
1 improved < T;
2 while improved do
3 improved < L,
for all nodes v € V do
for all pairs of outgoing edges e, e’ of v do
apply Algorithm 1 to e, e’;
if objective function improves then
‘ improved < T;
else
10 | undo swap of e, ¢’

=TI B N

Proof: We start with the convergence. During the execution
of the algorithm, the sequence of “best” decompositions so
far, does not contain any repetitions, since a swap is only kept
if the objective function improves. The number of swapping
candidates examined in line 4 and 5 and is bounded by the
number of edge pairs at all nodes, i.e., n- (5) € O(n®). Hence,
as the number of different arborescence decompositions are
finite, convergence is guaranteed. Lastly, as edges may only
be swapped if the arborescence conditions are not violated, we
do not introduce any cycles. ]

Depending on the type of optimizations performed, the
complexity of computing the gains can differ: in the traffic
scenario case, the procedure and routing can be simulated; in
the decomposition case, calculating the improvement per swap
involves only the two affected arborescences.

Moreover, we note that our algorithmic framework can also
be generalized to swap multiple (i.e., more than two) arcs
before an improvement of the objective function is required,
even from multiple nodes at once. While the validity checking
remains tractable?, the search space grows non-polynomially
in Algorithm 1. As thus, we limit ourselves to swapping two
edges at once.

IV. USE CASES AND EVALUATION

Our framework for postprocessing a decomposition can be
configured with different objective functions, depending on
the specific needs. In the following, we discuss and evaluate
different use cases, namely two traffic scenario optimization use
cases (for stretch/load) and two pure network decomposition
optimizations (SRLG and independent paths).

For the experimental evaluation we generate 100 instances
of undirected (bi-directional) 5-regular random graphs with
100 nodes with the NetworkX library® implementation of
Steger and Wormwald’s algorithm [15]. We then generate
the corresponding arborescences, and finally optimize those
arborescences for the use cases mentioned above. We then
compare the unoptimized and optimized arborescences by
failing a fraction of the network links picked at random, and

2 E.g., check each of the k arborescences from scratch by DFS in 6(kn).
3 https://networkx.github.io/
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Fig. 6. Efficiency of stretch optimization when optimizing Random (top) or
Greedy (bottom) arborescences, facing random failures. Each point represents
the median metric value over 100 independent trials. The shaded area delimits
the 10 (resp. 90) quantile values.

simulate a circular arborescence routing process on the resulting
infrastructure. In circular arborescence routing, packets follow
an arborescence towards a destination until they either reach
their target or encounter a failed link. In the latter they then
continue on the next available arborescence, i.e., if a packet
has used 7; up to the failed link, it will follow T;4; next, if
the corresponding outgoing link is available or try T;,o,. ..
otherwise.

A. Impact of the Original Network Decomposition Algorithm

We first study the impact of the network arborescence
decomposition algorithm (that is, the input of the optimization
process) on the optimization efficiency, before analyzing the
optimization scenario in more detail. To this end, we first
compare a Random and a Greedy decomposition generation
algorithm, both always find a valid decomposition.* Random
produces a valid yet randomized set of k arbitrary arbores-
cences, whereas Greedy constructs the arborescences in a way
that ensures that routes are shorter on arborescences with low
indices, while longer detours are accepted for higher indices,
which will only come into play for several failures. Both of
them are described in the Appendix in more detail.

Figure 6 presents the maximum stretch values recorded
before and after stretch optimization. First, one can observe
that the Random arborescence decomposition (fop) performs
worse than the Greedy arborescences decomposition before
optimization (bottom): for instance facing x = 20 random
link failures, the median stretch is 11 for Random and only 5
for Greedy, and 10% of the samples have a stretch above 22
for Random, and only above 9 for Greedy. Interestingly, the
stretch optimization is efficient on both structures, producing
arborescences that maintain a lower stretch compared to
unoptimized arborescences, especially under high numbers
of failures. However, even when optimized, arborescences
originally produced by Random still perform worse than Greedy
arborescences: the original performance gap between Greedy

4 Evaluation results for the heuristic are discussed in Section IV-C.



and Random is not completely filled by the optimization process.
In the following, we therefore focus on optimizing Greedy
network decompositions.

B. Optimization Use Cases

a) Reducing Route Stretch: A first fundamental objective
is to ensure that failover routes are short. The idea is hence to
perform edge swapping such that route lengths under failures
are reduced. To this end, given a set F of possible link failures,
we postprocess the network decomposition to minimize the
maximum additive route stretch of a subset of “important”
nodes for the case the links F fail.

More specifically, the objective function ensures the fol-
lowing. Given a subset of nodes that are deemed crucial and
need to send packets to some destination node (the root of
the arborescence) as well as a set of links highly susceptible
to failures, the packets should reach the destination even if
all these links or a subset of them failed with short detours.
In other words, as long as an edge swap does not reduce
connectivity (i.e., no pair is disconnected) of circular routing,
we execute the swap if it strictly reduces the maximum (route
length - shortest path) over all pairs under this set of failures F.

Figure 7 (left) presents the impact of this optimization
approach, measured by three metrics capturing the performance
of the circular arborescence routing scheme exploiting the
unoptimized and optimized versions of the arborescence
decomposition. The traffic we simulate consist in the sending
of a flow of size 1 by 20% of the network nodes to a random
destination despite a set of 0 to 40 random link failures.?

The first metric is the number of routing failures encountered.
It shows that both unoptimized and optimized arborescences
manage to keep the number of failures very low. Even under
a high number of failures (e.g. 40), the median of routing
failures is 0 in both optimized and unoptimized arborescences,
only the 10% worst unoptimized arborescences seem to raise
to a low 5% failure rate. The two next metrics are maximum
load and maximum stretch under the same traffic. While
both optimized and unoptimized arborescences exhibit roughly
the same loads, the stretch of the optimized arborescences
is consistently lower than in the unoptimized case and the
quantiles are much narrower. This shows the efficiency of our
stretch optimization. Interestingly, optimizing the stretch only
induces a slight increase in the load, though one expects a
trade-off between stretch and load. Intuitively, lower stretch
induces higher load, as for low stretch many flows use the
same “good” links. For low load some flows must take detours,
so in general optimizing for low load leads to higher stretch,
as we will see in our next experiments.

b) Reducing Load: A second fundamental objective is to
ensure that failover routes do not overload the network. To that
end, we propose an objective function similar to the one used
above. Given a set F of possible link failures, we postprocess
the network decomposition to minimize the load, defined as
the maximum number of times a link is used due to rerouting
messages for the case the links F fail.

5 We omit results from other failure set sizes as they exhibit the same properties

Thus, as long as an edge swap does not reduce connectivity
(i.e., no pair is disconnected) of circular routing, we execute
the swap if it strictly reduces the maximum of additional flow
on edges when re-routing over all pairs under the failure set F.

Figure 7 (right) presents the impact of this optimization,
captured again along 3 metrics assessed by simulating the
sending by 20% of the network nodes of a flow of unit size
to a random node in the network. One can first observe (fop)
that this optimization has an impact on the routing failure rate:
before optimizing, some packets do not reach their destination,
but after swapping, the failure rate is 0.

The two next metrics exhibit a mirrored trend compared to
the figure of stretch: optimizing load efficiently reduces the
load in both median and 10% worst cases. This effect increases
with the failure rate, and under a high number of failures (e.g.
40) the median maximum load drops from 5 to 2 thanks to the
optimization. This optimization however has a slight impact
on the stretch, and load-optimized arborescences exhibit a
stretch distribution globally above the stretch distribution of
non-optimized arborescences.

We conclude from both Figures 7 left and right that
optimizing arborescences for load or stretch is efficient, in
the sense that the optimized metric is effectively reduced by
the optimization. Overall, there is only a very small loss in the
un-optimized criteria (stretch degrades when optimizing load,
load degrades when optimizing stretch).

Note that these objective functions were chosen to illustrate
the power of our framework for optimizing the rerouting in
a certain traffic scenario. While we picked a random set of
nodes and links to be sources and error-prone respectively,
this approach can be used in traffic engineering to optimize
important scenarios with varying failure sets etc. Instead of
focussing on one optimization criterion like load or stretch,
more complicated objectives that give weights to certain
outcomes can be constructed. Theorem 2 guarantees that the
optimization converges.

¢) Shared Risk Link Groups: Link failures are often inter-
dependent, if links in a network share a common fiber or other
physical attributes (e.g., if they are close geographically [11]),
and thus may fail simultaneously. Such dependencies are known
as shared risk link groups SRLGs [10]-[12].

Existing arborescence-based network decompositions do not
account for SRLG. In fact, the main objective of most existing
FRR algorithms is to preserve connectivity of up to k — 1
failures in k-connected networks, no matter where these failures
occur and even if the remaining network remained highly
connected with more failures. Note that a network may keep the
same connectivity despite additional failures, if the failures do
not affect nodes that suffer from reduced connectivity already.

Accordingly, we show how to use our algorithmic framework
to improve the connectivity provided by an arborescence-
based network decomposition (based on circular routing),
exploiting information about SRLGs. A basic observation
one can make is the following. Since in a k-connected
network, a decomposition can only consist of k edge-disjoint
arborescences, it is generally not possible to tolerate more than
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k — 1 link failures. Furthermore, if the links of a large SRLG
are distributed across many arborescences, the failure of this
SRLG can easily disrupt connectivity: there are simply no
arborescences left that provide a valid route to the destination.

However, the situation looks different if we are able to collo-
cate the links of a SRLG in a small number of arborescences.®
The failure of this SRLG, even if it is large, will only affect
this arborescence set. When encountering the first failure in
this SRLG, the routing mechanism can then simply re-route
traffic to other arborescences unaffected by any failures in the
same group. The beauty of this approach lies in the fact that
the routing mechanism does not enter the objective function
in this case.

To implement this idea, we can hence exploit our algorithmic
framework to swap edges in such a way that links from an
SRLG are assigned to the same arborescences. Thus, if all
these links fail simultaneously, they just affect a small number
of arborescences, independently of the number of failures. All
other arborescences stay intact, and are available in the case of
further failures. In particular, we can simply use the following

6 In general it is not possible to put an arbitrary set of links into one single
arborescence, e.g., only one directed link of a symmetric connection can be
in one arborescence and from each node there is only one outgoing link for
each arborescence.

Algorithm 3: Postprocessing for SRLG

Input: valid decomposition, SRLG S
Output: s € S belong to Tj_1, T}, (if possible)
1 for each link (u,v) € S do
2 for each v’ s.t. (u,v') € Ty_1 or Ty, do
3 if (u,v’) ¢ S swap((u,v),(u,v’)) valid then
4 break /*inner for-loop*/

approach. Given a SRLG, we select two or more arborescences
to contain the SRLG arcs and then we iterate over all edges
in this set, e.g, the two with the highest index Tj_1,T}%. In
this case, we pick an edge (u,v) in SRLG but not yet in
the SRLG arborescences 73,1 and T} and we check for all
outgoing links of u whether swapping the two edges will
increase the number of links in the SRLG to be assigned to
Ty—1 or ,Ti(Algorithm 3). After running this algorithm, we
will have a maximal number of SRLG links in 73_; and T}.
In circular arborescence routing these two arborescences will
be selected last, i.e., after k — 1 failures occurred and once a
packet has encountered two links from this set it will not be
routed to another link of this set unless & — 2 more failures
happen or not all SRLG links have been assigned to Ty _1, Tk.



Note that the runtime of Algorithm 3 is linear in the SRLG’s
size (which can be much smaller than the network size n): we
can simply try to swap an SRLG link with one of the outgoing
links belonging to the SRLG arborescences.

This scheme can be combined with circular routing by
ensuring that all SRLG arborescences are indexed consecutively
and can thus be skipped once a failed SRLG link is encountered.
Moreover at nodes that belong to network parts with a
high likelihood of SRLG link failures can always skip these
arborescences even if no failures occur to increase the chances
of staying clear of them.

To evaluate the effects of our approach, we randomly
generated networks as above and selected SRLGs of varying
size. We then measured the capacity of our scheme to move
those links towards the last two arborescences. These results
are represented Figure 8 (left): The fraction of SRLG links in
the last arborescences is constant before optimization (since
SRLG links are picked at random). One can observe that the
optimized arborescences all manage to pack a greater fraction of
the SRLG links into the last arborescences. More precisely, the
algorithm nearly reaches a perfect optimization when there are
few SRLG links (e.g. less than 50). When the number of SRLG
links increases, the algorithms manages to put proportionally
less such links in the last arborescences. This is due to the last
arborescences “saturating”: recall that those 2 last trees can only
contain 200 links in total, and each must still connect all the
nodes, therefore increasing the difficulty of the optimization.

These results confirm the ability of our algorithmic frame-
work to optimize arborescences based on SRLG criteria.

d) Providing Independence: Lastly, we focus on a case
study that concerns the independence of the decomposition.
Two paths are independent if they do not share any nodes
except their source and destination. A set of arborescences is
a-independent for 0 < a < 1 if an « fraction of all paths
from all nodes in all arborescence pairs to the destination
are independent. The more such independent path pairs exist
the more resilient arborescence-based rerouting can be. In
particular, maximal resiliency of k£ — 1 can be achieved with
circular routing if the arborescence set used is 1-independent.
Moreover, this property is useful to deal with node failures
where all incident links to a node fail simultaneously. Note
that this case usually cannot be modelled with shared risk link
groups as we cannot cover all incident links to a node with a
single arborescence in general.

Figure 8 (right) present the results of swapping edges
with the objective of increasing the number of independent
paths from all nodes in all arborescence pairs. To measure
how efficiently our approach manages to ensure independent
paths, we generated 7200 random 5-regular graphs with 100
nodes and counted the number of independent paths before
and after optimization. Per instance (5) -n = 1000 pairs
are evaluated. This figure shows that before optimization,
2 pairs are independent with a relatively high probability
(94.9% of times on average), and that this quantity varies
considerably across networks (high dispersion of values). After
the optimization, pairs are independent with a high probability

(99.9% on average) in nearly all the cases (lowest recorded
value is 96%, 100% reached in 57.6% of the networks). This
confirms the ability of our optimization to produce independent
(and therefore more resilient) paths.

C. Optimizing Network Decomposition Heuristics

So far in this section, we evaluated our postprocessing
framework on network decomposition algorithms that always
yield a valid output. Recent work [13] also proposed a heuristic
called Bonsai that attempts to generate arborescences of small
depth, with no guarantees if a valid output may be produced (see
Appendix for a more detailed description). Notwithstanding, if
successful, the question arises if said arborescences can further
benefit by our approach in this paper.

Maybe surprisingly, the rate of improvement is quite similar
to the effects described in Section I'V-B for the Greedy approach.
In other words, even though the heuristics in [13] were already
optimized ahead of time, our postprocessing framework still
yielded similar significant improvements for Bonsai. The plots
are deferred to the Appendix to improve the paper’s structure.

V. RELATED WORK

Link failures are the norm rather than the exception in large
networks, and have recently led to several outages, as reported
in, e.g., [16]-[19]. Many existing robust routing mechanisms
in the literature, while tolerating multiple concurrent failures,
involve the control plane and are hence slow. A well-known
example are link reversal algorithms [20]-[23], which require
dynamic router tables and long convergence times, quadratic
in the number of nodes [24]. While there exist interesting ap-
proaches to implement link reversal algorithms also in the data
plane [6], they do not affect the other main drawbacks of link
reversal algorithms. Many solutions in the literature also rely on
packet-header rewriting [25], [26] or packet-duplication [27].
However, the former consumes header space and the latter
introduces additional loads, which is undesirable. Another
approach in the literature pre-computes multiple paths s.t. even
in the event of multiple failures, the ingress switches can
reroute the traffic efficiently without additional computational
overhead [28]. Notwithstanding, packets currently en route on
a failure-ridden path are not protected by such schemes.

We in this paper are interested in static fast rerouting
algorithms in the data plane, which rely on precomputed
failover rules and do not require packet header rewriting. Our
model is hence closely related to the papers by Feigenbaum et
al. [29], Chiesa et al. [7], [8], Elhourani et al. [25] and Stephens
et al. [30], [31] which all study reachability even under multiple
failures. In contrast to our work, however, they do not account
for performance aspects of the computed failover paths.

The work in [32] provides stretch guarantees for some special
graph classes, such as Hypercubes, Tori, Grids, and Clos-
/BCube-topologies, but does not apply to general networks,
the focus of this paper. There is also work on algorithms for
constructing (implicit) network decompositions with certain
properties from scratch [13], [33]-[35]. Except [13], all
approaches require to match also the packet source, not only the



in-port, and some of them rely on computationally expensive
preprocessing (to compute block designs). [13] proposes a
heuristic that attempts to produce arborescences of small depth,
which may not always succeed. That said, we see both works
as orthogonal, as our approach in this paper could be leveraged
to optimize also the network decompositions described in these
papers. The approach in [33] is also less general than our
framework, and can e.g., not be used to account for special
failure scenarios, such as shared risk link groups, simulta-
neous geographically-correlated failures of multiple network
elements [36], or requirements of communication pairs. Indeed,
while shared risk link groups (and their characterization) has
been studied intensively in the literature, e.g., see [11]. We are
not aware of any work on accounting for such risk groups in
state-of-the-art decomposition-based FRR mechanisms.

Finally, we note that our results also have applications
in other contexts, such as multicasting, which also rely on
arborescence decompositions [37]-[39].

VI. CONCLUSION

This paper was motivated by the computational challenges
involved in computing network decompositions which do not
only provide basic connectivity but also account for the quality
of routes after failures. We proposed and evaluated a simple
solution which improves an arbitrary network decomposition,
using fast postprocessing, in terms of basic traffic engineering
metrics such as route length and load. Furthermore, we showed
that our framework can also be used to improve resiliency for
shared risk link groups: an important extension in practice.

We understand our work as the first step and believe that it
opens several interesting avenues for future research. In partic-
ular, it will be interesting to study alternative postprocessing
algorithms, and derive formal performance guarantees for them.
It would also be interesting to study further use cases for our
framework, beyond the ones given in this paper.
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APPENDIX

A. Decomposition Generation

Random decomposition. When building the i*" arborescence
T;, the following method ensures that the graph with all the
arcs belonging to the arborescences T, ...,T; removed, is
still k — ¢ connected. We start at the root and insert a random
unused arc (not belonging to any T}, j < ) towards the root
into T;. Now a recursive procedure is used to add new arcs
(u,v) to T; which extend T; (i.e. v € T;) while maintaining the
arborescence structure (i.e., v ¢ T;). For each edge to be added
we test whether there are still £ — ¢ arc-disjoint paths from u
to the root on the unused arc (excluding (u, v)). If yes the arc
is added to T; and we proceed recursively. Otherwise the next
arc is tested. This algorithm always succeeds to construct k
arc-disjoint arborescences.

Greedy decomposition. The following greedy approach en-
sures that T; has the lowest depth of all possible arborescences
on the arcs that have not been used yet. As in the random
decomposition, we start at the root and insert one of the unused
arcs (not belonging to any T3, j < i) towards the root into
T;. All candidate arcs (u,v) are tested until a suitable one is

found, ordered by the depth the arborescences would exhibit
with (u,v). Analogously to the above, we test whether there are

10

still k — ¢ arc-disjoint paths from w to the root on the unused
arc. This approach is used for the experimental evaluation
in [40]. This algorithm also always succeeds to construct k
arc-disjoint arborescences. The depth of the first arborescence
is the smallest of all arborescences and the depth of the other
arborescences increases monotonically. For networks with very
few failures, this construction combined with circular routing
starting with the first arborescence is a good practical choice.

Heuristic round-robin decomposition. Bonsai [13] proposes
to build the k arborescences in parallel (round-robin), with the
goal of achieving small (i.e., low depth respectively stretch)
arborescences. This is in contrast to the random and greedy
schemes, which build arborescences sequentially. However,
even though the Bomsai round-robin scheme outperforms
the greedy and random schemes regarding stretch quality in
evaluations in [13], it has the downside that it might not produce
a valid decomposition. To this end, the authors in [13] propose
a further additional swapping heuristic for Bonsai to boost their
success rate, which however cannot guarantee the output to be
valid—unlike the swapping performed in our postprocessing
framework, which guarantees valid arborescences.

The postprocessing results for the improved heuristic round-
robin decompositions are shown in the Figures 9 and 10.
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