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ABSTRACT

Harmonizable processes are widely used to model nonstationary signals in fields such as economics,
engineering, and medicine. They can be seen as a superposition of sine and cosine waves with random
amplitudes. This representation allows us to analyze the dependency between their frequencies. In
this context, spectral density and spectral coherence serve as frequency domain analogs of covariance
and correlation, respectively.

In this thesis, we focus on harmonizable processes whose spectral measure is concentrated on
a union of lines (so-called support lines), potentially with non-unit slopes. This class of processes is
a generalization of almost periodically correlated processes. It has practical applications in commu-
nication, particularly in the location of moving sources such as aircrafts, rockets, or hostile jamming
emitters that transmit signals.

First, we address the spectral density estimation problem. We propose a periodogram frequency-
smoothed along the support line as its estimator. We establish its mean-square consistency, consid-
ering scenarios in which the parameters of the support line are known or unknown. In addition, we
derive the asymptotic distribution of the rescaled estimator when the support line is known. Con-
sequently, we obtain the asymptotic distribution of the rescaled spectral coherence estimator. In
addition, we introduce a subsampling technique designed specifically for the class of processes con-
sidered. We establish its consistency and construct subsampling-based confidence intervals for the
spectral characteristics of harmonizable processes. To illustrate the theoretical results, we present
a simulation study for models commonly used in acoustics and communication.

Finally, we present our results obtained for other classes of nonstationary processes. These
findings are related to modeling and statistical inference for signals exhibiting irregular cyclicities,

which are observed, for example, in medicine.

Keywords
confidence interval, periodogram, harmonizability, nonstationarity, resampling methods, spectral

analysis, spectral coherence
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STRESZCZENIE

Procesy harmonizowalne sa szeroko stosowane do modelowania sygnaléw niestacjonarnych w dzie-
dzinach takich jak ekonomia, inzynieria i medycyna. Procesy te mozna postrzegaé jako superpozycje
fal sinusoidalnych i cosinusoidalnych o losowych amplitudach. Representacja ta utatwia nam ana-
lizowaé zaleznosé miedzy czestotliwosciami tych proceséw, przy czym role kowariancji w dziedzinie
czestotliwosci odgrywa gestos$é spektralna, a koherencja spektralna odpowiada korelacji w dziedzinie
czestotliwosci.

W niniejszej rozprawie skupiamy sie na procesach harmonizowalnych, ktérych miara spektralna
jest skupiona na sumie prostych (tzw. prostych nosnych) o wspotczynnikach kierunkowych, ktore
niekoniecznie sg réwne jeden. Klasa ta stanowi uogoélnienie proceséw prawie okresowo skorelowanych.
Ma ona praktyczne zastosowanie w telekomunikacji, m.in. w lokalizacji ruchomych Zrodet, takich
jak samoloty, rakiety czy wrogie nadajniki zakl6cajace sygnat.

W pierwszej czedci pracy zajmujemy sie problemem estymacji gestosci spektralnej. Estymujemy
ja uzywajac periodogramu wygltadzonego wzdtuz prostej nosnej. Wykazujemy zgodnosé w sensie
sredniokwadratowym rozwazajac przypadki, gdy parametry prostej nosnej sa znane lub nieznane.
Ponadto wyprowadzamy rozktad asymptotyczny przeskalowanego estymatora w sytuacji, gdy znamy
postaé prostej noénej. W konsekwencji uzyskujemy réwniez asymptotyczny rozklad przeskalowanego
estymatora koherencji spektralnej. Dodatkowo wprowadzamy metode subsamplingu dla rozwazanej
klasy proceséw. Pokazujemy jej zgodnosé i konstruujemy przedziaty ufnosci oparte na
subsamplingu dla charakterystyk spektralnych proceséw harmonizowalnych. Aby zilustrowaé
wyniki teoretyczne, przedstawiamy symulacje dla modeli powszechnie stosowanych w akustyce
i komunikacji.

W drugiej czedci pracy dodatkowo prezentujemy wyniki uzyskane dla innych klas proceséw
niestacjonarnych. Dotycza one modelowania i wnioskowania statystycznego dla sygnatéw charakte-

ryzujacych sie nieregularna cyklicznosé, ktore to sa obserwowane na przykitad w medycynie.

Stowa kluczowe
analiza spektralna, harmonizowalnos¢, koherencja spektralna, metody resamplingowe, niestacjonar-

nos¢, przedziat ufnoéci, periodogram
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INTRODUCTION

The covariance function is a common tool for analyzing stochastic processes, which measures the
relationship between processes at different time points. However, it is not always sufficient, since the
nature of the dependency in the observed phenomenon may be more complex and not fully captured
by covariance, which measures only a linear dependency. For example, many stochastic processes
can be represented as superpositions of sine and cosine waveforms with random amplitudes [67].
For this reason, Michel Loéve introduced the concept of harmonizable processes in [53), Section 27].

A harmonizable process { X (¢), t € R} is expressed as

X(t) = /emmt déx (w),
R
where £x(w) can be interpreted as a random amplitude associated with a frequency w € R (for
a formal definition, see Definition . The spectral analysis of such processes involves examin-
ing how different signal frequencies are correlated. To achieve this, a spectral measure is used. In
addition, there are two commonly used tools for describing such a spectral dependency. That is,
the spectral density function, which corresponds to covariance in the frequency domain, and the
coherence function, which corresponds to correlation in the frequency domain.

A fundamental subclass of harmonizable processes are stationary processes, which have uncorre-
lated frequency components (see [11, Chapter 4] and [53], Section 27]). That is, the spectral measure
has a support contained in the main diagonal of the bifrequency plane R?. In contrast, nonstation-
ary processes exhibit correlated frequencies. In recent decades, significant developments have been
made in the spectral analysis of nonstationary processes. In particular, many results were obtained
for almost periodically correlated harmonizable processes, that is, harmonizable processes with al-
most periodic mean and autocovariance functions with respect to time (see Section . Research
on these processes was pioneered by Gladyshev in 1961 [36, [37]. Harmonizable almost periodically
correlated processes are a suitable model for data generated by interacting randomness with peri-
odic phenomena exhibiting incommensurate frequencies. They have applications in fields such as
acoustics, biology, climatology, econometrics, mechanics, and telecommunications. For references,
see, for example, [T], 33| 42} 62, [78].

Dehay [17] showed that the spectral measure of harmonizable almost periodically correlated
processes has support contained in a countable union of lines parallel to the main diagonal of
the bifrequency plane. In this thesis, we study the class that generalizes a class of harmonizable
almost periodically correlated processes. Namely, we consider harmonizable processes with spectral

measure concentrated on lines with possibly non-unit slopes. These processes may result from linear

xi



time-varying transformations of almost periodically correlated processes, such as the multi-path
Doppler channel [61] Section 4|. This model effectively represents the received complex envelope in
the context of locating a moving source that emits a communication signal, using measurements

from two sensors [63].

Statistical inference for almost periodically correlated processes is well established (see, for exam-
ple, [42, 62]), including their spectral analysis [25] [50, 51} 82]. In contrast, results for harmonizable
processes with spectral measure concentrated on lines with possibly non-unit slopes remain limited.
Most studies on the spectral analysis of such processes focus on the periodogram and its various
modifications as estimators of spectral densities. To estimate spectral density functions across the
entire bifrequency plane, a time-smoothed bifrequency periodogram was proposed by Napolitano
in [60]. However, Napolitano showed that this estimator lacks mean-square consistency. Another
approach considered in the literature involves evaluating the periodogram along the (estimated)
support line [81], 83]. Unfortunately, the non-smoothed periodogram is not a mean-square consistent
estimator even for stationary processes |11, Theorem 10.3.2]. The periodogram frequency-smoothed
along a support line serves as a mean-square consistent estimator of the spectral density func-
tion corresponding to that support line [52] 61]. Moreover, this estimator has been shown to be

asymptotically normal [61].

First, we focus on the estimation of the spectral density in the case when the support line is
not known. This case is crucial because, in many real-world data applications, the location of the
support line is unknown (see, for example, [63]). In contrast to [8I] and [83], we present a mean-
square consistent estimator, that is, a periodogram frequency smoothed along an estimated support
line. Another aspect of our research involves statistical inference that goes beyond point estimation
of spectral density functions, specifically by constructing confidence intervals. To do this, one needs
to derive the asymptotic distributions of the rescaled estimator. It is difficult because the asymptotic
covariance has a very complicated structure. To address this, we introduce a resampling method that
approximates the asymptotic distribution of statistics. Our approach is based on the subsampling
method, where the estimator is computed on subsamples of the data and these values are used to
approximate the sampling distribution. A key advantage of subsampling is its consistency under
relatively mild assumptions. Specifically, it only requires the existence of a non-degenerate limiting
distribution for the statistic of interest, without a prior knowledge of its exact form (including
its asymptotic variance or covariance), see e.g., [72]. We propose a continuous counterpart to the
subsampling method introduced by Politis and Romano in [74]. Although the subsampling technique
has been explored in the continuous-time setting in [4], these results are not applicable to our

problem because the required assumptions are not satisfied.

In Chapter [T} we introduce in detail the concept of harmonizable processes. We begin by com-
paring stationary processes with harmonizable nonstationary processes. Then, we discuss a class of
harmonizable periodically correlated processes. Next, we introduce harmonizable processes whose
spectral measure is concentrated on the union of lines. Finally, we provide examples of these pro-

cesses and their applications in acoustics and communications. In Chapter[2| we address the problem



of point estimating of the spectral density for harmonizable processes with spectral mass concen-
trated on lines. As an estimator, we propose a periodogram frequency-smoothed along a known
line. First, we establish the mean-square consistency of the proposed estimator under assumptions
weaker than those presented in [6I, Chapter 4]. Based on that, we prove mean-square consistency
in the case where the support line is unknown but its estimator is available. We provide an ex-
ample of an estimation of the support line in a specific model. Finally, we present a result on the
asymptotic normality of the rescaled estimator. As a consequence of this result, we also derive the
asymptotic distribution of the rescaled spectral coherence estimator. In Chapter [3] we introduce the
subsampling procedure for harmonizable processes with spectral mass concentrated on lines. This
chapter begins by reviewing the notation for subsampling in time series as presented in [72]. Next,
we tailor this approach for our continuous-time processes. We establish the asymptotic properties
of the subsampling counterpart of the frequency-smoothed periodogram. In particular, we establish
the consistency of our subsampling procedure. Finally, we construct two types of subsampling-
based confidence intervals for spectral density and spectral coherence functions. In Chapter [d] we
describe the simulation study that illustrates the theoretical findings of Chapter [2] and Chapter [3]
Specifically, we conduct Monte Carlo simulations to validate the mean-square consistency of the
frequency-smoothed periodogram in both scenarios: with a known support line and an estimated
support line. Furthermore, using Monte Carlo simulation, we compare asymptotic confidence inter-
vals and two subsampling-based confidence intervals for spectral density and spectral coherence.

In Chapter [5] we present two results on analysis of nonstationary processes that go beyond
spectral analysis. In particular, we focus on the analysis of processes that exhibit irregular cyclicity.
This subject has gained increasing attention in recent years, as many biomedical signals contain such
irregularities. An example is the electrocardiogram (ECG) signal. Modeling ECG signals as processes
with cyclic regularities has significant limitations, as it requires the assumption of a constant heart
rate over time. This assumption is quite restrictive and is valid only for very short time intervals [63].
To capture this phenomenon, many new models with modulation of time and amplitude have been
developed recently [15] 34], 48] 49, [63], 65]. In [31], we provide a statistical approach for analyzing
electrocardiogram signals using amplitude-modulated time-warped periodically correlated processes,
originally proposed by Napolitano in [63]. We develop two bootstrap procedures, based on the
well-known Circular Block Bootstrap method. In [26], we propose a model that is constructed as
a superposition of cosines with a nonstationary phase-shift process and a stationary amplitude
process. The properties of the first- and second-order moments of the process are analyzed. In
addition, estimators for the asymptotic mean and autocovariance functions are introduced along
their asymptotic properties.

Finally, in Chapter [0}, we summarize the results presented in this dissertation and outline possible
further research directions. Moreover, the thesis includes two appendices. Appendix [A] summarizes
some properties of complex-valued random variables. Appendix [B] contains the auxiliary lemmas
used in this thesis. In the bibliography, the PhD candidate’s papers [26, 29, 30, 31| have been
highlighted by bolding his name.






LIST OF SYMBOLS

N={1,2,...} set of natural numbers
Z={.,6-2,-1,01,...}

R = (—00,00) set of real numbers

set, of integers

C={a+ib:a,be R} set of complex numbers
i =+/—1 imaginary unit
Z complex conjugate of z € C
21 optional complex conjugate of z € C, i.e.,
M € {2,7}
Re(z) real part of z € C
Im(z) imaginary part of z € C
|z] = max{m € Z:m <z} floor of a number z € R
[z] =min{m € Z :m >z} ceil of a number z € R
AT transposition of a matrix A
(x,y) = Ec-lzl x;7; scalar product of z = [z1,...,24) € C? and
y=1[y1,...,ya) € C

(Q,F,P) probability space
L(X) law of a random variable X
E(X) expected value of a random variable X
Var(X) variance of a random variable X
Cov(X,Y) covariance of two random variables X and Y
)

joint cumulant of random variables
X, X,
N(u,0?) normal distribution with

a mean p and a variance o2
Na(p,X)  d-dimensional normal distribution with
a mean vector 4 € R? and a covariance
matrix ¥ € R4

convergence in distribution

convergence in probability

XV



a.s almost surely, i.e. except on a set of
probability zero
a.e almost everywhere, i.e. except on a set of
measure zero
LP(X) set of all measurable functions f: X — C
whose absolute value raised to the p-th
power has a finite integral (see |9,
Chapter 4])
L>*(X) set of all measurable bounded almost

everywhere functions f : X — C (see [9,

Chapter 4])
1£llp = ([ |f(z)P dz) e p-th norm of a function f: X — C with
p=>1
I flloc =inf{C >0 : |f(x)| < C ae.on X} essential supremum of a function f: X — C
(f*g)(x) = [z f(t)g(x —t)dt convolution of two functions f,g: R — C
1, z€A
T1a(z) = indicator function of a set A
0, z¢ A
1, =0
0r = Kronecker delta function
0, z#0
sinﬂ(—;rz), T 7& 0
sinc(x) = sinc function
1, x=0

d(z) Dirac delta function (see [20, Chapter III])

For two functions f, g : R — R, we use the following asymptotic notation:

o f(z) = O(g(z)) as  — oo if and only if there exists M > 0 and zp € R such that |f(x)| <
Mg (z)| for o > x;

o f(x) = o(g(x)) as * — oo if and only if for every M > 0 there exists xg € R such that
[f(z)| < Mlg(z)| for zo > .

Throughout the thesis, we use the following abbreviations:
e PC — periodically correlated;
e APC — almost periodically correlated;
e JAPC — jointly almost periodically correlated;

o AM-TW APC — amplitude-modulated time-warping periodically correlated.



CHAPTER 1

HARMONIZABLE PROCESSES

This chapter reviews the concepts of spectral analysis to provide a deeper understanding of the
processes studied in this thesis. Section recalls the definition of harmonizable processes and
demonstrates how they generalize stationary processes. Section presents almost periodically
correlated processes as examples of nonstationary harmonizable processes with a specific spectral
dependence structure. Section discusses a class of harmonizable processes characterized by spec-
tral mass concentrated along lines. Finally, Section illustrates the practical applications of these

processes in acoustics and communication.

1.1 Harmonizability and stationary processes

First, we establish the basic notation for stochastic processes. A stochastic process {X(t), t € R} is
a family of complex-valued random variables defined on a common probability space (2, F,P) and
indexed by the set R. A second-order stochastic process is a stochastic process {X(t), t € R} such
that E| X (¢)|? < oo for all t € R. A mean function of a second-order stochastic process { X (t), t € R}
is px(t) = EX(t). An autocovariance function of a second-order stochastic process { X (¢t),t € R} is

Rxx(t,s) = Cov(X(t),X(s)) =E((X(t) —EX(t))(X(s) —EX(s))), t,s€R.

A cross-covariance function of two zero-mean second-order stochastic processes {X(t), t € R} and
{Y(t),t e R} is

Rxy(t,s) = Cov(X (), Y(s)) = E((X(t) - EX(£))(Y(s) — EY(5))), t,s€R.

Furthermore, conjugate autocovariance function and conjugate cross-covariance function are given
by Ryx(t,s) = Cov(X(t),m) and Ry+(t,s) = Cov(X(t),m), for t, s € R, respectively.

To fully characterize complex-valued processes at the second-order level, both the covariance
and conjugate covariance functions must be considered (see, e.g. [69, [70} [79, [80]). However, for

the sake of simplicity, we will focus only on the autocovariance and cross-covariance functions. To



1. Harmonizable processes 2

obtain results for their conjugate versions, it suffices to replace the process Y (¢) with its complex
conjugation m For details on complex-valued random variables, see Appendix

Throughout this dissertation up to Chapter [4, we assume that all the processes considered are
zero-mean second-order stochastic processes, that is, ux(t) = 0 for all ¢ € R. Such processes are
encountered in communication and acoustics, which are our main areas of interest. However, in
general, stochastic processes may have a non-zero mean function. In particular, it is common for
almost periodically correlated processes discussed in Section

In the following, we present the definition of the harmonizability of the covariance and the

process introduced by Michel Loéve [53, Section 37].

Definition 1.1 (Harmonizable covariance [53, p. 140]). A covariance Rxy (t,s) is said to be har-
monizable if there exists a covariance function FXY (w,v) of bounded variation on R x R such

that
Rxy(t,s) = / / i2rtw=sv) QpXY (4, 1), (1.1)
R2

Definition 1.2 (Harmonizable process [53] p. 140]). A second-order zero-mean stochastic process
{X(t), t € R} is said to be harmonizable if there exists a second-order stochastic process £x(w)

with a covariance FX¥(w,v) of bounded variation on R x R such that

X(t) = /eﬂm"t déx(w) as. (1.2)

R
If a stochastic process is harmonizable, then its autocovariance function is also harmonizable.
Conversely, if the covariance function of a stochastic process is harmonizable, then the process is

harmonizable [53], Section 37].

Remark 1.1. In the literature, FXY is sometimes considered as a measure (see, for example, [42,

Chapter 5|), however, we follow the definition proposed by Loéve.

Remark 1.2. In the literature, spectral representations sometimes use Fourier waveforms e instead
of €™t This variation can lead to ambiguities in applications, implementations, and formulas. The
presence or absence of the factor 2r may require an appropriate scaling of the Fourier transform.

Note that in this thesis, the factor 27 is present in the exponent.

Observe that equation can be seen as the decomposition of X(¢) into sine waves
€™t d¢x (w) with frequencies w and random amplitude déx (w). This provides a spectral repre-
sentation of the process. The function FXX associated with Rxx/(t,s), describes the covariance
between the spectral components déx (w) of X (¢) and is called the spectral measure. For two har-
monizable processes X (t) and Y (¢), their dependency can be analyzed in terms of the covariance
between their spectral components between frequencies using FXY . This function is known as cross-
spectral measure. A comprehensive explanation of the spectral dependence can be found in [67]. For
a complete analysis of the complex-valued process, it is essential to consider not only the spec-
FXX pYY Y

and FXY | but also the conjugate spectral measures FXX and and

FXY

tral measures

conjugate cross-spectral measure

B. Majewski Statistical inference for harmonizable processes



1. Harmonizable processes 3

The following illustrates that the concept of a harmonizable process generalizes the spectral

representation of a stationary process.

Definition 1.3 (Wide-sense stationary process [11l p. 11]). A zero-mean second-order stochastic
process {X (t), t € R} is called (wide-sense) stationary if for all t,s € R we have px(t) = px(s)
and Rxx(t, S) = Rxx(t — S, 0)

For simplicity, we omit the term “wide-sense” throughout this dissertation. The autocovariance
function of stationary processes depends only on ¢ — s. Therefore, for a stationary process X (t), we
can consider autocovariance as a function of one variable, i.e., Rx x(t — s) instead of Rxx(t —s,0).

For a stationary process, we have the following spectral representation. Let {X (¢), t € R} be

a zero-mean second-order stationary process. Then

X(t) = /e“m déx(w), teR,
R
and
Rxx(7) = / 2T AR (W), T ER,
R
where FX¥X(w) is a right-continuous, non-decreasing function with a bounded variation on R, and

¢x(w) is a second-order complex-value process of orthogonal increments, i.e.,

Cov(€x(w1) — €x(wa), Ex(ws) — Ex(wa)) =0, (w1, w2] N (w3, ws] = 2.

Moreover, FXX(w) = E|¢x (w)|?. If the spectral measure of a stationary process X (t) is absolutely
continuous, then there exists a unique function f(w) such that dF (w) = f(w)dw. The function f(w)
is called a spectral density function of the process X (t). More discussion of the spectral representation
of a stationary process can be found in [I1, Chapter 4],[39, Chapter II] and [53, Chapter 37]|.
Observe that stationary processes are harmonizable processes with uncorrelated spectral com-
ponents déx(w) at different frequencies. Thus, we can write dFX¥X(w,v) = dF*XX(w)é(v — w),
where §(-) is a Dirac delta function. Nonstationary harmonizable processes, on the other hand, are
characterized by the fact that there is a correlation between spectral components of different fre-
quencies. This enables more complex dependency to be captured. In the next section, we discuss the
spectral properties of almost periodically correlated processes that are examples of nonstationary

harmonizable processes.

1.2 Harmonizable almost periodically correlated processes

In this section, we present harmonizable almost periodically correlated processes, an important class
of harmonizable nonstationary processes with a specific structure of spectral dependence. We start

our discussion with the definition of an almost periodic function introduced by Harald Bohr in [§].

Definition 1.4 (Almost periodic function [§]). A function g : R — R is called almost periodic (in
the sense of Bohr) if, for every € > 0, there exists [ > 0 such that for any interval I of length I,
there exists 7. € I. such that sup,cp [g(t + 72) — g(t)] < e.

B. Majewski Statistical inference for harmonizable processes



1. Harmonizable processes 4

Almost periodic functions generalize periodic functions. For example, consider the function

cos (2:}”) + cos (T?\th) This function is a sum of two periodic components with periods 17 = Ty
and Th = TpV/2, respectively. Since these periods are incommensurate (the ratio of periods 7 T2 =2
is irrational), the function is not periodic but is instead almost periodic. The crucial property of
continuous almost periodic functions is that they can be represented as the limit of a uniformly

convergent sequence of trigonometric polynomials, as shown in [5].

Definition 1.5 (Almost periodically correlated process [37]). A second-order stochastic process
{X(t), t € R} is said to be almost periodically correlated (APC) when its mean function px(t) and

autocovariance function Rxx(t,t+ 7) are almost periodic with respect to ¢ for all 7 € R.

Definition 1.6 (Jointly almost periodically correlated process [85]). Two second-order stochastic
process { X (t), t € R} and {Y(¢), t € R} are said to be jointly almost periodically correlated (JAPC)
if for all 7 € R cross-covariance function Rxy (t,t+ 7) is an almost periodic function with respect

to t.

The analysis of APC processes is often conducted by representing the covariance and conjugate
covariance functions in terms of its Fourier series. Let us assume that {X(¢), t € R} and {Y (¢), t
R} are JAPC processes. Then for any t,7 € R we have

ny(t,t-i-T)Z Z axy()\,T)emﬂ-)\t, (1.3)
AEAT

where A%y = {X € R:axy (A, 7) # 0}. Functions axy (A, 7) are Fourier coeflicients given by

CLXY()\aT) = lim RXY(t,t +7.)6—i27r)\t dt

T—00

| NI =
M\’ﬂ\w\ﬂ

and are called cyclic autocovariance functions. The set Axy = |J,cg A%y is countable, and its

T€R
elements are known as cycle frequencies.

Every stationary process is harmonizable, but nonstationary processes are not necessarily har-
monizable, in particular, not every APC process is harmonizable. However, if {X(¢), ¢ € R} and
{Y(t), t € R} are both harmonizable processes, then their spectral measure FXY is concentrated
in the union of the straight lines {(w,v) € R? : v = w — A}, with A\ € Ayy, parallel to the main

diagonal {(w,v) € R? : v = w}, see [17]. That is, we can write
AP (w,v) = > dFYY (w)d(v — (w— ).
/\EAXY
Note that a function F{Y can be viewed as the restriction of the spectral measure FXY to the
line {(w,v) €R? : v =w — AL IEF f(y is absolutely continuous, there exists the spectral density

function ff(y corresponding to cyclic frequencies A € Axy, such that dF f(y(w) = f{y(w) dw. In
addition,

Y (w) :/axy()\,T) e T 4, axy (A, T) :/f))\(y(w) 2™ du. (1.4)
R

B. Majewski Statistical inference for harmonizable processes



1. Harmonizable processes 5

This is a generalization of the known relationship between the covariance function and the spectral
density in the stationary case. Spectral density functions are the Fourier transforms of the corre-
sponding cyclic autocovariance functions. For more details on the spectral theory for APC processes,
we refer to [17, [41), [42] 62].

An important subclass of APC processes is the class of periodically correlated (PC) processes [42),
Definition 1.4]. For (jointly) periodically correlated processes, the autocovariance function and cross-
covariance function are periodic with some period Ty. Consequently, the set of cycle frequencies is
a subset of {Tio ke Z}, which means that the cyclic frequencies are integer multiples of the
reciprocal of the period Tjy. Note that the spectral measure for PC processes is concentrated in
a union of equidistant straight lines parallel to the main diagonal of R2.

In the following, we present an example of an APC process.

Ezample 1.1. Define
K

X(t) = cos(2mAet) Zi(t), tER, (1.5)
k=1

where Zj(t) are mutually independent stationary processes, 0 < A\j < ... < Ag < oo and K € N is
fixed. By 7%(7) we denote the autocovariance function of Zy(t), and ¢y (w) represents its spectral
density function. Then a process X (t) is harmonizable APC with Axx = {0, £2Aq,..., 2\ },

K
%’;1 Vi (T) cos(2m A7), A =0,
axx(\, 1) = Loy (r)ei2mw, A= 2\,
0, otherwise,
and
LK
72 (du(w =) +op(w+ ), A=0,
k=1
XX _
3 (w) = %Cbk wF M), A= E2)N,
0, otherwise.

Observe that, there are 2K 4 1 cyclic frequencies. In Figure we illustrate the support of the

spectral measure in three cases:
e Stationary case: K =1 and A\ = 0;
e PCcase: K =2, \{ = %, and Ay = %;
o APCcase: K =4, Ay = 1, d = Y2, A3 = 1 and Ay = 2.

For the stationary case, the spectral measure is supported by the main diagonal of the bifrequency
plane. For the PC case, the support consists of a union of equidistant straight lines parallel to the
main diagonal. Finally, in the APC case, the support is constituted by a union of straight lines

parallel to the main diagonal but with varying distances between the lines.

B. Majewski Statistical inference for harmonizable processes
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Figure 1.1: Spectral measure supports of the process given by (1.5]) in three cases. Left panel: K =1
and A\; = 0 (stationary case). Center panel: K = 2, A\ = % and Ao = % (PC case). Right panel:
K=4, A =1%4 =% ) =1and \ = L (APC case).

1.3 Harmonizable processes with spectral mass concentrated on

lines

In this section, we introduce a class of processes that extend harmonizable APC processes by
incorporating a more general spectral dependency structure.

Let {X(t), t € R} and {Y'(t), t € R} be two zero-mean complex-valued harmonizable stochastic
processes. We consider the case when the support of the spectral measure FXY (w,v) is contained
in

U {(w,u)eRzzu:aw—i—B},
(a,B)EKXY
where KXY C R? is a countable set. This means that the spectral measure is constituted in the
countable union of the lines with possibly non-unit slopes. Lines v = aw + 3, for (o, ) € KXV, are

called a support lines. Note that we have

dFXY (w,v) = Z dFa)fg/(w)é(V — (aw + B)). (1.6)
(a,B)ELXY

Such processes are the main interest of this thesis. They generalize harmonizable APC pro-
cesses, as the support lines may have non-unit slopes compared to harmonizable APC processes.
In that case, the support lines may even intersect. This makes their analysis more challenging.
These processes can be encountered in communication as linear time-variant transformations of
APC processes, which are widely recognized as suitable models for almost all modulated signals in
this domain. A specific example of such linear time-variant transformations is the multipath Doppler
channel, which introduces a different scaling amplitude, time delay, frequency shift, and time scale

factor for each path [61, Chapter 4] and [62, Chapter 13].

In the following, we provide the formula for the cross-covariance function of X (¢) and Y'(¢).

B. Majewski Statistical inference for harmonizable processes
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Proposition 1.1 ([6I]). Assume that

Z / w)| dw < oo.

(a,8)EKXY R

Then fort,7 € R

Rxy(t,s) = Z / a)%/(wki%w(tfas) dw | e—i278s

(a,B)ELXY \R

Proof. The above property follows directly from (1.1)) and (1.6). See [61, Theorem 4.2.9]. O]

The formula shown in Proposition recalls the Fourier representation and relations
for APC processes (all slopes equal one). However, in the case considered, the “Fourier coefficients”
depend on time ¢ and s, not only on the lag parameter 7 = t — s. As a result, analyzing the
characteristics of these processes in the time domain becomes difficult because of their complex

structure. Therefore, spectral analysis provides a more efficient approach for their examination.

Remark 1.3. The processes introduced in this section are special cases of spectrally correlated
processes, also known in the literature as simple processes [81] [83]. Spectrally correlated processes
processes are characterized by a spectral measure that is supported by a countable union of curves.
For further details, see [61, Chapter 4] and [S1], [83].

1.4 Examples in acoustics and communications

In this section, we discuss possible applications in acoustics and communications of harmonizable

processes with spectral mass concentrated on lines.

Ezxample 1.2. Consider a process given by

K
X(t)=Z(t)+ Y cuZ(splt — 7)) cos(2mAt), tER, (1.7)

k=1
where the process Z(t) is stationary, c1,...,cx € C are complex amplitudes, 0 < A\ < ... < Ag <
oo are frequencies, s1,...,sx > 0 are time-scale factors, 71, ...,7x € R are time delays, and K € N.

The model can be used for acoustic and communication signals of a multi-path character. It
contains time delays 7 and Doppler stretches si, which arise due to different propagation speeds
along different paths for a single receiver [52].

Let us now study the spectral properties of this model. While these proprieties are studied in [52]
only for K = 1, we extend them to any K € N. For simplicity, we take 7, =0 for all k=1,..., K.
Since Z(t) is stationary, its spectral measure can be expressed as dFzz(w,v) = ¢(w)d(r — w) dw,

where ¢(w) is spectral density function of Z(t). Then by (L.1]

K K

Cov(X(t), X (u)) Zchc] cos(2mAgt) cos(2mAju // 2r(Eskt=Csi) 4 Fy 4 (€, (),

k=0 j=0

B. Majewski Statistical inference for harmonizable processes
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wit ¢g = sp = 1 and Ag = 0. Using Euler formulas we get
COS(QW)\]J) COS(Q?T)\]"LL) _ % <6i27r()\kt+/\ju) + ei27r()\ktf)\ju) + 67i27r()\kt7)\ju) + efi27r()\kt+)\ju)> )

By changing variables w = s, £ A\ and v = (s; F A, we have

:I:z271' (Art+Aju // 27 (Espt—Cs u) dFZZ 5 C // 27 (wt—vu) dF (W$)\k vE); )

and by changing variables w = £sp F Ay and v = (s; £ Aj, we have

e:ti?w()\kt—)\ju) // ei27r(§skt—CSju) dFZZ(€7 C) — // ei?ﬂ(wt—uu) dFyy (wfj\ka l/?)\j) .
s 55
R2

R?

Consequently,

Cov(X (1), X (1)) = / / (21 4B (),
R2

where

K K
1 o _ iy _ iy
dFyx(w,v) = i ZZCij (dFZZ (%3'“; LS_]. J) +dFyzy (lej‘k’ sz J)

k=0 j=0

wHA V+>\ wHAE V=N
+dFyy (225,150 + dFyy ())

S5

TR e R .
SIS o ()0 () o

k=0j=0 F
—l—qb(w ’\’“> (V—(;%(w—)\k)"i‘

o510 (10
From the above, we can identify six types of support lines and their corresponding spectral

density functions.

e For the main diagonal {(w,v) € R?: v = w}, the spectral density is given by
| K
w—=A\ w4
o) = o)+ 13- 55 (o (452 w0 (252))
k=1
e For support lines {(w,v) € R? : v = w + 2\ }, where k = 1,..., K, the spectral density is

afa (1)

e For support lines {(w,v) € R? : spw & A}, where k = 1,..., K, the spectral density is given
by

given by
K L2

k=1

fipw

l\D\}—t
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e For support lines {(w,v) € R? : v = i(w + Ai)}, where k = 1,..., K, the spectral density is
given by

K
o)

=1k

N | —

fapw) =

e For support lines {(w,v) € R? : v = i—i(w:l:)\k):t)\j}, where k,j = 1,... K, k # j, the spectral
density is given by

fapw) = kajﬁb (%:\k)

e For support lines {(w,v) € R? : v = j—i(wi)\k):F)\j}, where k,j = 1,... K, k # j, the spectral
density is given by
CLCi

fap(w) = Kljfﬁ (%)

To simplify the indexing of spectral densities, the subscripts a and § in f, g(w) denote slope and
intercept of the support lines, respectively.

Note that the number of support lines is 1+3-2K +2-2K (K —1) = 4K? + 2K + 1. For the case
of 7, # 0, the formulas for the support lines are the same and spectral density formulas include an
additional complex exponential depending on sg, \g, 7%, w.

Figure shows an example of the spectral measure support of X (¢) with K =1, \; = 0'%
and s1 = % Observe that there are 7 support lines in the bifrequency plane (w,r) € R?, specifically

+
V=w, V=38wtn, y:w 77’ v =w =+ 2n,
s

These support lines intersect at 12 points.

0.41

0.2

—0.4 e , % 0.2 0.4 w

Figure 1.2: Spectral measure support of the process given by (1.7) with K = 1, A} = 0'% and

1
5125.
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Example 1.3. Consider two processes given by
Xj(t) = ¢;Z(s(t = 7j)e*™", j=1,2, (1.8)

where Z(t) is an APC process, s1,s2 > 0 are time-scale factors, 11,72 € R are frequency shifts,
71,72 € R are time delays, and c1,co € C are complex amplitudes. A system of processes
is applicable in the problem of locating a moving source emitting a communication signal, based
on measurements from two sensors [63]. Let Z(¢) be a signal transmitted by a moving source
(e.g., aircraft, rockets, or other hostile jamming emitters) and received by the two sensors (as
in Figure . If the relative radial speeds between the moving source and each receiver remain
constant within the observation interval, the received complex envelope signals can be modeled as

follows

Yi(t) = Xj(t) +¢;(1), j=12,

where £1(t) and e5(t) are additive random noises generated by the same intentional jammer.
In [63], the following statistical properties of such a model have been shown. Assume that Z(t)

is harmonizable APC with

Rzz(t,t—l-T): Z azz()\,T)ei%r)‘t,
)\EAZZ

where Azz is a countable set. Let F4Z denote the spectral measure of Z(t), and ffZ, A€ Agz,
represent the spectral density functions of Z(t). Then the cross-covariance functions of X;(¢) and

Xk(t) is given by

RXij(t,t—i-T):cjﬁe_i%"“eﬁ”(’“_"k)te_ﬂ”/\sﬂj g azz(\ (s —57)+ 87+ 81 (T — 1) ) 2T
ANeAZz

Clearly, if j = k, we get that processes X;(t) are APC with cyclic frequencies Ax,x;, = {s;A: A €
Azz}. If j # Kk, the function Ry, x,(t,t + 7) is almost periodic with respect to ¢ if and only if
s1 = sz. Consequently, X (t) and X3(t) are not JAPC.

moving source: Z(t)

interferer
o

sensor #1: Y1 (t)

sensor #2: Ya(t)

Figure 1.3: A moving source transmits a signal Z(t), which is received by two sensors. The first sensor
receives the signal Y7(t) and the second receives Ya(t). The interferer can come from intentional

jamming.
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Let us examine the spectral properties of these processes. Note that by (|1.1))
Rx,x,(t,u) = cjcg Cov(Z(s;(t — 15), Z(sp(u — 73, ) ) eIt e T 2

_ Cj@ // ei27r(§sj(t—Tj)—Csk(u—Tk)) dFZZ(g»C) ei27rnjt6—i27rnku
R2

_ Cj@ // eiQW(fsj+77j)te—iQW(CSk+77k)ue—i27rsj§7jeiQﬂ'SkCTk dFZZ(f, C)
R2

By changing variables w = £s; + n; and v = (s + 7, we obtain

RXij (t, u) = T // ez27rwt€—227rl/ue—7,27r(w—nj)'rj eZQW(V—nk)Tk dFZZ (W—ﬂj ’ V*ﬂk)

Sj Sk
R2
— // ei27r(wt71/u) dFXij (w’ V) 7
R2

where

sj 7 Sk

=T S ittt f22 (W;’v) 5 (V—nk — (‘*’;j”f - A)) dw.

Sk
)\EAZZ

dFXi Xk (1) = que*i%(ﬁd*m)ﬁ e2r(v—ni)m Q4% (W—_ﬁj V*ﬁk)

Moreover,

vome (@=ni o\
Sk Sj

v— (Z—’;(w—m)#—nk —sk)\) =0.

is equivalent to

Figure 1.4: A comparison of the support of the cross-spectral measure FX1X2 with parameters
m =1n2 =0, 51 = 1.1 and so = 0.9 (black lines) with the support of spectral measure F## (dashed

gray lines).
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Therefore, the cross-spectral measure FX1%2 is concentrated on the union of lines

U {(w,y) cER?*:v= i—’;(w—nj)—i-nk—sk)\}.
)‘GAZZ
Note that all lines have the same slope i—’; The spectral density functions corresponding to these

lines are expressed as
. S
fXjX'“ (w) = 4% f22 (w=n; efi27r(wfm)TjeZ2”((TI;(‘”‘W)*W—S“) ok
O‘vﬁ SJ A Si

C;iCl s . —i2m(w—m;) (7 =2k,
j k:f)\zz (w f'“) o 12TSIAT ( na)( i3, k)

S )
Sj J

with (a, 8) = (3, —%n; +np — skA), A € Azz.
In Figure , examples comparing the supports of the spectral measures F4Z and FX1%X2 are
presented with 171 =72 = 0 and s; = 1.1 and sy = 0.9. Non-zero v; only influences the intercept of

all the lines and is therefore omitted.

More motivating examples can be found in [44, p. 904|, where a wideband communication
scenario is discussed, and in [59, p. 204|, who cover ocean acoustic tomography. A related case for

seismic applications is presented in [12].
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CHAPTER 2

SPECTRAL DENSITY ESTIMATION PROBLEM

In this chapter, we focus on the problem of spectral density estimation for harmonizable pro-
cesses whose spectral measures are concentrated on a union of lines. In Section we propose the
frequency-smoothed periodogram along the support lines as an estimator of the spectral density
function. In Section [2.2] we demonstrate the mean-square consistency of the normalized frequency-
smoothed periodogram in two scenarios: when the support line is known and when it is unknown.
Moreover, in Section [2.2.3] we present the estimation procedure of the support line in a specific
model, with applications to locate a moving source. In Section we provide the asymptotic dis-
tribution of the rescaled estimator in the case where the support lines are known. Finally, Section [2.4]
includes proofs of the results.

All theorems, propositions, and corollaries in this chapter are original contributions. These results

can be found in [29] 30].

2.1 Periodogram frequency-smoothed along the line

Let X (¢) and Y (t) be two zero-mean complex-valued harmonizable stochastic processes with cross-
spectral measure supported on a countable union of lines (see Section . Fix T > 0, and assume
that we observe X (¢) and Y (¢) in the interval [—%, %] The bifrequency periodogram of observed
processes X (t) and Y (¢) is defined as

1
I’Z)"(Y(W7V)ZTD7X(W) DTX(V)a (W,V)ERQ,

where

D%— (w) = X(t) w (%) e—i27rwt dt’ D,}/(w) = Y(t) w (%) 6—i27rwt dt7

|
N’\’ﬂ\m\ﬂ

|
N\ﬂ\w\ﬂ

are the short-time Fourier transform of X (t) and Y (t), respectively. We assume that the function
w is even with compact support [—%, %] The function wp(t) = w (%) is referred to as the data-

tapering window. Data tapering is applied in spectral density estimation to reduce spectral leakage

13



2. Spectral density estimation problem 14

(the spectral power at a single frequency leaks into all frequencies around), particularly when the
spectral density function exhibits high peaks (see, for example, [7]). Some authors consider the
complex-valued window w since an appropriate choice of such a window can reduce the bias of the

estimator by orders of magnitude [71]. Our consideration can be easily generalized to this case.

For stationary processes, the spectral density estimator is obtained by setting v = w, which
corresponds to computing the periodogram along the main diagonal of the bifrequency plane |10, [1T].
In the case of harmonizable APC processes, the periodogram is calculated along the line v = w—\ to
estimate the spectral density function associated with the cyclic frequency A [42, 50, 62]. Therefore,
in our case, it is natural to compute the periodogram along the support line of interest. This approach
is considered in [81] [83]. However, it has been established that the periodogram is not mean-square
consistent, even for stationary processes |11, Theorem 10.3.2]. To obtain a mean-square consistent
spectral density estimator, smoothing techniques can be applied. We focus on the periodogram

frequency-smoothed along the support line. This estimator is studied in [29] 30} 52} [61].

Let ¢ : R — R be an even and continuous function on the interval (—%, %) with compact support
[—%, %] The function g¢p,.(w) = %q(ﬁ) is referred to as the frequency-smoothing window with

a bandwidth hy = O (T™"), k € (0,1). Then the spectral density function corresponding to the line
{(w,u) ER?:v=oaw+ B} can be estimated by the normalized periodogram frequency-smoothed
along the line

AXY( )_ Né(”%/(w)

o (W OR (2.1)

where ﬁ(g(w) is the periodogram frequency-smoothed along the line, defined as

Y@ = [ 5 nan+8) oo (52) an
R

and &(«) is the normalizing factor, given by

Ela) = /W(V) W(—av)dv.
R

By W we denote a Fourier transform of w, that is, W (v) = [ w(t)e ™" d¢. Note that W is well
defined if w € L'(R), particularly when w is a continuous function on the interval (—%, %) with

compact support [—%, %] For more details on Fourier transforms, see [77].

The normalizing factor £(«) is required to obtain an asymptotically unbiased estimator of the
spectral density function along the line with slope « [29, 30, 52, [61]. It depends only on the choice
of data-tapering window w and considered slope a. Using the properties of the Fourier transform,
we derive the formula for the normalizing factor in terms of w. Furthermore, we demonstrate that
the normalizing factor has positive values. In particular, it is non-zero, and hence division by it is

possible.
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Window w(t) W(v) E(a)
1, <2 1, o<1
Rectangular X sinc(v) X
0, [t|>5 al la] > 1
1—2t), J¢<t Lol al <1
Triangular <2 sinc?(v) 20 lod
1 1 1
0, it >3 o]~ Ba?? la| > 1
2 1
cos“(mt), |t| <5 .
Hann . (t) :t: i %bfﬁ(fﬁ) 1 + sinc(a) + & (sinc(1 — @) + sinc(1 + a))
) > 2

Table 2.1: Three examples of window functions w(t), along with their Fourier transforms W (v) and

normalizing factors £(a) as a function of a.

Window functions w(t)

A

—-1.00 -0.75 -0.50 —-0.25 "0.00 0.25 0.50 0.75 1.00

Fourier transforms W(v)

150 A

1.251

— ~__" - __ —

—0.251

—-0.50 -

Normalazing factors &(a)

£ 4

—— Rectangular Triangular —— Hann’

Figure 2.1: Top panel: windows w(t). Middle panel: Fourier transforms W (v). Bottom panel: the
normalizing factor £(a) as a function of a. Blue line: rectangular window function. Orange line:

triangular window function. Green line: Hann window function.
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Proposition 2.1. Assume that w is a non-negative continuous function on the interval (—%, %)

with compact support [—%, %] . Then for all a # 0

. 1
3 mln(l,m>
E(a) = / w(t) w(at)dt
1. 1
-3 m1n<17m>
Moreover, for all a # 0
0 < [£(a)]| < |Jw]|% min (1,‘%!'). (2.2)
Proof. This result is a special case of Proposition given in Chapter [3] O

The normalizing factors £(«) corresponding to some commonly used windows w are presented
in Table Here, sinc(+) is a sinc function i.e. sinc(v) = % for v # 0 and sinc(0) = 1. Observe
that the normalizing factor reaches the upper bound (2.2) for the rectangular window. Figure
illustrates window functions given in Table[2.I|with their Fourier transforms and normalizing factors.

In the following sections, we investigate the asymptotic properties of the normalized frequency-

smoothed periodogram along the line.

2.2 Mean-square consistency of the spectral density estimator

In this section, we establish the mean-square consistency of the normalized frequency-smoothed
periodogram along the line in two cases: when the support line is known and when it is unknown.

The results discussed here are based on those presented in [30].

2.2.1 Known support line case

First, we focus on the scenario where the slope and intercept of the support line are known.

Assumption 2.1. Consider the following assumptions.

(i) For any V4,Vs € {X,Y,X,Y}, processes {Vi(t),t € R} and {Va(t), t € R} are zero-mean

harmonizable and

Cov (‘/vl(t)7 ‘/2(5)) = Z fo‘é/:lﬁvz (w) 6i27r(wt—(aw+6)s) dw,
(a,B)ECV1IV2

where V12 is a finite set in R? and o > 0, for (o, 8) € K"1V2. The spectral density functions
fo‘fﬁvz (w) are almost everywhere continuous and belong to L!(R) N L>(R).

(ii) The function w is even, non-negative, continuous on the interval (f%, %), with compact sup-

port [—%, %] Moreover, its Fourier transform W is continuous, and W € L%(R) N L3(R) N

L=(R).

(iii) The function g is even, non-negative, continuous on the interval (—%, %), with compact support

[—%, %] Moreover, [pq(w)dw = 1.
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(iv) For any V = (V4, Vs, V3, Vy), with V; € {X,Y, X, Y}, we have

cum (Vi (t1), Va(te), Va(t3), Va(ta))
— Z /// fk N1, ,'72’773) 7,27T(771t1+7]2t2+773t3+<1>v(77177]27773)t4) dnl d?’]Q d7737

k=(o1,a2,03,8)€KY "R

where a set IV is a finite in R3, and @X(m,ng, n3) = a1m + agng + agnz + B, with o > 0,
j = 1,2,3. The functions f,y (m,m2,m3) are almost everywhere continuous and belong to
LY(R3) N L (R3).

By the condition [(i)| we impose mild regularity conditions on the spectral density functions. We
assume a finite number of lines to ensure the validity of interchanging sums with integrals and limits
in the proofs. The assumption on the data-tapering window is less restrictive than Assumption
4.6.2 in [61], where it is required that W € L(R). Moreover, the commonly used rectangular window
function does not meet the assumption considered in [61]. The assumption is a typical condition
for smoothing windows in spectral density estimation problems. This condition is met, for example,
by the windows listed in Table normalized to have a unit area. By the condition we establish
the regularity of higher-order spectral densities. This assumption is satisfied by various signals, such
as those encountered in telecommunications, which are often modifications of harmonizable APC
processes with almost periodic fourth-order moments [61,[62]. For the definition of the joint cumulant
of complex-valued random variables, see Appendix [A]

In the following, we present results on the asymptotic expected value and covariance of the

normalized frequency-smoothed periodogram along the line.

Theorem 2.1. Let condz'tions and in Assumption hold. Let (a, B) € KXY be fized.
Then for every w € R such that aw + 3 # o’w + B', for all (¢, B") € KXY\ {(«a, B)}, we have

. XY _ XY
Jim B XY (@)] = 725 @),
Proof. See Section O
Remark 2.1. In order to prove Theorem ﬁ the condition W € L%(]R) is not required.

Theorem 2.2. Let Assumption holds. Let (a1, 1), (aa, B2) € KXY be fived. Then for wi,ws € R

excluding points of intersection of support lines, we have
Jim Thy Cov (57, (w1), FX75, (@)

= > ST A @) fi5, (meaw = Br) Q) Wolaam, 1, 2)

(71,01)eKYY (72,52)6)Cﬁ 5(041) E(O‘Q)

x 5a271—“/2a1 5a251 —v2B1+02+ P2 571w1+627w)27

+ E z : YX Tj, W ( 9 9 )
) W —Q1wWl — 0 a2 Y ,Oé s )
71, 1( )f)2762( w /8 ) Q( Y Oél) ( ) ( )
()1’61)EK X (72,52)€]CXY E o S' .

X 571*04272011 5@2524—52-&-51—0(27251 5w2+’¥2(a1w1+ﬁ1)—527

B. Majewski Statistical inference for harmonizable processes
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where
Q(a) = [ a(Wa(an)
R
Wol(ai, a2, a3) = ///W(m)W(ng)W(ng) W (aim + azne + aznz) dny dng dns.
R R R
Proof. This result is a special case of Theorem [3.3| given in Chapter [3] O

Based on the above results, we establish the mean-square consistency of the normalized estimator

for the spectral density function at points that are not the intersection of the support lines.

Corollary 2.1. Let Assumption holds. Let (o, B) € KXY be fived. Then for every w € R such
that aw + B # 'w + B, for all (o/, ') € KXY\ {(«a, B)}, we have

~ 2
: Xy Xy _
Jim B2 ) - 12 @) =0
Proof. The proof follows immediately from Theorems [2.1] and 2.2} O

Mean-square consistency can also be achieved under alternative assumptions.

Remark 2.2. The theses of Theorem and Corollary hold if condition in Assumption
is substituted with any of the following:

(iv) For any kK € N and [ € N, and for any time instants ¢1,...,t,$1,...,5 € R, the vector
[X(t1),..., X (tr), Y (s1),...,Y(s)]" has a multivariate normal distribution.

(iv)” There exists a positive constant K4 > 0 such that for all 7' > 0

sup /2 /2 ‘cum(Y(t), X(s),

T T
te[*iﬁ]_z_z_z
2 2 2

~

(u), X(v))‘ dsdudv < Kjy.

From (iv)’, it follows that all cumulants of order higher than two are zero, simplifying the proof of
Theorem . Assumption (iv)” facilitates the proof of Theorem compared to the proof conducted
under condition or (iv)’. Since our results can be applicable to communication (see Section ,
it should be noted that the cumulants of communication signals can often be calculated analytically,

and their summability can be proven, not just assumed [61] [62].

2.2.2 Unknown support line case

In the previous subsection, we assumed that the slope o and intercept § of the support line are
known. However, this scenario has limited practical applicability in many real-world data applica-
tions (see, for example, [63]). Therefore, in this subsection, we consider the estimation of the spectral
density corresponding to unknown support lines, assuming that the estimation of the support lines
is feasible. Our approach consists of replacing the unknown slope « and the intercept § with their

estimators. By a7 and BT we denote the estimators of a and S, respectively. Then we propose the
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periodogram frequency-smoothed along the estimated support line v = arw + BT as an estimator
for féfgf(w) That is,

anXT),/gT(w) = 5(;/11\T) R/I%(Y (M, OéTquﬁT) g (%) du.

To obtain mean-square consistent of the above estimator we consider Assumption [2.1] with the

following additional assumptions.

Assumption 2.2. Consider the following assumptions.
(i) The function w is a rectangular function (see Table [2.1)).

(ii) Both processes {X(t),t € R} and {Y(¢),t € R} are uniformly bounded, i.e., there exist
positive constants Mx, My > 0 such that | X (¢)] < Mx and |Y(t)| < My a.s. for all t € R.

(iii) Condition in Assumption [2.1| holds. The inverse Fourier transform Q(t) fR q(v)e?™t dy
of the window function ¢ belongs to L'(R) and its derivative Q' exists and Q' € LI(R).

~ 2
(iv) The estimators satisfy lim 7" E|ar — o> =0 and lim T"E ‘BT - B‘ = 0, with some r > 0.
T—o0 T—o00

Moreover, lim a7 = « a.s.
T—oo

The assumption facilitates the proof. The relaxation of this assumption is addressed in Re-
mark The assumption is generally satisfied by most signals used in applications such as
communications, radar, sonar, and telemetry, as discussed in [62, Chapter 7|. In addition, mea-
surements in fields such as acoustics, mechanics, econometrics, biology, and hydrology are typically
uniformly bounded, as discussed in [62], Chapter 10]. The assumption holds for various win-
dows, including the triangular window. An example illustrating where condition is satisfied is
provided in Section [2.2.3

In the following, we demonstrate the mean-square consistency of the normalized frequency-

smoothed periodogram along the estimated support line.

Theorem 2.3. Let Assumptz’on and Assumption hold. Let (a, B) € KXY be fized. Then for
every w € R such that aw + B # o'w + B/, for all (¢!, B') € KXY\ {(a, B)}, we have

hmE‘ @) = £XY ()

ar.Br
with hp = O(T™F), k € (0,252] and r > 2.
Proof. See Section [2.4] O

Remark 2.3. The proof of Theorem [2.3] presented in Section [2.4] is performed for the most general
case of a window w satisfying the condition of Assumption The rectangular window w is
considered only where the convergence in the second moment of 8(10[) g(a ) to zero is proven.
To obtain this convergence, instead of the rectangular data-tapering window w (condition in

Assumption [2.2)), one can impose the following assumptions on w, specifically on the corresponding
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normalizing factor £(a). Assume that there exists a positive constant ¢ > 0 such that £(a) > ¢
for all @ € R, and £(«) is a Lipschitz function with constant L > 0. These assumptions hold, for

instance, for the Hann window. Then

cAE|E(@ar) — E(@)]? < Le*Elar — af?.

E(a) E(ar)
In this case, we do not have to assume that the estimator ar converges almost surely to «.

The natural question arises whether there exist support line estimators that satisfy condition
in Assumption 2.2 The following subsection presents a method for estimating support lines in some

specific model.

2.2.3 Example of support lines estimation in specific model

In this subsection, we provide an estimation procedure for the support line parameters in the model

presented in Example [I.3] Namely, we observe two processes

Xj(t) = CjZ(Sj(t - Tj))eﬂﬂmt, j = 1, 2,

for t € [-Z,Z]. We assume that a process {Z(t), t € R} is an unobserved harmonizable APC

process with the following autocovariance and conjugate autocovariance functions
RZZ(t,t+T) = ZGZZ()\’T)eiQTFAt’ RZZ t t+7' ZO’ZZ v, T 127r7t7
AEA ~er

where A and I' are a known countable set. The parameters ¢y, co, $1, S2, T1, T2, 1, )2 are unknown.
As stated in Example the autocovariance function of X(¢) can be written in terms of Fourier

representation. That is,

Rxx(tt-i-T ZCLXX )\J,T) l2ﬂ-)\t
AjEA;

where Aj = {s;\ : A € A}. Similarly, one can show that

R t t+7) Z ax.x; (v, T )et2mit,
;€L
where I'; = {sjv+ 2n; : v € I'}. In Example we also show that spectral measure FX1X2 ig

concentrated on the union of lines

S
U {(w,y) cR?*:v= ;(w—nj)+7]k—$k)\}.
AEA J

Note that s; = /\—Aj and n; = %(’yj —5;7). By Aj = s5;\ and y; = s;7 + 2n; we denote the frequencies
corresponding to specific cyclic frequencies A € A and vy € T', respectively. Then slope a and intercept
B of support lines can we written as follows

Sk A Sk 1 Ak
==== =22 D e SENALPV DV
o 5 T B 8j77]+77k Sk 5 (’Yk )\j'yg) k
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Since processes X1 (t) and X(t) are observed, one can estimate their cyclic frequencies \; and
7;, allowing for the estimation of support line parameters. By Xj and 7; we denote estimators of
A and 7, respectively. Then 5; = ’\7] and V; = %(% — 5;7) and the estimators of « and § can be
obtained by the following formulas
S VP I S VSR N
ar = = Br==|7— =7 | — A& (2.3)
e 2 ( ) j)

J

In the following, we establish the asymptotic properties of ar and BT.

Proposition 2.2. Let /):j and 7; be estimators of \j # 0 and v;, respectively, for j =1,2. Assume

that there exist positive constants mj, M; such that 0 < m; < /)\\j < Mj; a.s., and
~ 2 2
lim T[N = \y| = lim T"E[f; - =0,
Jim T7E{%; N[ = Jim T7E[F; —
with some r > 0, and Tlim /):j = A a.s. Then the estimators of o and B given by (2.3) satisfy the

— 00
condition [(iv)] of Assumption[2.9
Proof. See Section O

Now, we briefly present the cycle frequency estimation proposed in [I3] [14]. Let \* € A be the
known frequency that corresponds to the strongest cyclic characteristic of Z(¢). For most commu-
nication signals, A* is the smallest non-negative cycle frequency. Assume that there exists a known
compact interval denoted by C(\*,d)«) that contains \* with width dy« such that it contains only
one cycle frequency of X (t) denoted by A = s;A" € Aj. In the problem of locating a moving source,
it can be shown that the width dy« is proportional to the maximum magnitude of the relative radial

speeds [63]. Then the estimator of A} has the form

o~

. A 2
A} = argmax / lax,x, (1, 7)|" dr, (2.4)
peC(A* A%
7
where the set 7; is such that ax; x; (A}, 7) # 0 for 7 € T;. By ax; x, (11, 7) we denote an estimator of

ax,x,(p, T) obtained by

~ 1
ax;X; (M: T) =

=— | X;(t+7)X;(t) 11 7 py(t+7)e ™AL
T 53]

|
N’\’ﬂ\,w\ﬂ

The estimator of «y; is defined analogously starting from anYj(Mv 7). Another method of estimating
cycle frequency is presented in [19].

Note that the estimator Xj is bounded, since we are looking for the cycle frequency A; within
a certain compact interval. Moreover, in [I3, [14] it is shown that under the assumption of
summability of cumulants of the process, the estimator /)\\j of the cycle frequency \; satisfies
Tlgréo T3E‘Xj —\j ‘2 = aij and Tlgrolo T‘Xj — )\j‘ = 0 a.s. These assumptions hold and are verified, for
example, for communication signals. Consequently, the estimator satisfies the assumptions of
Proposition with all r < 3.

The above estimation procedure of & and  has been discussed in [63], but without any theoretical

results.
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2.3 Asymptotic distribution of the rescaled spectral estimators

The next asymptotic property of the normalized periodogram frequency-smoothed along the line
that we present is its asymptotic normality. Moreover, we establish the asymptotic distribution of
the rescaled spectral coherence estimator. In this section, we concentrate on the scenario in which
the support lines are known. The results discussed here are based on those presented in [29]. To be
consistent with the previous section, we assume that the observation interval of X (¢) and Y (¢) is
[—%, %] However, in [29], we address a more general form of the observation interval. The general
case, essential for the subsampling procedure, is explored in Chapter [3] Therefore, all proofs of the

theorems outlined in this section can be found in Chapter

2.3.1 Asymptotic distribution of the rescaled spectral density estimator

To obtain an asymptotic normality of the normalized periodogram frequency-smoothed along the

line, we consider Assumption 2.1 and the following additional conditions.

Assumption 2.3. Consider the following assumptions.

(i) There exists a positive constant Ky > 0 such that sup |[zW (z)| = Ky .
T€R

(ii) For all (o, 8) € KXY, there exists a first derivative fj%// that belongs to L?(R) N L=(R).

(iii) For any r € N and for any V = (V1,...,V,), with V4,...,V, € {X,Y, X, Y}, we have

cum (Vi (t1), ..., Vp(t,)) = > /---/f;ﬁ’(m,...ml)
Rr—1

k:(al,...,arfl,,@)GICV

. v
s ettt O )

where a set KV is a finite in R”, and ®Y (n1,...n,—1) = Z;;} a;n; + B, with o > 0, j =
1,2...,r — 1. The functions f,:/ (m,...nr—1) are almost everywhere continuous and belong to
Ll(Rr—l) N LOO(RT_l).

The assumption is significantly less restrictive compared to the condition stated in Theo-
rem 4.7.11 in [61], where it is assumed that the function R 3 z + 2?W (x) € R belongs to L*(R).
This condition is not satisfied for many popular window functions, including those listed in Ta-
ble[2.1] In contrast, our assumption is weaker and is satisfied by the windows listed in Table and
many others. By the assumption we impose some regularity of the spectral density functions.
This condition is required to obtain the convergence rate of the bias of an)%/ (w). The assumption |(iii)
refers to some regularity of higher-order spectral densities (see Section 4.2.3 in [61]). It is satisfied
by many signals, e.g. in telecommunications, which are modifications of APC processes.

First, we present some asymptotic properties of the estimator gg(w) Specifically, we derive
the convergence rate of the bias of this estimator and show that its joint cumulants of higher order

than two are asymptotically zero.
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Theorem 2.4. Let Assumption and the conditions and in Assumption hold. Let
(o, ) € KXY be fived. Then for every w € R such that aw + 3 # o'w + B, for all (o/,3') €
KXY\ {(o, B)}, we have

. XY XY _
Jim /ThrE (fa,ﬁ (W) — fa.8 (w)) =0,
provided that hp = O(T™"), k € (%, 1).

Proof. This result is a special case of Theorem [3.2) given in Chapter [3] O

Theorem 2.5. Fix P > 2. Let Assumption and and in Assumption hold. Let
(a1,B1),...,(ap,Bp) € KXY be fived. Then for wi,...,wp € R, excluding points of intersection of

support lines, we have

lim (Thy)"/? cum (AX?//BI (), Y (wp)[*]) =0.

Tooo ai »Jap,Bp
By 2P we denote an optional complex conjugate of z € C, i.e., 2 € {z,Z}.
Proof. This result is a special case of Theorem [3.4] given in Chapter O

Remark 2.4. To prove Theorem in in Assumption we can restrict to r € [2,2P] N
N. Namely, to demonstrate the convergence of the P-th order cumulants of the spectral density
estimator to zero, it is sufficient to assume only regularity of the higher-order spectral densities up

to order 2P.

Below we present the asymptotic normality of the normalized periodogram frequency-smoothed
along the support line. For this purpose, we treat the complex number z € C, as a two-dimensional
vector [Re(z),Im(2)]T € R2.

Theorem 2.6. Let Assumption and Assumption hold. Let (o, B) € KXY be fized. Then for
every w € R such that aw + B # o'w + B, for all (!, B") € KXY\ {(a, B)}, we have

VThr (FX¥ (@) = 55 (@) =5 Na(0,B(w; 0, B)),

provided that hp = O(T™"), k € (%, 1). The covariance matriz X(w; «, 8) is given by

1 |Re(0?) + Re(c?) Im(0?) — Im(c?
S = L [Re(0?)  Rele?) (o) ~Im(?)] 25
2 |Im(0?) — Im(c?) Re(o?) — Re(o?)
where
0? = o} (w; e, B) = lim Thy Var (Z%((w)) ,
T—00 ’
02 = o(w;a, B) = lim Thy Cov (/z(g(w), ]Z%/(w)) .
T—o00 ’ ’
Proof. This result is a special case of Theorem [3.5] given in Chapter O

Using the continuous mapping theorem and the delta method, we can derive the asymptotic

distribution of the rescaled magnitude of the spectral density estimator.
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Corollary 2.2. Let Assumptz'on and Assumption hold. Let (o, B) € KXY be fized. Letw € R
such that aw + B # o'w + B, for all (o/, ') € KXY\ {(a, B)}. Assume that det(E(w;a, 3)) > 0,
where X (w; a, B) is given by (2.5). Then

VThr (

’_ ) 4y JUEE @I
where
e Je(VITRTR), if FXY (@) =0,
Ni(0, A1 S(w; 0, H)AT), if FXY (@) 0,
and the random vector [U1,Us]™ has a two-dimensional normal distribution N3(0, % (w; o, B)), and
the vector Ay € R'™? has the form
1

Ay = ————[Re (f2} (W), Im (£} (w))]-
[fag (W)
Proof. This result is a special case of Corollary [3.1] given in Chapter O

In the next subsection, we introduce the concept of spectral coherence and define its estimator.
Then, using Theorem we determine the asymptotic distribution of the rescaled estimator of the

spectral coherence.

2.3.2 Asymptotic distribution of the rescaled spectral coherence estimator

As noted in Chapter [I}, the spectral measure, and consequently the spectral density, correspond
to the covariance in the frequency domain. In this subsection, we introduce the spectral coher-
ence that can be treated as the spectral counterpart of the correlation [67]. Building on the
concept of spectral coherence for cyclic frequencies A in the context of harmonizable APC pro-
cesses (see e.g. [62] eq. (8.116)]), we define the spectral coherence function along the support line

{(w,v) e R?*: v = aw + B} as follows

Note that 'yffOX(w) =1 for allw € R.
Based on the spectral density estimator ([2.1]), we propose the estimator of the spectral coherence

function. Namely, for fixed w € R, the spectral coherence 72(}; (w) can be estimated by

XY (w) = i) (2.6)
| VEE@RY (0w +8)

In the following, we can establish the asymptotic distribution of the rescaled estimator 'y B Y(w).

Theorem 2.7. Let Assumption and Assumption hold. Let (o, B) € KXY be fived. Let w € R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY
FXX and FYY . Assume det(A(w,aw + B)) > 0, where Alw, aw + 3) = Do(w, aw + B;a, B) is an
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/ /
asymptotic covariance matriz from Lemmam Moreover, there exist first derivatives fXX E 1Y 3/

that belong to L*(R) N L*°(R). Then

VThr (52 @)] = e @) 5 77es @,

where
(Vf Alait, ) if £X5 (W) =0,

J|’Y w)f (aw+pB)
N1(0, ApA(w, aw + B)AT), if fX) (w) #0,

the random vector [Uy,Us]T has a two-dimensional normal distribution N3(0, A(w,aw + B)), and

the vector Ay € RY2 has the form

Re(RY@) .
iﬁTWHQ 2NN (w) 2/ (aw+ B)

I (/27 (@)

2
Xy )

"Va,ﬁ \

Proof. This result is a special case of Theorem [3.6] given in Chapter

2.4 Proofs of results presented in Chapter

This section contains proofs of the original results presented in this chapter.

Proof of Theorem[2.1 By |[(i)] of Assumption we have

T) 677;27”“5 67;271’(0(/1«4’5)5 %q <w M) dtds dH

=
Q
=
Il
N[ =
P
=
ja
3
=
g
g

|
M\’ﬂ\_.w\ﬂ
|
\M\’ﬂ N‘%\w\ﬂ

)

(1/) ei27r(ut (yv+6)s) (T) w(

Nl

2%
o=

|
N
g~
g
B
B

Sl

% e—i27r,ut ez’27r(a#+5)5 q ("‘%ﬂ) dtds d,Uz dv

- [ [ 55 wra(52) W= ) WTw - ap+ 5 - ) duds.
R R

T (yo)ercxy
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The last equality follows from Lemma [B:4] The interchange of integrals above is allowed by Fubini

theorem since

[l

fXY (W w (%) w(%)q (%)‘ dtdsdpdv

<T2||w|r2/\ \du/ (554 Hwn?/» ()] dv < oo,

We consider the following changing the variables n = T'(u — v) and A = . Then

M\’ﬂ\w\ﬂ
|
M\’ﬂ\w\'ﬂ

p=w—hr), v=w-—hrA+7,

T(yw—ap+0—p)=—-m+T(y—a)(w—heA) +T(0 - f).

=nr
Hence,
E [ )] = P> / / (6= hrd — ) g0 W () W (—yn + nr) drd
kXY i
(v,6)eKXY

Consider the limit of E(v,d) in two cases: (7,d) = (o, 8) and (v,0) # (o, B).

Let us start with the term corresponding to (v,d) = («, ). In that case, we have np = 0.
Observe that the integrand function in E(«, ) is bounded by some integrable function that does
not depend on 7. That is,

115 (w=heXd = 2) a) W)W (—ym)| < [|£5 ]|, laHW 0) W(=ym)| = G(A,m).

By Hoélder inequality the function G' € L'(R?) since W € L?(R). Therefore, by Lebesgue’s dominated

convergence theorem we obtain

lim E(a,8) = £} () / g(n) dx / W () W (—ym) dn = £ () €(0).

T—o0
R R

It remains to show that E(v,d), with (v,0) # («a, ), converges to zero as T' — oo. Note that
the term E(v,d) can be bounded as follows

B(v,0)| < || £ ]| /FT

\) / W () W (= + )] .

where

From Holder inequality we have

[N

Fr(V)] < a() / W) di / W+ ar)Pdy | = a0y 2|,
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and hence the function Fp(\) is bounded by an integrable function and independent of T'. Hence,

by Lebesgue’s dominated convergence theorem, we can interchange the order of the limit and the

integral with respect to the variable A. Finally, using Lemma we have lim E(v,d) = 0, with
T—o0

(7,9) # («, ), which ends the proof. O

Below, we provide an alternative expression for the periodogram frequency-smoothed along the

line. This expression is then used to prove Theorem

Lemma 2.1. Assume that ¢, w € L*°(R) with compact support [ 55 2] Moreover, there exist positive

constants Mx, My > 0 such that | X (t)] < Mx and |Y (t)] < My a.s. for allt € R. Then

T
2

/ X Y(s)w (%) w(2) Qhr(t — as)) e~ mwi=(awtB)s) gt s,
T

2

where Q denotes the inverse Fourier transform q, i.e., Q(t) = [z q(\) e d\.

Proof of Lemma[2.1] Applying the Fubini theorem, we have

T

2

[ XOTGI w0 () w(3) e 2rmeironss g (522) dedsdy
T

2

2
T
2
/X(t)Y(s)w (%) w (%) ei2mhs /thq ("2—;“) e 2rt=es)nqy | dtds.

_1
T
_T R
2
By changing the variables A = <=2, we get
/thq (UJT—TM> e—i27r(t—ozs)p, d,UJ _ e—i27r(t—ocs)w /Q()\) ei27r(t—ocs)hT)\ d\
R R

= e PTQ (hr (¢ — as)),

which ends the proof.

Proof of Theorem[2.3 Let us consider the following decomposition of the estimation error

FXY. () — f2¥ (w) = Ry + Ry + R,

ar,pr
where
XY XY
R, = aTﬁT(w) . aTﬁT(w) _ fXYA (w) ; _ L
&@r) £() ar.fr Ear) &)’

XY XY

@) &) &
R3_fo¢,3() ()
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From Theorem [2.1] the term Rj approaches zero as T' — oo in the second moment. In the sequel,

we show the convergence in the second moment of R; and R».

Let us start with the term R;. From Lemma and by changing the variable u = hp(t — as),

we obtain
T T
) 2 2
@ <g [ XOVEw ) v (5) Q- as)|aas
_r_ T
272
T T
2 2
2 2
Thr
TR TR
2 2
_ w3 Mx My [|Q]lx
hr ’
Hence, there exists some positive constant C; > 0 such that
1 1
E|R > < C,T*E -
R < AT E s~ o
For a rectangular function w we have £(a) = min (1, |a|_1) and Er(a) = min (1, \arl) (see

Table [2.1)). Thus, we examine separately two cases: |a| < 1 and |a| > 1.
If || < 1, the almost sure convergence of ar to « implies the existence of Tp > 0 such that

lar| < 1 a.s. for all T'> Tpy. Thus, Ry = 0 almost surely for T > T.

If || > 1, the almost sure convergence of ar to « implies the existence of Tp > 0 such that

lar| > 1 a.s. for all T' > Tp. Thus, for T' > Tj

E|R > < Ci T*El|ar — af*. (2.7)

Now, we consider the term Rp. From Lemma [2.1] we get

T
1 2

<
< g |
_r
2

T
2

/ KOV w () w(3) e (QUim(t - ars)) erlErein:
T

2

dtds

2
>
~
=
|
o
®

) ei27r(aod+,3)s)

< Mx My ||wl|Z,

= S(Q)T ‘Q(hT(t _ aTs» ei?ﬂ’(aTerBT)S o Q(hT(t - as)) ei27r(o¢w+6)s dt ds.

|
NS~ |
|
N\ﬂ\w\ﬂ

From the Euler’s formula, for all wy,ws € R and ¢t € R, we have

6227rw1t o ez27rw2t — —9sin (7Tt(OJ2 o Wl)) ewr(oq—f—wz)t,
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and hence

‘Q(hT(t _ aTS)) eiQﬂ(aTw+BT)s _ Q(hT(t . as)) eiQﬂ-(anrﬁ)s

[Q(hr(t — ars)) — Qhr(t — as))]
€i27r(04w+6)s

< eiQW(aTw+§T)s

pi2n(@rw+Br)s _

+1Q(hr(t — as))| -

=|Q(hr(t — ars)) — Q(hr(t — as))| + 2|Q(hr(t — as))| - |sin (7s((@r — a)w + (B\T — B)))‘ .

Consequently, by inequality (a + b)? < 2(a? + b?) for a,b € R, we obtain

Mx My ||wl||?
E|R2|2 < 2X5(YOJ|)HOO (E|R1,2‘2 + E’R272|2) ,

where
T T
1 2 2
Ror=g [ [ 1@t~ Grs) - QUir(e ~ as))|drds,
_Tr_T
2 2
and

sin (ws((@r — o)w + (Br — 5)))\ dt ds.

Q(hr(t —as))| -

&
I
RN
|
NH\MH
|
MH\MH

It remains to discuss the convergence of Ra 1 and Ra2 in the second moment.
Consider Ry ;. By changing the variable u = hr(t — as) and using the first-order Taylor approx-

imations, we have

|Q(u + hr(a — ar)s) — Q(u)| duds

=
o
A\
‘ -

S
=
S

%\

|
‘ -

| |
]S Tl I8 TN

|Q'(u + ohp(a — @T)s)} |hp(a — ar)s|duds

S
=
~

%\

a—a
:|TT| /‘Q/(u)‘ du [ |s|ds
R

|
N\’ﬂ\w\ﬂ

= 11Q' |l T)a — &r|,

where ¢ € [0, 1] is some constant. Then there exists some positive constant Ca; > 0 such that

E|Rg1|?> < Oy T?E|o — ar|*. (2.8)
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For Rg 2, by changing the variable u = hp(t — as), we obtain

sin (ms((ar — a)w + (Br — 8))) ’ dtds

r
Roo< [ [1Que—as))
R

T
-2
z
< 2TR/|Q(U)|dul ‘sin (WS((&T—a)w—l—(BT—ﬁ)))’ ds
; 2
< 2O [y (jar -l ol +|Br - 5]) a

IN

TGl 7x (157~ af ol + [Br - 8])

Therefore, there exists some positive constant Ca 2 > 0 such that

~ 2
E|Ry2|? < Cpp T?1HH) <\w’2E ar — o> +E ‘5T - ﬂ’ ) : (2.9)
Finally, combining inequities (2.7)), (2.8) and (2.9), and by max (2/1, 2,2(1+ H)) =2(1+k) <,
for all k € (0, %], we end the proof. O

Proof of Proposition[2.9 Let k,j € {1,2}, k # j. Note that

~ 2 ~ ~ 12 ~ ~
7r |8 N e [N A o (A Ao | = AR A
)\k: )\k /\k )\k: )\k /\k )\k:
From Xk > my a.s. and Tlim TTE|X;€ — Ax|? = 0, we have
—00
SRV
lim T"E|=L - 22| =o0. (2.10)
T—o00 )\k )\k

In an analogous way, we obtain an almost sure convergence of the slope estimator.
Now, we show the convergence of Sr. We have

2 2

}:2/\ )\2 —~ 2 /)\\2 /):2 )\2 2
T =71 — —M| < 27" Y1 — 7 = 427" |2 — = - Y1
" N | | 1 VDY o

From (2.10) and the fact that m; < Xj < M; a.s. and Tlim TTE|F; — 7> = 0, for j = 1,2, we
— 00
obtain that

o Ao
lim T"E|==7; — — =0,
T—o00 )\1 m )\1 tE
and consequently, we obtain the convergence of ET. O
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CHAPTER 3

SUBSAMPLING PROCEDURE IN SPECTRAL ANALYSIS

In the previous chapter, we considered the point estimation of the spectral density and spectral
coherence functions for harmonizable processes with spectral mass concentrated along lines. How-
ever, in practical applications, statistical inference goes beyond point estimation, including the con-
struction of confidence intervals and hypothesis testing. For this purpose, one can use asymptotic
distributions of rescaled estimators. Unfortunately, in that case, directly applying the asymptotic
distribution is highly challenging because of the need to estimate the asymptotic covariance. The
asymptotic covariance matrix of the rescaled estimator has a complex structure (see Theorem ,
making it almost impossible to estimate accurately. Therefore, in this chapter, we introduce a resam-
pling method that allows us to obtain confidence intervals for parameters of interest and does not
require the estimation of the covariance matrix. The proposed method is based on the subsampling

method.

In Section [3.1] we recall the notation and outline the primary concept of the subsampling
procedure for time series. In Section we introduce our subsampling procedure tailored for
continuous-time harmonizable processes. In Section we define the subsampling estimators of
spectral density and spectral coherence. Moreover, we derive their asymptotic properties. In Sec-
tion we establish the consistency theorem for the proposed subsampling procedure in spectral
analysis. In Section [3.5] we discuss the application of the subsampling procedure in constructing

confidence intervals for spectral characteristics. Finally, Section includes proofs of the results.

All theorems, propositions, and corollaries in this chapter, except those in Section[3.1] are original

contributions. These results can be found in [29].

3.1 Brief overview of the subsampling for time series

In this section, we briefly recall the classical subsampling approach introduced by Politis and Ro-
mano [73] [74].

31



3. Subsampling procedure in spectral analysis 32

Consider a time series {X(n), n € N}, and let # € R be a parameter of interest. Fix n € N. We
denote by 8, = §n(Xn) an estimator of 6 based on the sample X,, = (X (1),...,X(n)). To perform
inference on 0, it is essential to derive or approximate the sampling distribution of gn Let Jg be

the sampling distribution of 7,(6,, — @), where 7, is a normalizing factor. Moreover, we consider the

cumulative distribution function
Jo(z) =P (Tn(én —0) < w) , xz€eR.

The idea behind subsampling is to approximate the sampling distribution Jfl of statistics based
on smaller data sets, referred to as subsamples. For time series, to mimic the time dependency, the
data set is divided into overlapping blocks of size b. Denote by X = (X(s),...,X(s+b—1)),
with s =1,2,...,n — b+ 1, the subsample of length b from X,,. By én,b,s = 5b(X57b) we denote the
subsampling estimator of § based on the subsample X ;. Let Jg . denote the sampling distribution of
Tb(é\n,b7 s —0), where 73, is some normalizing factor. Moreover, we consider the cumulative distribution
function

o~

T (x)=P (Tb(Qn,b,s —0) < x) ., z€eR.
Therefore,
n—b+1
0 1
Ly p(T) = 559 Z ]1{71,@7573_5”)@}
s=1

is used to approximate J¢(x) for z € R.
Note that the distribution JbeS may depend on the index s since time series X (f) can be nonsta-
tionary. To ensure an appropriate approximation of Jg (x) based on thb(x), the following assumption

should be considered.

Assumption 3.1 ([72]). There exists a limiting law J¢ such that
(i) J¢ converges weakly to J% as n — oo.

(ii) For every continuity point z of J?(-) and for any sequences n,b with n,b — co and b/n — 0,

we have
n—b+1

1
s=1

In [72], the consistency of subsampling for nonstationary time series is established under the
assumption of weak dependence. For this purpose, we introduce the concept of a-mixing.
Let {X(t), t € T}, where T =Z or T = R. Then {X(¢), t € T} is called a-mixing if ax(7) = 0
as 7 — oo, where
ax(T) =sup sup [IP(AN B) —P(A)P(B)|,
teER  AeFx(—oo,t)
BeFx (t+1,00)
with Fx(a,b) = o ({X(t), a <t <b}). The coefficient ax(7) is a standard measure of weak de-
pendence for stochastic processes. Namely, it measures the dependence between past and future

information. If ax(7) = 0, then observations distant by at least 7 time units are independent. For
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3. Subsampling procedure in spectral analysis 33

more information on weak dependency, we refer the reader to [2I]. Furthermore, in Appendix we
recall two inequalities for bounding covariance using the a-mixing measure.
In the following, we present the theorem on the consistency of subsampling for nonstationary

time series.

Theorem 3.1 ([72]). Let {X(n),n € N} be an a-mizing. Let Assumption holds and that

To/Tn — 0, b/n— 0, and b — 00 as n — oo. Then
(i) If x is a continuity point of J°(-), then LY ,(x) — J%(x) in probability.
(ii) If JO(-) is continuous, then sup,eg |L ,(z) — JO(z)| in probability.

(iit) For p € (0,1), let cfl’b(l —p) = inf{x : qub(aﬁ) > 1 — p}. Correspondingly, define (1 — p) =
inf{z: J%(x) > 1— p}. If J°() is continuous at (1 — p), then

~

P(Tn(en—ﬁ) Scz,b(l—p)) —1—p asn— oo.

Thus, the asymptotic coverage probability of the interval [gn — Tn_lcfl’b(l —p), oo) is the nom-

wnal level 1 — p.

Thus, the consistency of subsampling can be achieved under weak assumptions. Note that we do
not need to know the form of the sampling distribution of the estimator to prove the consistency.
Detailed discussion on subsampling can be found in [72].

In this section, we presented a subsampling for discrete-time stochastic processes. In our case,
we consider continuous-time stochastic processes, and in the subsequent section we adapt the sub-

sampling to this case.

3.2 Subsampling for continuous-time processes

In this section, we propose a continuous-time counterpart to the subsampling method introduced by
Politis and Romano. Although general results on subsampling for continuous-time processes have
been explored in [4], these results are not directly applicable to our specific problem. Our case
requires significantly weaker assumptions. This issue is further discussed in Section

Let {X(t), t € R} and {Y(¢), t € R} be two zero-mean complex-valued harmonizable stochas-
tic processes with cross-spectral measure supported on a countable union of lines. Fix T > 0.
Let X1 = {X(t), te [—%, %]} and Y = {Y(t), te [—%, %]} be observed samples. We divide the
samples into overlapping blocks of length b (where 0 < b < T'), with an overlap determined by the
factor A > 0. Assume that A is such that g7 = :g—zb is an integer number. The resulting blocks
are defined as Xj ;o = {X(t), te [SA — g,SA + %}} and Y3 s = {Y(t), te [SA — %,SA + g]} for
s=—qr,—qr+1...,qp. Figure illustrates an example of this block division.

Let 6 € R be a parameter of interest. By 5T = é\T(XT, Yr) we denote the estimator of 6 based
on the sample (X7, Yr), and by §T,b,sA = é\b(Xb,sA, Y} sa) its counterpart based on the subsample
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vl 4

Figure 3.1: Splitting the observation interval [—%, %] into overlapping blocks of size b with overlap

factor A.

(Xb.sn, Yy sa). Our goal is to approximate the distribution of 7 (§T — 9) using 7y (§T7b75A — ‘/9\T) For
this purpose, we define

1 &
=271 2 My TER

Jj==lr

where 2l + 1 is the number of blocks considered in the subsampling. Then LGT’b(x) approximates
the cumulative distribution function of TT(§T —0) at point x € R.
Our objective is to develop a consistent subsampling procedure that approximates the distribu-

tions of
VIt (|EY @) - 125 @) and VThr (32 @) - b2 @)

for fixed w € R. Recall that the estimators J/‘z(g (w) and /7\5(5( w) are given by (2.1)) and (2.6), respec-
tively. We start by defining the subsampling counterparts of faﬂ (w) and 7 704, | ¥(w) and analyzing

their asymptotic properties.

3.3 Subsampling estimators and their properties

The purpose of this section is to define the subsampling estimator for the spectral density func-
tion and spectral coherence function. Speciﬁcally, these estimators are based on the subsamples

{X(t)7 [sA—f SA + ]} and {Y [SA 8A+ ]} for s = —qr,—qr + 1,...,q7,
where gr = TQ—Z For generahty, we consider estimators based on {X ,t € [CT — %T, cr + dl]}
and {Y(t), te [cT — d— ,cr + } } By dr we denote the length of the time interval and cp is the
midpoint of the observation time. Note that in Chapter [2| we focused on the specific case where
dr =T and ¢ = 0 and in this section we generalize it. We impose the following conditions on cp

and dT.
Assumption 3.2. dp — oo and c¢p/dr — 9 € R as T — oc.

We define the short-time Fourier Transform

d
CT+ crt+—5- L

DcT,dT / X t CT) —12mwt dt, cT, / Y t CT) —12mwt dt,

cT—— cT——

the bifrequency periodogram

ICT dr (w7 V) d Dg;,dT (CU) D2/T7dT (V)7
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and the normalized periodogram frequency-smoothed along this line {(w, V)ER?:v=qaw+ ﬁ}

XY a (Wer dr

a,B ( )CT7dT = gcT/dT (Oé) (3'1)

where

R

and

= / W (v) W(—av) @D qp,

Note that in the general case, the normalizing factor €., /4, () depends on the length of the obser-
vation dp and the midpoint of the observation time cp. Finally, based on the estimator (3.1)), we

define the estimator of the spectral coherence function 7 ( ) for w € R. That is,

AXY fa g(w)CT,dT
,B CTvdT = .
\/f CT,dT fl ,0 (aw + B)CT7dT

(3.2)

In contrast to the spectral density function estimator considered in Chapter [2| in this more
general case, the normalizing factor &, /dT(a) can be zero for some parameters «,cp,dr. The

following result specifies a condition that ensures that the normalization factor is non-zero.

Proposition 3.1. Assume that w is a non-negative function on the interval (—%, %) with compact

support [ 35 2] Then for all a > 0

Eola) = /w(t) w(at + (a — 1)9) dt.

R
For a € (0,00)\{1}, the normalizing factor Ey(a) is non-zero provided that |9 < %% Fora =1,
the normalizing factor Ey(a fR t) dt is non-zero for any ¥ € R.
Proof. See Section O

We now present the asymptotic properties of ]Z(g(w)cT’dT and /v\g(};(w) The following

cr,dr-

properties extend those discussed in Section

Theorem 3.2. Let Assumption n Assumption n and |(1) . i Assumption E 2.5 hold. Let
(o, 8) € KXY be fived. Then for every w € R such that aw + 3 # o'w + B, for all (o/,3') €
KXY\ {(@, B)}, we have

Jim /drha, B (XY @erar = XY @) =0,
provided that hg, = O(d;"), with r € (3,1), and Eepdp(a) #0.

Proof. See Section O
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Theorem 3.3. Let Assumption and Assumption hold. Let (a1, 1), (a2, B2) € KXY be fived.

Then for wi,ws € R excluding points of intersection of support lines, we have

Jim drhar COV( fasts, (@n)er drs Fao's, (wz)cT,dT)

= > > 5 (@) ff?é (—a1wr — A1) Qm) W (o271, 72, a2)

& bt
(11,01)ELYY (45,80)e kXX 9(a1) Eg(az)

X 50&271*72041 604251—72514—524-52 571W1+52—w2

< Wy (e, a2, 71)
YX XY B
X A (e = A1) Qnan) =g RS
(71,61)EKY X (y2,02) XY

X 571 —a2y2001 50&252+52+51*@27231 6w2+’72(011w1+ﬁ1)—527

where

Q(a) = / g(Ng(ar) dX,

Wy(ar, az, as) ///W W (n2) W(arm + aznz + asns)
w e~ 2m(mtn24n3)9 ji2m(a1ni+azna+aznz)? dmy dn dns,
provided that E., /4, (a1) # 0 and &, 4, (a2) # 0.
Proof. See Section O

Theorem 3.4. Fix P > 2. Let Assumption n Assumption m and |(1) ., in Assumption
hold. Let (ay,B1),...,(ap,Bp) € KXY be fived. Then for wi,...,wp € R, excluding points of

intersection of support lines, we have

Tli_{rolo(dTth)Pm cum (AXY (wl)[*] LY (wp)[*] ) =0,

a1,B1 erdrr ) Jap,Bp cr,dr
provided that E., /4, (a;) # 0 for j =1,2,..., P.
Proof. See Section O

Theorem 3.5. Let Assumption Assumption and Assumption hold. Let (o, B) € KXY
be fized. Then for every w € R such that aw + B # 'w + B', for all (o, ) € KXY\ {(«a, B)}, we

have
= d
Virha, (75 @erar = 25 @) =5 No(0, By wi . B),
provided that hq, = O(d"), with k € (%, 1), and &, 14, (a) # 0. The covariance matriz Zy(w; v, B)

s given by

1

Sy(wsa, B) = (3.3)

2
v
Im(ag) - Im(0129,c) R‘e(al%,c) - Re(o-q%)

O |

where
03 =o3(w;a,B) = hm dTth Var (f 8 Y(w )CT7dT> ,

030 = 03 wi, B) = lim drhay Cov (FXY (erars FXY @erar) -
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Proof. See Section [3.6 O

Corollary 3.1. Let Assumption Assumption and Assumption hold. Let (o, B) € KXY
be fived. Let w € R such that aw + B # o'w + B, for all (o, ') € KXY\ {(a, B)}. Assume that
det(Zy(w; a, 5)) > 0, where Xy(w; , ) is given by (3.3). Then

i (X

IFEE W)l

( Jer dr _} é{ﬁ( )D —>J19 )

where
N (I e I T )
f) —

Ni(0, A1 2y (w; a0, B)AT), if 35 (w) #0,

and the random vector [Uy, U]t has a two-dimensional normal distribution N3(0, Xy (w; a, B)), and

the vector Ay € R'? has the form

1
Ay = XY [Re( )f/?( )) Im( a)fg(w»]
[farp (@)
Proof. See Section O

Theorem 3.6. Let Assumption and Assumption hold. Let (o, B) € KXY be fived. Let w € R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY
FXX and FYY . Assume det(Ay(w,aw + B)) > 0, where Ay(w, aw + B) = Dy(w, aw + B; a, B) is an
asymptotic covariance matriz from Lemma . Moreover, there exist first derivatives fi(OX ,, f/ 3/ '

that belong to L*(R) N L*°(R). Then

\/ﬁ (|;y\£i2'3/(w)CT,dT‘ — ”ng(,,@ )‘) _} J\’Y& ﬁ(w)\7

where

XY <\/f U2+U2 ) if 135 (W) =0,

Jhas Y (et )
Ni(0, A2Aﬂ(w, aw + B)A3), if f3F (w) #0,

the random vector [Uy,Us]* has a two-dimensional normal distribution Na(0, Ay(w,aw + B)), and
the vector Ay € RY2 has the form

2 = o y T y )
P ‘ Xy (“)‘2 2f55 (W) 2£1Y (aw + B) ﬁ(w) ‘2
Proof. See Section [3.6 O

3.4 Consistency of subsampling procedure

In this section, our aim is to establish the consistency of the subsampling procedure for spectral

characteristics. Recall that we focus on two cases:
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Case 1. The magnitude of the spectral density function corresponding to the line {(w,v) € R : v =
aw + B}, i.e., for the fixed point w € R, which is not the intersection point of the support

lines, we consider

o~

0=|f2k ()], br= , Orpas = ‘fﬁg(w)m,b ;

a (@)

Case 2. The magnitude of the spectral coherence function corresponding to the line {(w,v) € R :
v = aw + B}, i.e., for the fixed point w € R, which is not the intersection point of the support

lines, we consider
0= |73k W), Or = Ak (W), Orpns = ok (@)sa-

We exclude intersection points because we do not have asymptotic properties for them.

First, note that the subsampling estimators in both cases are not always well-defined for certain

subsamples. As stated in Proposition , the normalizing factor 4 p(a) # 0 for a # 1, if

sA 1l a+1

< — .
b |~ 2]a—1]

The above inequality is equivalent to

_batl _ _batl
20 o — 1| = T 2A|a— 1|

To ensure well-defined estimators, we have to restrict the set of subsamples to those for which the
normalizing factor is non-zero, in order to avoid division by zero. That is subsamples indexed by

s=—Ilp,—lr+1,...,lp, where

D ey (3.4)

Note that for o £ 1 the number of subsamples for which the subsampling estimator is well defined

is 27 + 1. This quantity grows significantly slower than the total number of subsamples 2¢r + 1,
as T'— oo and b = o(T). This is a crucial difference compared to subsampling in spectral analysis
for APC processes (a = 1), where we can select all available blocks (see [51]).

To obtain consistency of subsampling for time series using Theorem it should be assumed
that the time series is a-mixing. However, in our case, this assumption does not hold. For exam-
ple, let X (¢) be a stationary process with an autocovariance function vx(7) taking the maximum
value at 7 = 0, decreasing as a function of |7| and limj; |, 7x(7) = 0. Moreover, assume that
supyeg E|X (1)|?*° < oo for some § > 0. Define Y (t) = X(st) with s > 0. Such processes are
a special case of those presented in Example Note that

Cov(X(t),Y(t+ 7)) =vx(s(t+7) —1t).
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The covariance can be bounded from above by an a-mixing measure between two o-fields (see

Lemma [B.2)). That is,

0 < hx(0) = sup |Cov (X (£), Y (t+7))|

_1 1 5
<ssup | (BLX0P) ™ (BI04 1P) ™ a2 (7))
te
2

245\ 2 ats
<8 SUHIEElX(t)l axy (I7]),
te

where

axy (1) = sullR:{)oz (Fxy(—o0,t), Fxy(t+ 7,+)),
te

with Fxy(a,b) = o ({X(t), a <t <b},{Y(t), a <t <b}). For the definition of function «f(-,-)
see (B.2). The a-mixing function axy is bounded from below by a positive constant and conse-

quently cannot converge to zero. Thus, a milder assumption of weak dependency should be made.

Assumption 3.3. Consider the following assumptions.

(i) Assume that there exists a function h(¢,7) such that for all ¢ € R is a decreasing function of

7|, with supscg [g h(t, ) dT = M for some positive constant M. Moreover, for ¢,7 € R

a(Fxy(—oo,t), Fxy(t +7,4+00)) < h(t,7) <

e

(il) b= 0O(TP?) and A = O(T~?), with p,q € (0,1). Moreover, IZZL}L”T —0asT — oco.

(iii) The asymptotic distributions of \/bhy, (§T,b,5A - 9) do not depend on s = —Ip,—lp +1,....,1lp

The condition is introduced to address the limitations of the a-mixing assumption that
appears in Theorem The condition imposes the convergence rates of the subsample size
b and the overlapping factor A. The condition is used to address the issue of varying asymptotic
distributions across different subsamples. For example, using a rectangular window function as
a data-tapering window, the asymptotic distributions of the subsampling estimators are the same

across all subsamples. In particular, Assumption [3.1] assumed in Theorem is satisfied.

Proposition 3.2. For Case 1, assume the same conditions as in Corollary[3.1]. For Case 2, assume
the same conditions as in Theorem [3.6, Then using the rectangular window function as a data-
tapering window w, the asymptotic distributions of \/bTLb(gﬂsA,b—Q) do not depend on s = —lp, —lr+
1,...,lp, provided that

A, a=1,
I = (3.5)

). a#l

T=b
2

Note that the value of [p given by , for fixed a # 1, is smaller than that in , however,
asymptotically, they behave in the same way.

In the following, we provide an example of processes that satisfy the condition Specifically,
the processes in Example fulfill this assumption.
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Proposition 3.3. Let Z(t) be an a-mizing process. Let L, K € N. Consider two processes
X(t) =g1(Z(s1t),..., Z(skt)), Y(t) = g2(Z(r1t),..., Z(rpt)),

where g1 : RE — R and ¢g» : RY — R are deterministic and Borel measurable functions, and
S1y--,8K > 0,71,...,7 > 0. Assume that there exists some § > 0 such that sup;eg E|Z(1)]?0 < 0o
and [ aéz/(%é) (1)d7T < 00. Then the processes X (t) and Y (t) satisfy the condz’tz’on of Assump-
tion [3.3.

Proof. See Section [3.6] O

The following result states the consistency of subsampling for both the spectral density estimator

and the coherence estimator.

Theorem 3.7. For Case 1, assume the same conditions as in Corollary[5.1. For Case 2, assume
the same conditions as in Theorem . Assume that lp is given by (3.5)). In both cases, under
Assumption[3.3, we have that

(i) If x is a continuity point of JO(-), then LoTvb(ac) — J%(z) in probability.
(ii) If JO(-,) is continuous, then sup,cg ‘L%’b(:v) - Jo(:v)‘ — 0 in probability.

(11i) For p € (0,1), let CeT,b(l —p) =inf{z: LeT’b(m) > 1 — p}. Correspondingly, define /(1 — p) =
inf{z: J%(z) > 1 — p}. If JO() is continuous at (1 — p), then

P (x/ThT (§T - 6’) < ceT,b(l — p)) —1—p, as T — oo.
Proof. See Section [3.6 O

Remark 3.1. From the proof of Theorem[3.7] one can conclude that for a # 1, subsampling converges
more slowly than for o = 1. This is due to the fact that the number of overlapping blocks 2I7 + 1,
given by (3.5)), increases slower to infinity for « # 1 than for o = 1.

Using Theorem [3.7] one can construct, for example, equal-tailed confidence intervals, which are
usually asymmetric. In our case, the limiting distribution of JQQ is symmetric. Therefore, a two-sided
symmetric confidence interval may be a more appropriate choice. To achieve this, our objective is to
estimate the two-sided distribution of v/TTor |67 —6| denoted by JYQ,H' Its subsampling approximation

is given by
1 <

0 _ - ~ ~
LT,b,|~|(IE) = 2 +1 Z ]l{\/%wT,b,jA—@T‘Sm}’ S R)
j=

=—Ip
see |72, p. 72-73|. By JI(?I we denote the law such that J%H — Jﬂ as T — oo. Moreover, Jﬁl(-)
is a cumulative distribution function JIQI' The following theorem states the validity of two-sided

confidence intervals.
Corollary 3.2. Under the conditions of Theorem[3.7, the following are satisfied. Then:

(i) If x is a continuity point of Jﬁ(-), then LGTb H(x) — Jﬁ () in probability.
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(it) If JO(-) is continuous, then sup,cg |LY., H(w) — Jﬁ (z)| = 0 in probability.

(11i) Forp € (0,1), let C%M.'(l—p) = inf{z : L%ij(as) > 1—p}. Correspondingly, define cﬁ‘(l—p) =

inf{z : Jf‘ (x) >1—p}. If Jﬁ(-) is continuous at cﬁ‘(l —p), then
P (\/ThT )67T — 9‘ < c%b’H(l — p)) —1—p, as T — .

Proof. See Section [3.6] O

In the next section, we discuss the construction of confidence intervals based on our subsampling

procedure.

3.5 Subsampling-based confidence intervals

As noted, the asymptotic covariances of the rescaled estimators for the spectral density magni-
tude | é{g(wﬂ and the spectral coherence magnitude Wi}; (w)| have complicated formulas and are
consequently difficult to estimate. Therefore, resampling methods can be employed to construct con-
fidence intervals. This approach is commonly used for various frequency domain and time domain
characteristics, for example, in the case of APC processes (see, e.g. [23, 27, [51]). Using Theorem
equal-tailed confidence interval at the 1 — p confidence level for the parameter § based on our

subsampling procedure is given by

(A ry(1—8) 4 rp (’5))
GT - 79T - 9
Thr v IThr

where 09T7b(-) is given in Theorem Furthermore, applying Corollary E we can construct

(3.6)

a two-sided symmetric confidence interval at the 1 — p confidence level for the parameter 6 based

on our subsampling procedure. Specifically, we have

<A o (1=0) COT,b,|-(1_p)>

O — L0 +

(3.7)
Thr Thr

where C?F@H(') is given in Corollary .

3.6 Proofs of results presented in Chapter

This section contains proofs of the original results presented in this chapter.

Proof of Proposition[3.1. By F{-} and F~'{-}, we denote the Fourier transform and the inverse

Fourier transform operators, respectively. Note that

W) = / w(t) e 2 At = Flw}(v),
R
W(—av) = /w(t) et 4t = 1 /w <—(i> e 2 At = Flwa} (v),
R

«
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where wq(t) = éw (—7) By the convolution theorem, we get the following

819(05) = /]—"{w}(y) . ]:{wa}(l/) €i27r(04—1)m9 dy = /]_-{w % wa} (1/) ei27r(o¢—1)m9 dv
R

— FYF{w s wa}} ((a —1)9) = ;/w(u)w <u—(0;—1>19> ”
R
= /w(t)w(at+ (a —1)0))dt.

R

The last equality follows from the change of variables t = w The supports of functions w(t)
and w(at+ (a—1)9) are given by the following inequalities, respectively, [t| < 3 and |at+(a—1)d| <
%. Equivalently, for a > 0

1 11—« 1 l—«o
<t< V<t<—+

1
S 9.
-2’ 20 @ - T 2a «

l\')\»—t

Therefore, the support of w(t) w(at + (o — 1)) has non-zero Lebesgue measure if

l-« 9| < 1 n 1
a -2 2’
and equivalently,
1 a+ 1
| < 3.8
Thus, £y(a) is non-zero provided that ) holds. O

Proof of Theorem[3.2 Using Lemma [B.4] and similar steps as in the proof of Theorem we have

B[R @eran] =5 [ [ [E[XOT0] v () v (352)
R R R
« ei2mput eiQﬂ(O&M+ﬁ)s iq (%) dtdsdp

i B ][] [ o) ol

7,8)eXXY R

« 6—227T}Lt ez27r(a#+5)5 q (%) dtds d,u dv

B [T [+() o

v,6)eKXY R R

X /w (—SQ;T) e i2m(yr—antd—F)s g dpdv

_ A Z / / St) Wdr (=) W(dr (v — ap +5 = 8))

th §EKXY
% e—zQﬂ(u—V)cT e—iZW(’yV—i—é—au—ﬁ)cT dp dv.

We consider the following change the variables A = h £ and n = dp(p — v). Then

p=w—Ag., v=w-—Ag, — -
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dr(yw —ap+6 — ) = —yn +dr(y — o) (w — Ahg,) + dr(6 — 5) .

=Ndp

= [ B @ Mbag — ) dO) W) W ngg) e e et er i
R R

(a, B) and (v, 0) # (a, B).

Consider the limit of each E(~,d) in two cases: (v,d) =
Let us start with the term corresponding to (7y,d) = (a, 3). In that case, we have np = 0. Using

twice the first-order Taylor approximations, we have
/ ~
XV (w = Mhay — 35) = £ (w0 = 35) = My (F5F) (0 = I = GAhay)
XY XYy XYy ~
= fap W) — 2= (fa3 ) (w—0gk) — Map (farp ) (w — 25 — 0Mhay ),
for some p, 0 € [0,1]. Thus G(a, 8) = E1 — Eg — E3.

For E;, we have

b= / / ok @)aW (W (—am)ere=bmer/dt xdp = £33 () Euyay ().
R R

By and from Assumption and from Assumption and applying Holder

inequality, we obtain

Bl < o [ 23 (= o) a W) W(-am)| dn [ a(n)dn

R R
K
< LY @ = ed) Wi-an)| dy
R
1/2
K 2
< (/\( )@ odh)] dn/W(an)2dn)
R R
1/2
K 1
| I @R [1weanPan) = cuag,
oar 2 J

and

|Es| < th//‘)\( éf};)/(w—%—ﬁ)\th) qA) W(n) W(—an)| dndA
R R

1/2

[ haiax [ W -anan = Cadaz,
~1/2 R

< har ( ci{g’/)/

with some constants C7,Cy > 0.
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Now let us consider E(v,d), with (v,9) # («, 8). Note that

B, o) < |17 /|q |/rW (—ym + dr((7 — a)(w — hap A) + 6 — B))| dnd.

2
Define W, (1) = W) L— sy /2,017 2) () With My = O(d%). Then by Lemma we have

JIW W (a4 dr((y = ) = hay) + 5 - )l
N N 1
— [ s sy (-l n+0 (1),
where nr = dr((y—a)(A—ha, ) +3d— ). Observe that the support of Wiy, (n) and Way, (—yn+nr)

are given by the following inequalities, respectively,

MTSUSMT Mr  nr Mr nr

Therefore, the support of Wiy, (1) Waz, (—yn+n7) has a zero Lebesgue measure if |np| > %(1—{—7),
which is satisfied for sufficiently large T'. Hence, for enough large T’

W@ W dn( - e = o)+ - ilan=0 (&)

To summarize, we obtain

€CT,dT \/dThT‘E[ CT7dT } fmﬁ( )‘
S M( B g ol e 3 E(%ﬁ))

ECT/dT (Oé) ('y,é)#(aﬁ) |gCT/dT (a)|

drhyg
< | |Ea| + | Es| + Z |E(v, B)]
|Eer /ar ()]
er/er (7,0)#(c,B)
dg( —K)

1 1
—_— Cldi5 4+ Cod7F + ng3>
‘gcT/dT(O‘)‘ ( T T T

1
<Cld 4 a2 gz 3”))
Eerar (@)] ’

for sufficiently large T'. Moreover, by Lemma we get imyp_,o0 €0y dp(w) = 0, provided that
K > % O

Proof of Theorem[3.3. From the following properties of the cumulants
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we obtain

dTth COV (_]12(1?2;1 (Wl)cT,dTa }2(2?232 (WQ)CT’dT)) = Dl + DQ + Dg.

The first term D; (related to the 4th-order cumulant) has the form

D= i R/ R/ HZ HZ H! HZ cum (¥ (1), X(22), V(7). X (1))
<w (05) w (g2 w(95) w (M)

> e—i27ru1t1 ei27r(a1u1+51)t2 ei27r,u2t36—i27r(a2u2+ﬁ2)t4

X q (wl “1> q (WQ “2) dty dto dtz dty dpr dpa,
dp
and tends to zero as T'— oo (see the proof of Theorem i.e. the convergence of the term 7, with

v = (v1)).

For the second term D5y, we have

][t
o (1) o (57) ()  (5)

% 671277;;17&1 6127r(a1,u1+ﬁ1)t2 61271’“21‘/3672'271'(0(2u2+ﬁ2)t4

X q (o.;l Nl) q (“’2 /‘2) dtq dtg dtg diy dﬂl d/mv

dTth/ / 2 / i (V / o (1

(71,61)eKYY R 72,52 ’CXXR

% /w <t1;CT> e—i?ﬂultleiQWVltl dtl
T
R

i2m (a1 p1+581)t2 z27rz/2t2 dt

X w

dT €

dr

ta—cr

- —i2m(agp2+PB2)ta —z27r('ygu2+52)t4 dt
T

X w e

[ ()

R

/ t3—cr 27 oty ,—i2m (Y1v1+61)t3 dts
Julesz)-

[ (4)

R
X q <w1 Nl) q (“J?d;”) dvy dvg dpg dpe,
and by Lemma we get

dTth/ R/ 2 / DY / A

(1,01)ELYY R (72,02)ELXX R

Dy =

x drW (dr(p1 — 1)) X drW(—dr(v2 + a1p1 + B1))
X drW (dr(yivi + 01 — p2)) X drW(dr(agpe + B2 + Yyav2 + 92))

> e—i27r(u1—u1)cT6i27r(u2+0c1u1+61)cT

v e—i27r(71 v1+61—p2)er e—i27r(oc2u2 +pB2+y2v2+d2)cT

X q (“1 ’“) q (“i;’fz) dvy dvg dpy dps.
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Let us consider the following change the variables

A\ = Y
P

m =dr(p — 1),
ne = —dp(va + o1 + Bi),

= dr(y1v1 + 01 — pe2),

Then
p1 = w1 — Athay,
= — fr = w1 — Mha, — 4,
3
p2 = y1v1 + 01 — ZZLT = w1 — NnArtha, — 71d + 41 —
vy = —aypn — B — £ = —aqwr + arAhg, — B — C%,
and
w2 — W2 n3+7m , w2 — (’)’16«11 + (51) 73 + Y1
=vyA1L+ + =vA\ + ——— 4+ (7,
hay, drhg, ha, 7 drhg, r

dr(agpg + B2 + yava + d2) = —aeyim — aznz — Yen2 + dr(aedy + B2 — y281 + 02)
+ (w1 — Athay)(a2y1 — ye0n)

Hence,

= —ay1m — cang — o2 + Er(Ar).

_m
/ V1, 61 >\1th dT>
R (m,01)€ ’CYYR

XX
X Z / V2,02 <—041w1 = B1 + atAihg, — %)
(72,52)€/CW]R

x W (n1)W (n2)W (n3) W(—aayim — vamz — azns +&r(A1))
% e—’i27T771CT/dTe—i2ﬂ"l726T/dT€—’i27T7736T/dT ei27r(a2'yl771+'yg772+a2173+§T(Al))cT/dT

x q(A1)g ('71)\1 + L CT) dn dnz dA1 dg
T

- Z Z G(71751a72752)-

(71,01)ELYY (2 ,52)6/Cﬁ

For asy1 = yea1 and aady — y281 + 02 + B2 = 0 and we = yiwy + 61, we get Ep(A1) = 0 and (7 = 0.

Consequnelty,

G(m,01,72,02) = //// 715 51 — Athar — %) 5(27%2 <_a1w1 — b1+ a1 Athg, — ZZ%)

x W ()W (n2)W (n3) W(—azyim — y2mz — azns)
w e~ 2mmer/dr j—i2mnzer [dr p—i2nnzer/dr Si2m(azyim+yenz+azns)er /dr

x q(A1)gq (’71)\1 + 773””71) dmy dng dA; dns

////g N1, M2, A1, n3) dny dng dAg dis,
R R R
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and the integrand function g(n1, 72, A1,73) is bounded by the integrable function which does not
depend on 7. Namely,

||Q||oo q(A1) (W (m) W(n2) W(ns) W(—aayim — vam2 — cans)l.

lg(m,m2, A1, m3)| < H 6 H o

and by Lemma the right-hand side of the above inequality is integrable on R*. Thus, by

Lebesgue’s dominated convergence theorem

Jim G(71,01,72,62) = £, (wi1) ffjﬁ (—a1wr — B1) /Q(/\l)Q(’h)q) d\y

X //R/W(m)W(nQ)W(ﬁs)W(—Oéz’hm — Yam2 — (am3)

% e—i27r(771+n2+773)19 €i27r(042’y1771+72772+o¢2773)19 dny dng dns.

It remains ti show that G(~1,d1,72,d2), for other parameters 71, d1, 72, 02, converges to zero as

T — oo. Note that

HQHoo /FT()\l)d/\h

R

‘G(’)/h(Sl,"YQ,(sQ |< H ’71,51 H 72:52

where

7(A1) = q(\1) ///W(Th) W (n2) W(ns) W(—ooyim — y2m2 — aons + &) | dmy dna dns.
R

Similarly as for the factor E(v,d), with (v,d) # («a, ) in the proof of Theorem from Holder
inequity we have that Fr(A1) is bounded by an integrable function and independent of T'. Therefore,
we can interchange the order of the limit and the integral with respect to A\1. By Lemma [B.6] we
obtain that the terms G(~1, d1,72,d2) tends to zero as T — co.

For the third term D3, the proof of its convergence is similar to the case D, and only a sketch

of the proof is presented. Note that the term D3 can be rewritten as
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v [ ][] [sorseors(xarm)
) o) o)

% e —z27ru1t1 127 (o p1+51)t2 Z27W2t56 2 (o p2+52)ta

xq (52) a (45522) at dty dt dtg dyos dps,

dThd // 2 /wﬁ DS /72,52

(71,01)ECYX R (72,02)ELXY R

% /w (tld—cT) 6—127r,u,1t16127ru1t1 dtl
T
R

% /w <t2 CT> 67,271’ CvllLL1+51 to 2271'1/2t2 dt

R
« /w <t3dTCT> ei2mhats —i27(y2v2+92)t3 dts
R
« /w <t4dTCT) e~ i2m a2u2+52)t46—227r(’y1l/1+51)t4 dt,

62)o (52) ot

X(
dTth// Y[R X [
R R

(71,81)ELYX R (72,82)ELXY R

x drW (dr(p1 — 1)) X drW(—dr(v2 + a1p1 + B1))
X drW (dr(yave + 02 — p2)) X drW(dr(agpe + B2 + yiv1 + 1))

« e—i27r(p,1—V1)0T6i27r(1/2+a1p,1+61)cT

« e—iQW(Vzvz +o2—p2)er e—i27f(062/12 +B24+v1v1+61)er

% q (w m) q (W T“?) dvy dve dpy dps.

Let us consider the following change the variables

— wWiTp
>\1 hap

m = dr(u1 —v1),
n2 = —dr(ve + a1y + 1),
N3 = dp(yav2 + 02 — 12),

Then

1 = wi — Athg,,
v =wi — AMha, — 4,
p2 = —y2onwi + Y201 hay — V261 — Vo e + 02 —

vy = —aqwi + arAha, — B — £
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and
W2 i 4 BRI @t 2(cawr + Bi) —
ha, drhay hay
= -—ma1A + m + (1,
and
dr(agpg + B2 +y1v1 + 61) = —azyene — aenz — yim + (11 — aeyen) (w1 — Atha,)
+ dr(azdz + B2 + 61 — a2y2/)
= —azyem2 — a2n3 — 11 + &r(Ar).
Hence,

// Z / 'ngl (wl - Alth _ %)
R R X<

(71,01)ELY X R

/ 252 —oqwi — B+ arhha, — )
(72,52) ekXY R

x W (m) W(n2) Wi(ns) W(—agyanz — azgns — im + §r(A1))
% efi27rch/dT ei?ﬂngcT/dT 672'271';;20T/dT 67i27r(7a272772fazngf'yleréT()\l))CT/dT

q(M)gq (-’71Oé1>\1 + 7’2;% + CT> dmy dn dXq dns.
T

To obtain the convergence of D3 one has to consider two cases: (i) 71 = agy20q and agds + B2 +
01 — aeyef1 = 0 and wo + Y2 (aywi + B1) — d2 = 0 (ii) otherwise. The remaining part of the proof is
the same as for the term Ds.

Finally, we apply Lemma [B:§| to end the proof. O

Proof of Theorem[3.4] Let us consider the cumulants without complex conjugation, i.e.

cum <f0)2/51 (W1)epdps---s éi}jﬁp (wp)C%dT) .

The proofs for the other cases proceed with minor obvious changes. Note that

XY XY
Cum( a1, 61( CT,dT7"‘ ap,ﬁp( P)CTvdT>

dPhP/ // /Cum (t1,1)Y (t1,2), - 7X(tP,1)Y(tP,2)>

P
% H w ( j1— CT) —i2mpstia H w ( j,2— CT) ez’27r(ajuj+ﬁj)tj,2

X Hq (w] M]) dtl,l e dtRQ dupp ... dup.

From Lemma [BI] we have

cum (X(tLl)Y(tLg), .o ,X(tp,l)Y(th)) = Z Cv1 e CvL7
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where the summation is over all indecomposable partitions v of the table

(1,1) (1,2)

(2,1) (2,2)
(P1) (P2)
and
Cvm = cum (V (t ,7")7 (.]7 ) S Um) 9
with
X(tj71), r = 1,
Vr(tj,r)
Y(tjg), r=2
Therefore,
curn (fji?;l (wl)CT,dTv R é(py,ﬂp (WP)CT7dT) = Z 7:”
v=(v1,...,vL)
where

P
T, dPhP / // /Cvl... » H (t]—,ld—cT) —i2mpits Hw<tjz cT>ei2w(ajuj+ﬁj)tj,2
T

X Hq (“’JT*T“J) iy ... dtpodu, ... dup.
j=1

We consider T, for two cases:
(i) v=(v1),
(i) v = (v1,...,vr) for L > 1.

First, let us show the convergence in the first case, i.e. for 7, with v = (v1). This case is

performed for P > 2, also to obtain the convergence of D; in the proof of Theorems [2.2] and [3.3]

Denote Vap = (X,Y,..., X,Y). Then by (iii)| of Assumption
—_—
2P
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1 P
To = dphp////cum (X(tLl),Y(tLg),...,X(tp71),Y(tP72))
T dT RP R2P
P P
% H w <tj,1d;cT> €_i2ﬂ—ﬂjtj’1 H w (tj,2d;cT> ei27l’(aj/.tj+ﬁj)tj’2

J=1

XHq(wj HJ) dtll...dtpgd,ul d[LP

dPhP / // / Z / /f 2P V117V127V217'- y Vp— 127VP1)

kexVepr "

i27r<V1,1t171+"'+VP,1tP,1+q)k2P(Vl,laV1,2:V2,17~-~7VP—1,27VP,1)tP,2>
(& dl/l’l e dl/p71

P
w [ Er=er ) pmi2mpstia Hw tiz=er ) gizm(a;m;+B;)ts.2
dT dT
Jj=1

—-

<
I
—_

X

M T~

q <wfld;“]) dt11...dtppdpr ... dup

dphp / // /f Fvi,vie, o, VP-12,VpP1)

dr gekVar R2P—1

t — . .
» H/ iaer CT o275Vl 4y
R

~ m
|
—_ H

w (%) ei2m(vj2ta;ui+55)t),2 dt;

—_

X
A

. %
w (tP,Z;CT> 6227T(CYP/JP+6P+¢']C2P(V1,1:V1,27V2,17--~’VP71,2:VP,1))tP,2 dtP’Q

X

q (“’{f“j> dviidrvipdray ... dvp_iadvpdys ... dup.

dr

<
Il
—

X
:’U =

Thus, by Lemma [B-4]

|T|< 1 V2P

7 3 Vel )

P
R2P-1

X HdT (W (dr(pj — vja))l % H dp [W(=dr(vjz2 + ajp; + 5j)l
j=1 j=1

X dr ‘W (dT (aPNP + Bp + B2 (V11, V12, Va1, -+ - VP12, VP,l))) ’
dl/1’1 dI/LQ dl/g,l e dl/p_l,g dl/p}l d,ul NN d/ﬁp.
Our goal is to apply Lemma [B:10] To do this, first, we consider the following change of variables

wWi—p -
N =4t j=1,2,....P
n?j—I*dT(/’tj_Vj,IL j:1727"'7P7

M2 = —dT(V]’,z + o +/6j)7 Jj=L12,...,P—-1
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Then
,uj:wj—Ajth, j:1,2,...,P,
Vi1 = wj — Ajhay — T, j=1,2,...,P,
Vo = —ajwj+aj)\jth _Bj — %, j=12...,P—1.
Hence,
1 2P—1
V
RS - / /- /H\q T )
T k=(y1,..y2p—1,5)ELY2P R2P-1
X [W(T(AL, ..., Apyny - sm2p—1))| dAr... dApdnr ... dnop1,
where Y(A1,...,Ap,m1,...,m2p—1) is a linear combination of ny,...,m2p_1, i.e.,
P—1
YAty AP, - 2p—1) = dpap(wj — Ajhay) + drBp +dr > Y251 ( = Ajhar — nij:)
7=1

+dr Y (—ajwj + ajAjhay — B — 772’) +drd

2P—1
==Yy +ér(h, e,
j=1
and {7(Aq,...,Ap) does not depend on 7y,...,m2p—1. Finally, by Lemma we obtain that
To| = O(d7" ™) and

P/2 P _KkP/2-P
(drha,)"? | To| = O (th/2dT /2+1> —0 <dT /2 /2+1> ‘

Thus, for P > 2 the above term tends to zero since —kP/2 — P/2 + 1 < 0, ant it is equivalent to
> 222 which is true for & € (0,1).

Now7 let us show the convergence for 7, with v = (v1,...,vr) and L > 1. Without loss of
generality, assume that v, and v,y hook for n = 1,2,..., L — 1. That is, for n = 1,2,..., L — 1,
there exist (Jp,rn) € vy and (J),q,7),11) € Ung1 such that J,, = J; | and r,, # 7], ;. Moreover, we

can assume that (P,2) € vy, and denote J, = P, rp = 2.
By of Assumption we have

Um, VUmn, Um?

C = Z /fV(Um (l// ) 7427T<Z<j ryevl, Vi, rt, T+¢°V(Um)(l’vm)tJm ?“m) du/

km €V (vm) Rim—1
where V(vim) = (V}, (4,7) € vm), vp = Om \ {(Jm,m)}; My, = (Mjr, (4 7) € vp,), and

V(vm
@kév )(V{,m): Z YiaVir + v, -
(Gr)€vr,

Moreover, by f,:; @m) and KKV Em) we denote, respectively, spectral cumulant functions and set of

support lines corresponding to cumulant C,,,
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Note that

7:’:dPhP/ // /H Z / /f’“"vm o)

H <wg NJ) dtl,l o dtR? duq, ... dup.

L V(vm), 1
x H 67,271' Z(J r)Evl, Vjr ]’V‘+¢) ( vm)tJm»”‘m> qu,)
m=1 "
P
% H w (tj 1= CT> —i2mpits 1 H w <t7 2= CT) ei?n(ajuj-i-ﬁj)tjg
7j=1
P

Denote

Q= Bjr =

and 141 =2and 26 1 = 1. Hence,

gy, S S [ [ [T e T )

di eKkvV)  kpekVr) R2P—L

X H / (tJm dr CT> GZZW(aJm Tm‘u‘]m+BJ,m 7"m+(I>V(vm)(VUm))tJm Tm dtJm: ™m

dr

L
X H H /w (t”di;cT) 127 (0 ity +B, v 05,0 )t e dt;, dl/{,1 ...u{,Ld,ul ... dup.
m:l ]7T)€U7YL R
Applying Lemma [B.4] we get

TS X o 2 I [ / |- /H (52)

AT gy eV 1) kpekVwp) m=1 R2P—L

x H dr ‘W ( dr <aJm,7"m,U'Jm + B irm + ‘I)V(Um)( L,,J))‘

X H H dr |W(—dT(O£j77~/,Lj + ﬂj’r + l/j’r))| dl/:)1 ... dI/I/)L dﬂl ... d,up.

m=1 (j,r)evy,

By the following change the variables
Njyr = —dr(ojrpij + By + Vir), (j,r)yev,,m=1,2...L,
we have

Vir = —Qjrptj — Bjr + n” (j,r) €vl,,m=1,2...L,
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and

ey 5o % L [Tl

IT }ekVeD  gpekVvn) m=1 R2P-L

X H dy |W (=dra s, pp it + Ym0 1, |

L
<[] TI Wldn, ... dn,, du,..., dup,

m=1 (j,r)ev!,

where for m =2,3,...,L

Yo (s M) = =A0B i — v Y Vjrtjir — A1y,

(Jr)evy,
= _dTBJm,rm - dT Z Yir (7 Ol — Bj,r) - dT(SUm
(dr)ev), (39)
= =Bl — D Yirlir+dr Y Vs +dr Y B — dré,,
(Jr)€vy, (gr)evy, (r)evy,
Z Vi + AT, 1 e 1 @1y T g’fl“m)(ll';m)y

(dr)€vy,

and &Erm) (py,, ) does not depend on 7, . The last equality in (3.9) follows from the fact that
(Jm—1,Tm—1® 1) = (J],,7.,) belongs to v},

Now let us consider the following change the variables

)\m = _dTaJm,rmNJm + Tm(n':)m7l~‘l‘;m)7 m = 17 27 s 7L -1 (310)
Then
Tm ’ifm’ {Um —Am —
wy = (ZTaf;,mi Com=1,2...,[—1,
and

L
Yo, 1, ) = Z YirNjr +droy, | e @1y, + S(T )(HZL)
(Jr)€vy,

QXJr _q1,mp L
S Aty + S (], ) = A )+ EE ).

) AJp_1rp—1
(Jr)evy

By recursively combining (3.9) and -, we get

dTaJL rpMJg +TL nvL7lJ‘vL Z Z Qjrjr + Z b AJm +€T l'l'vla"‘7l‘l"luL7/’LJL)7
=1(jr
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with some constants a;,, (j,7) € v),,,m = 1,2,..., L, and constants b, m = 1,2...,L — 1, and

§r(Myys - - - My, , prg,) does not depend on 7y, , ..., 1, . Therefore,

TSy 2 > I / 1]

dr kiexV (@) kLGICV(”L)m 1 (O
o) T o)
L(jr)€vy,
L
x W Z Z aJTan+Zb AL, +€T(l"’v17"-7u’;L7,uJL)
m=1 (j,r)€vr,

L _
< I1 W (nj.r)l H WAL,

m=1 (j,r)€v},

dn;)1 dn;L dpgl,..., du;L dpg, dhy, ... dAy, .

From Lemma we have

/// / Z 3 aJTnJTJer AL €0 (B, ﬁ

RL-1  R2P-L m=1 (j,r)ev}, =1 (j,r)

H W (n;.0)|
€V,

H (ALl dnl, ... dn), Xy, ... dXg,, <C,

with some positive constant C' > 0. By the above inequality and the following change the variables

Wi — g ,
)\j:JiM] j#Jl,...,JL_l,
ha,
we obtain
Cllallss”! : :
i< i > e > il [ fadu TT T a0
dr  gekVD)  gpekVvn) m=1 RP-L+1 m=1 (j,r)€v),

Consequently,

(dTth)P/2|7;| -0 <d;P/2+1h5T/27L+1) ’

The above term converges to zero as T' — oo provided that —P/2+1— k(P/2— L+ 1) <0 and it
is fulfilled for all x € (0,1). Namely, the condition —P/2+1—k(P/2—L+1) <0

e for L = P/2+ 1 is equivalent to P > 2,

e for L < P/2+ 1 is equivalent to

1>/€>ﬂ
P/2—L+1

and it is fulfilled for all x € (0,1) since % < 0.
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e for P/2+1 < L < P is equivalent to

—P/2+1

0 [
SRS PR L+l

and it is fulfilled for all x € (0, 1) since % > 1.

The above and Lemma [B-8| complete the proof. O
Proof of Theorem[3.5. Observe that

Varhay (F @erar = F25% @) = orar @) + Uepar (@),

where €., 4, (w) is a bias term

Eep,dp (w) = dTh’dTE (]E{g(w)CT,dT - a)fg("”) ’

and
UCT:dT(w) =V dTth (ﬁ{g(w)CT,dT —-E [/Z%/(W)CT@T]> :

From Theorem , we know that e, 4, (w) converges to zero as T — oo. Therefore, it remains to
prove that

Re (Uey,ar (W)
I (Uerdr (w))

]JQNMQZMMMB»

Obviously, the first moment of U, 4, (w) is zero. From Theorem we get that its asymptotic
covariance is finite. Now we focus on the higher-order asymptotic cumulants. For any constants

c1,y...,cp € Rand mq,...,mp € C, we have
cum(cl(Zl — ml), ey CP(ZP — mp>) =C...Cp cum(Zl, ey Zp).
In addition, for P > 2, from Theorem we get that the P-th order joint cumulant

cum (U[*]

cr,dr

@), O, (w))

tends to zero. Following the discussion provided in Section[A3] we obtain the asymptotic normality
of Ueydp ().

Finally, let us consider elements of

Cov( Re (UCT,dT (w)) ;Re (UCT,dT (w)) Cov( Re (UCT,dT (w)) , Im (UCTydT (w))
Cov( Im (UCT,dT (w)),Re (UCTydT (w)) Cov( Im (UCT,dT (w)),Im (UCT7dT (w))

For a complex number z € C, we have

Rq@:Z;? Tm(z) = 2=~ (3.11)
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Thus, by (3.11]), we obtain

Cov( Re (Uegar (@) Re Ve (@) )

dThd v, = v,
— Cov W)er,dr + fa B8 ( W)er,drs fé{g(w)cT,dT + g{g(w)CT,dT) J

Cov(Re( Uer a7 (@)1 (Uep a7 () )
dTth Co

<

7 CT,dT + f ( )CT,dT) féf%/(w)cT,dT - féi%/(w)cT,dT> 9

Cov(Tm < CTdT<w>>,Im< Uer.ar >>)
drh v, < = ~v, .
= — 9 Cov (FXY @eerar = Y @erans o @erdr = FXY @ear ) -

Next, using bilinearity of covariance, Theorems and (3.11)), we get

Re(0?) + Re(al%’c)

(R 0, B )

T—o0 2 |
| Im(0?) — Im(03 )
IJEI;OCOV<R€ (Uey dr(w)), Im (UCT’dT(w))> - 2 77
. Re(0] ) — Re(oy)
Tll_I}I;QCOV < Im (UCT,dT (UJ)) ’ Im (UCTVdT (w)) ) - 7 2 ’

where

0’% = 0129(‘*1 04718) = hm dTth Cov <fa5 ( )CT7dT’f§g(w)CT,dT> )

012976 = 0129 (w;a, B) = hm dTth Cov( 0B Y(w )CT’dT,!)/‘Zfé/(w)C%dT) .

Observe that 05 is computed in Theorem and 01297 . can be calculated analogously.

Proof of Corollary[2.3. We apply the reasoning presented in [51].

For the case where é(g (w) = 0, the thesis follows from the continuous mapping theorem, i.e.,

Jarha, N <«/U12 + U22> :

where £ ([U1,Us]T) = N2(0, Zy(w; a, B)).
For the case ffg (w) # 0, we apply the delta method for the convergence in Theorem and
for the function g(z,y) = /22 + y? which is differentiable at

(Re (£ (@) m (127 @)

Note that A;3y(w;a, B)AT > 0 if det(Zy(w; a, B)) # 0. O

fé{g(w)CTydT

Lemma 3.1. Let Assumption and Assumption hold. Let (v, B) € KXY be fized. Let w € R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY
FXX and FYY . Moreover, there exist first derivatives fXX/, f{gﬂ that belong to L*(R) N L>®(R).

B. Majewski Statistical inference for harmonizable processes



3. Subsampling procedure in spectral analysis 58

Then
[ Re(FXY @erar) | [ Re(FXY () |
XX XX
Vdrhg, foq’/ly er.ta - 1{/03/ ) L5 Nu(0, Dy(w,v; a0, B)),
f0,1 (V)er dr 1,0 (v)
| (XY @epar) || MUY @)

where elements of Dy(w,v;a, B) can be computed by Theorem .

Proof of Lemma[53.]]. It is a natural generalization of Theorem [3.5 to the multidimensional case,

and the proof is analogous. O

Proof of Theorem[3.6. We apply the reasoning presented in [51].
For the case where fgg(w) = 0, the thesis follows from the continuous mapping theorem,
the consistency of the cross-periodogram frequency-smoothed along the line, and Slutsky’s lemma.

Namely,

FXY (@)erdr JUZ 1 U2
Virha o (@) 5L L ,

CTvdT‘ >~ XX YY
\/fng (w)CTvdT}ﬂgfly(aw + B)CTvdT 1,0 () 1,0 (aw+5)

where £ ([Ul, UQ]T) = N2(0, Ay(w, aw + B)).
For the case fé(g(w) # 0, we apply the delta method to convergence in Lemma and for the

function
:1:2 + y2
IR R) 7t = T =
9(z,y,2,1) N
which is differentiable at
(Re (f25 (W), fio (), fio (aw+ B), Tm (f35 (w))) -
Note that AsAy(w,aw + B)AT > 0 if det(Ay(w, aw + B)) # 0. O

Proof of Proposition[3.2 Observe that dependence of the asymptotic distributions on the parameter

lim % = 1) appears only in the asymptotic covariance matrix, and precisely in the following factors

T—o00

— / W ()W (—an)e?m @ Dm gy,
R

and
Wy (a1, a2, a3) ///W W (n2) W(aim + aznz + azns)

« e~ i2m(n+n2+n3)Y gi2n(arm+aznz-+asns)d dny dno dns.

Thus, it is sufficient to show that Ey(a) and Wy(a, b, ¢) do not depend on 9. For a = 1, the proof is
straightforward. For a # 1, we have |9 < 3, since ’%| < % for s = —lp,=lp +1,..., 1.

From Proposition the normalizing factor takes the form

A0 [+ 0522, 4 0],

N |—

a

sio=|-
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where || - || denotes the Lebsegue measure on R. Note that

Ey(a) = [[mow (1), hup(1)] N [hiow(@), hup(a)]]l,

where Aiow(7) = —5 + 19(1;@ and hyp(2) = o= + (1 ) For z > 0 and [9] < 3, the function Aoy ()

is increasing and hyp(z) is decreasing. Then

1
max (1,a)’

&g9(a) = [|[[how (max(1, a)), hup(max(1, a))][| = [hup(max(1, a)) — hiow(max(1, a))| =
As for Ey(a), we can show

Wy (a1, az,a3) = /w(alaj + a1 — 1)) w(agx + ¥az — 1)) w(asz + ¥(ag — 1)) w(x) dz,
R

and hence

Wey(ar,a2,a3) = ||[Mow(max(1, a1, az, az)), hup(max(a1, az, asz))]||

= |hyp(max(ai, a2, a3)) — hiow(max(1, a1, az, az))|
1
max (17 ai, az, (ZS) '

[l
Proof of Proposition[3.3 Note that
Fxy(a,b) =c({X({#t):a<t<b},{Y(t):a<t<b})
K L
Co ({Z(t) ‘te U [ska, skb)] U ria, rib] })
k=1 =1

Co({Z(t):t € min{si,...,sk,r1,...,rL}a,max{s1,..., Sk, 1,...,7}b|})

= fZ(gavqb)a
where

q =min{si,...,sx,71,...,7L}, g =max{s1,...,SKk, 1,...,TL}.
Finally, using Lemma we have for t,7 € R
a(Fxy(—oo,t), Fxy(t+ 7,+0)) < « (fz(—oo, qt), Fz(q(t + 1), ))
2i5 QL& B B
<8 (supl20las) " a2 (- e +ar) = e
ue
and
5 1 5
/a?é ((g—t+gr)dr = q/a?‘s (1) dr < 0.
R R
O

Proof of Theorem[3.7. The proof is similar to the proof of Theorem 4.2.1 in [72]. However, it requires
some key changes. Proof of (i): Define
It
1
2lT + 1 Z {\/bh (HT b Aj—e <ac}

Jj=—lr

Upy(z) =
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Observe that
1

2l +1 Z {\/W(GTbAJ—G)-&-\/W(@ 9T)<96}

Jj=—lr

LY y(x) =

Then for every € > 0, we have
UYG’,b($ - 6)]lET,b < L%b(x)]lET,b < U%b(l‘ + 5)7

where
Erp = {\/%(9—%) < 36}

The probability of the set E7 tends to one, and hence
Uzg“,b(x —¢) < Lg‘,b(x) < U%b(x +e€)

with probability tending to one. If x + ¢ are continuity points of J%(z), then Ur(z + €) tending to
J%(x & ) in probability implies that

J(x—e)—e<Li(x)< S (x+e)+e

with probability tending to one. To obtain L%b(x) — J%(z) in probability, we take ¢ — 0 such that
x + ¢ are continuity points of J?(x). Therefore, it is sufficient to show that U%b(m) converges in
probability to J?(z) for every continuity point z of J(z).

Observe that

E[U8,0)] = 55 S o)

Jj=—lr
where J9, A ;() is the cumulative distribution function of YA ;- We know that A ; () converges
to J%(z) as T — oo. Consequently, E [U%b(x)} converges to J?(z) and it remains to show that
Var (U4.(z)) tends to zero as T — co. Let

To5 = 14 /oty (Gr.0—0) <o}
and
1 lp—7
Aipr = 27 +1 gZO Cov (Ib,j’Ibyj'H')'
Thus,
lr—j
Var (U%b(x)) T Z Z Cov (I, 1) = 17 Z N Cov(lyyDjir)
T Iy — + S —
T T TT T .7
) 21T+1 1 b1 2lT+1
- N A= A A, A | = Vi + Vo,
=0 =1 T=>b
where

2lr+1

b—1
1 1
= A A T ; = A T-
Vi 2lT+1< ’T’°+TZ:1 lT’) V2 2 + 1 Zb e,

T=
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One can easily notice that [V3| = O (%) and it converges to zero as T — oo. For Vs, we use
Lemma and the condition |(i)| of Assumption Then for 7 > b

|Cov (I, I j+r)| < 4o (f({go,jmrb/z)a -7:(X(J£T)Afb/2,+oo)) < 4h(jA+b/2,7A =),

and hence
4 p+1lp—1 4 lr—blp—j
Vo] < BT 1e Zb Z)th—l-b/Q TA—b) = Wzozbh(jAer/Z,rA—b)
<WZZ}UA+6/2 A —b)
=0 7=b

lr—b [eS)
(2l + 1 2 Z jA"‘b/Q?b(A_1))+/h(jA+b/2,TA—b)dT
T
b

Finally, by the change of the variable u = AT — b, we get

lr—b o0
Vel < HQZ h(GA +b,—b) + / hGA + b, u) du | |

and hence

Alp—b) (1 M
< Nt 72 I
Vel < (2l +1)2 (4+ A)’

and V5 converges to zero as T — oo.

Proof of (ii): By the Heine definition of the limit of a function, sup,cp !L%b(x) - Jg(x)’ —
0 in probability if for every sequence {T),}, such that 7,, — oo as n — oo, the sequence
SUD,cr ‘LeTn,bn (z) — J%(z)| tends to zero in probability as n — oo, where b, = O(T5). Finally,
similarly as in Theorem 3.2.1 in [72] one can prove that sup,cp ‘Lgﬂmbn () — Je(m)‘ — 0 in proba-
bility as n — oo.

The proof of (iii) follows from the Heine definition of the limit of a function and the same

reasoning as used in Theorem 3.2.1 in [72]. O

Proof of Corollary[3.9 It follows immediately from Theorem and the continuous mapping the-

oremmn. n
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CHAPTER 4

SIMULATION STUDY

In this chapter, we conduct simulation studies to illustrate our theoretical findings presented in
Chapters [2] and [3] In Section we introduce the models used in simulation studies. In Sec-
tion we present the simulation results examining the mean-square consistency of the normal-
ized frequency-smoothed periodogram along the line, addressing both the cases when the line is
known and when it is unknown. In Section [£.3] we analyze the performance of subsampling-based

confidence intervals for the spectral density and spectral coherence functions.

4.1 Models used in the simulation study

Let Z(t) be the Ornstein-Uhlenbeck processes defined by the following stochastic differential equa-
tion

dZ(t) = —Z(t)dt + AW (1), tER, (4.1)

where {W(t), t € R} denotes the Wiener process, see [40, Chapter 6]. It can be shown that Z(t) is
a stationary process. Its mean function is pz(t) = 0 and its autocovariance function is yz(7) =

%6_‘7‘. Consequently, its spectral density function has the form ¢z(w) = m. Furthermore,
in [4] it is shown that Z(t) is geometrically a-mixing.

We perform simulation studies using the following models.

=

M1 : A process X (t) given by X (t) = Z(t) + Z(st) cos(2mAt) with s = 5 and A =

=

M2 : A process X (t) given by X (t) = Z(t) + Z(st) cos(2mAt) with s = 1 and A =

M3 : Two processes X1(t) and Xo(t) given by X1(t) = Y (s1t)e®®™t and Xo(t) = Y (sot)e??mm2t
where Y (t) = Z(t) cos(mit), with s1 = 3, s2 = 1, m = 185, 12 = 25, ¥ = 3.

The models M1 and M2 differ in the parameter s, which affects the slope of the support lines.
For the spectral properties of models M1 and M2, we refer to Example The model M3 is
discussed in Example while the properties of Y (¢) can be found in Example
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To perform simulations for models M1-M3, first, we need to generate Z(t) and Z(st) with
s~ € N. Since Z(t) is a solution of the stochastic differential equation (4.1)) we can use the Euler-
Maruyama scheme [57, Section 2.7] to generate it. Let N € N be a number of samples and 6 > 0 be
a discretization step. The observation interval is [—%, %] with "= (N —1)é > 0. First, we approx-

imate Z(t) = Z(st) at points t = —L + snéd using Zy, given by

Zn:(l—Cs)Zn—l—*—\/gEn, n=12...,s(N—1),
Zo ~ N(0,3),

where €1,...,6,y-1) are independent random variables with the standard normal distribution
N(0,1). Then Z(t) is simulated as Z,-1,,.

In Figure [{.T] we present a single trajectory of the processes considered in models M1 and M2.
Both trajectories are derived from the same underlying trajectory Z(t), which is also shown in the
graphs. Figure illustrates a single trajectory of the real part of the processes Xi(t) and Xs(t)
considered in the model M3 along with the trajectory of Y (¢).

4.2 Validation of mean-square consistency

In this section, we analyze the mean-square consistency of the frequency-smoothed periodogram
through a simulation study. We begin by examining the scenario in which the support lines are
known, considering models M1 and M2. Then, we investigate the case where the support lines are

estimated, considering model M3.

4.2.1 Known support line case

For both models M1 and M2, we set the discretization step § = é, and the number of samples
N takes values in {1024, 2048, 4096, 8192, 16384 }. The length of the observation interval is given by
T = (N —1)0. As the data-tapering window w we consider the rectangular window function, while
the frequency-smoothing window ¢ is the Hann window (see Table . The frequency-smoothing
bandwidth is set to hy = 1—16T*2/ °. The frequencies at which the spectral density functions are
estimated are given by wév = —% + ﬁ for j =0,1,..., N — 1. Note that wév € [—%, 2%] for
j=0,1,...,N—1.

We consider the estimation of the spectral density functions fjf é( (w), where o and 3 denote the

slope and intercept of the support line, respectively. We focus on the following support lines:
L1 : {(w,v) €R? : v =w},
L2 : {(w,v) €R? : v =sw+ A},
L3 : {(w,v) €R? : v =51 w+ N},

L4 : {(w,v) €R? : v =w+2)},

B. Majewski Statistical inference for harmonizable processes



4. Simulation study 65

M1

0 5 10 15 20 25 30

— Zt) — X(t)]

Figure 4.1: Blue line: single trajectory of the processes X(t), t € [0, %], with 6 = 3% and N = 2048.

Orange line: single trajectory of the underlying trajectory Z(t), t € [0, %], with 6 = % and N =

2048. The top panel corresponds to model M1, and the bottom panel corresponds to model M2.

M3j=1

. “ A ﬁVWdW*MvM‘MMW|““LMW mvw

0 5 10 15 20 25

M3 =2

E *‘NM“ ”u"” u%%* “\*' il

0 5 10 15 20

— Y ——-&uq

Figure 4.2: Blue line: single trajectory of the real part of X;(t) for ¢ € [0, %], with § = % and
N = 2048, considered in the model M3. Orange line: single trajectory of the underlying trajectory
Y(t),te [0 ] with § = @ and N = 2048. The top panel corresponds to the case j = 1, and the

bottom panel corresponds to the case j = 2.
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where the values of A and s are given in M1 and M2 (see Section [4.1]).

To evaluate the performance of the frequency-smoothed periodogram ]ﬁ(g (w) for a fixed w € R,

a,

we examine its expected value and standard deviation, denoted by
B(T;w) = E (X5 ),

STD(T;w) = (Var (2{?(“)))

N|=

Recall that T denotes the length of the observation interval of X (¢). In other words, faXé( (w) is
calculated based on the sample observed over an interval of length T'. Moreover, we investigate the
mean-squared error averaged over frequencies. Note that as T increases, the number of considered

frequencies wJN also increases. To ensure a consistent measure of accuracy for different values of T,

we consider the same set of frequencies for each T'. Specifically, we choose the frequencies wjl-024 for

j=0,1,...,1023. We define

1023

2
MSEmean(T) = 1057 > E
=0

(w1024)

XX 1024 XX
a,B (Wj ) — J

a,B

By Monte Carlo simulation (using M = 500 Monte Carlo trials), we obtain estimates of E(T;w),
STD(T’;w) and MSEpcan(T'). Their estimates are denoted by E(T; w), S/T\D(T; w) and @mean(T),
respectively.

Note that the considered spectral density functions are real-valued (see Example and hence,
for simplicity of presentation, we decided to omit the estimation results for their imaginary parts.
In Figures and we present the results for models M1 and M2, respectively, focusing on the
estimated expectation E(T;w) and the estimated standard deviation S/T]\)(T ;w). Specifically, the
figures display E(T;w) as a blue dashed line, along with the range E(T’; w) iS/T\D(T; w), represented
by a blue shaded area. Additionally, the theoretical values of the spectral density function are shown
as a green solid line. Each column in the figures corresponds to a different support line L1-L4, while
each row represents the results for a different value of N (consequently a different value of T'). For
clarity, we restrict the simulation results to frequencies within the range around the maximum values
of the spectral density functions, that is, to the interval [—0.5,0.5]. It is evident that for any line, as T’
increases, the estimated expected values E(T; w) progressively approach the true values. In addition,
the range covered by one standard deviation S/TT)(T;w) decreases. It indicates a reduction in the
mean-squared error of the estimator. To visualize this trend, Figures and (corresponding to
models M1 and M2, respectively) show the estimated averaged mean-squared error @mean(T ).
This analysis further illustrates the decrease in the mean-squared error of the frequency-smoothed
periodogram along the known support line as T increases, demonstrating consistency with the
theoretical results (see Corollary .
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Figure 4.3: Results for M1 (the case of a known line). Green solid line: the theoretical values of the
spectral density function. Blue dashed line: the estimated expectation E(T ; wjv ). Shaded blue area:
the region within one standard deviation S/T\D(T ; wjv ). Each row represents a specific value of N.

The subsequent columns (from the left) correspond respectively to lines L1-L4.
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Figure 4.4: Results for M1 (the case of a known line). The estimated average mean-squared error
@meam (T) as a function of T'. The subsequent columns (from the left) correspond respectively to

lines L1-L4.
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Figure 4.5: Results for M2 (the case of a known line). Green solid line: the theoretical values of the

spectral density function. Blue dashed line: the estimated expectation E(T ; wjv ). Shaded blue area:

the region within one standard deviation S/TT)(T ; wév ). Each row represents a specific value of N.

The subsequent columns (from the left) correspond respectively to lines L1-L4.
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Figure 4.6: Results for M2 (the case of a known line). The estimated average mean-squared error

@meam (T) as a function of T'. The subsequent columns (from the left) correspond respectively to
lines L1-L4.
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4.2.2 Unknown support line case

For the model M3, we set the discretization step § = %, and the number of samples NV takes values
in {1024, 2048, 4096, 8192,16384}. The length of the observation interval is given by T'= (N — 1)0.
As the data-tapering window w we consider the rectangular window function, while the frequency-
smoothing window ¢ is the Hann window (see Table . The frequency-smoothing bandwidth is set
to hp = %T‘l/ 3. The frequencies at which the spectral density functions are estimated are given

byij:—%Jr(Niil)é for j =0,1,..., N — 1. Note that w) € [—55,55] for j =0,1,...,N — 1.
We consider the estimation of the spectral density functions f;%X? (w), where a and 3 denote

the slope and intercept of the support line, respectively. We focus on the following support lines:

L1 : {(w,v) eR?: y—i—f(w—m)+n2},
L2 : {(w,y) cR2 . V:%(W7n1)+1’]2751>\},

where A = 2¢). We assume that A is known and s1, s2, 71, 772 are unknown.

Let us demonstrate the estimation of the support line using the procedure outlined in Sec-
tion [2.2.3] Specifically, we analyze the realization of X;(t) and X5 (t) over an observation interval of
length T = 163836. The procedure assumes that the cycle autocovariance frequency and the cycle
conjugate autocovariance frequency of Y (¢) are known. Both are equal to A = 21. The first step is to
find the cyclic autocovariance frequency A; = s;A of X;(t) and the cyclic conjugate autocovariance
frequency v; = sjv+2n; of X;(t), for j = 1,2. Note that the value of A = 2.6 is chosen to make this
problem more difficult, because the frequencies A1, A2, 71,72 do not belong to the set of frequencies
considered {ij :7=0,1...,N — 1} and cannot be exactly represented on a computer. The digit
with a horizontal line above represents an infinitely repeating digit in the repeating decimal.

Figure[4.7] presents the estimated magnitude of cyclic autocovariance functions and the estimated
magnitude of cyclic conjugate autocovariance functions of X (¢) and Xo(t) for a lag parameter 7 = 0.
In addition, the identified frequencies A1, A2,y1 and 79 are marked with red 'x’. The shaded gray
area in the top panel represents the frequency range in which the cycle frequencies are searched,
that is, the range [A — 2, A+ 2]. The bottom panel provides a zoomed-in view restricted to this range
[A — 2, A + 2]. Having estimates of A1, A2,71 and 72 we compute the estimates of the parameters
s1,82,m1 and 79, and consequently we can estimate the slopes and intercepts of L1 and L2. The
results are summarized in Table .11

Now, we analyze the performance of the periodogram frequency-smoothed along the estimated
support line. Note that the considered spectral density functions are real-valued (see Example
and hence, for simplicity of presentation, we decided to omit the estimation results for their imag-
inary parts. We follow the same approach as the Monte Carlo procedure described in the previous
section. We use M = 500 Monte Carlo trails. We consider E(T;w), STD(T;w) and MSEmean (1)
with ]‘Z(Z{ (w) replaced by /?;7/ (w). Here, a, B denote estimators of «, 3, respectively. For each Monte
Carlo trail, the estimation of line parameters follows the same method as applied above. Figure [4.§]

displays the results in the same manner as Figures and For clarity, we restrict the simulation
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results to frequencies within the range around the maximum values of the spectral density func-
tions, that is, to the interval [—1.5,1.5]. Note that the estimated expected values E(T;w) gradually
converge to the theoretical values and the estimated standard deviation S/T\D(T; w) decreases as T'
increases. Furthermore, Figure shows the estimated averaged mean-squared errors @mean(T)
in the same way as in Figures [£.4] and [£.6] This result illustrates that as T increases, the mean-
squared error of the frequency-smoothed periodogram along the estimated support line decreases.

It is consistent with Theorem [2.3!

3

Cyclic autocovaraince functions Cyclic conjugate autocovaraince functions

4 4

2 L L Z L

0 0 -
05 10 15 20

25 30 35 40 45 05 1.0 15 2.0 25 30 35 40 45

Figure 4.7: Identification of cycle frequencies. Blue line: the estimated magnitude of cyclic (conju-
gate) autocovariance functions of X (¢). Green line: the estimated magnitude of cyclic (conjugate)
autocovariance functions of Xs(t). Red dashed line: the frequency A. Shaded gray area: the fre-
quency range in which the cycle frequencies are searched, that is, the range [A — 2, A + 2]. Red
markers 'x’ highlight the maximum values of the cyclic functions. The left panels corresponds to the

cyclic autocovariance, and and the right panels corresponds to the cyclic conjugate autocovariance

function.

Parameter | Description Theoretical value | Estimate
A cycle (conjugate) frequency of Y (t) | 2.6 -
A1 cycle frequency of X (t) 1.3 1.3330078125
Y cycle conjugate frequency of X;(¢) | 1.353 1.353515625
A2 cycle frequency of Xs(¢) 0.6 0.6669921875
Yo cycle conjugate frequency of X5(t) | 0.706 0.70703125
s1 time-scale factor in X (¢) 0.5 0.4998779296875
S9 time-scale factor in Xs(t) 0.25 0.2501220703125
m frequency shift in X7 (¢) 0.01 0.01025390625
72 frequency shift in Xo(t) 0.02 0.02001953125
— slope of lines L1 and L2 0.5 0.5003663003663004
- intercept of L1 0.015 0.014888822115384615
- intercept of L2 —0.6516 —0.6521033653846153

Table 4.1: The theoretical and estimated values of the parameters in the model M3. The digit with

a horizontal line above represents an infinitely repeating digit in the repeating decimal.
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Figure 4.8: Results for M3 (the case of an unknown line). Green solid line: the theoretical values of
the spectral density function. Blue dashed line: the estimated expectation E(T; ij ). Shaded blue
area: the region within one standard deviation S/T]\D(T; wj-v ). Each row represents a specific value of

N. The subsequent columns (from the left) correspond respectively to lines L1 and L2.
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Figure 4.9: Results for M3 (the case of an unknown line). The estimated average mean-squared error
@mean(T ) as a function of T'. The subsequent columns (from the left) correspond respectively to
lines L1 and L2.

4.3 Validation of confidence intervals

In this section, we evaluate the performance of the confidence intervals proposed in Section [3.5

For both models M1 and M2, we set the discretization step § = 3—12 and the number of samples
N = 16384. The length of the observation interval is given by 7' = (N — 1)d. As the data-tapering
window w we consider the rectangular window function, while the frequency-smoothing window ¢ is
the Hann window (see Table . The frequency-smoothing bandwidth is set to hp = %T_Q/ 5 The
frequencies at which the spectral density functions are estimated are given by wj»v = —% + ﬁ
for j=0,1,..., N — 1. Note that ijG [—%,2—16] forj=0,1,...,N — 1.

We consider three types of confidence intervals of the magnitude of spectral density functions
Freac)

intercept of the support line, respectively.

, and the spectral coherence functions "yfé( (w)‘, where a and [ denote the slope and

Let 8 € R be a parameter of interest, and let é\T be its estimator.

CI; : Pointwise subsampling-based equal-tailed 95% confidence intervals given by (3.6]).
CI, : Pointwise symmetric subsampling-based 95% confidence intervals given by (3.7)).

CI; : Pointwise asymptotic equal-tailed 95% confidence interval, obtained using Corollary and
the Monte Carlo approach. That is,

<§T — 2(0.975) \%TCT Or — 2(0.025) %) ,

where z(p) is a p-quantile of the standard normal distribution. By 5%, we denote the estimator

of EWT — 0}2 obtained through Monte Carlo simulations with M = 500 runs.

The subsampling-based confidence intervals are constructed using the following parameters. The
number of samples in each subsample is set to N, = 2048. Then a block length is b = (N, —1)d. The
frequency-smoothing bandwidth for a subsample estimator is h, = %61)_2/ 5 It is important to note

that the simulations are performed using parameters b, hr and hy that are not necessarily optimal.
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Selecting optimal parameters is a challenging problem that remains unsolved in the literature for
many classes of nonstationary processes, in particular, for processes under consideration.

Figures and display the confidence intervals for the spectral density functions of models
M1 and M2, respectively. The confidence intervals for the spectral coherence functions of models
M1 and M2 are shown in Figures and [£.13] respectively. As in Section we display results
for frequencies within the range around the maximum values of the spectral density functions. Note
that the coherence functions and its estimator corresponding to a line L1 are always equal to one.

Let us discuss the results for the magnitude of the spectral density functions ) fé(é( (w)‘ The
confidence intervals CIy and CI3 provide nearly the same coverage of theoretical values. The con-
fidence intervals CI; are the narrowest for most of the frequencies considered. Observe that both
CI;, and CI3 are constructed to be symmetric and cover the theoretical values at more frequencies
than CI;. This may be because the confidence interval CI; fails to capture the symmetry of the
asymptotic distribution. Another potential reason for this is the non-optimal choice of the parameter
b. However, selecting the optimal parameter b is a challenging task. In particular, very few results
regarding this problem are in the literature. To our knowledge, there are no such results for APC
processes and their generalizations. The first and only existing result for bootstrap in the case of
the overall mean and seasonal means for PC time series can be found in [3].

Finally, we examine the actual coverage probabilities (ACPs) for the confidence intervals
CI;—CI3. We focus on the case of the magnitude of the spectral density functions. We compute
ACPs by constructing confidence intervals CI;—CI3 for 500 different realizations of the processes
considered in models M1 and M2. For each case, we count the number of times that the constructed
confidence intervals cover the theoretical value for each frequency. Figures [£.14] and [£.15] present the
calculated ACPs for models M1 and M2, respectively. In addition, each graph includes the shape
of the spectral density, shown as a gray line. Note that the y-axis does not represent the actual
values of these spectral densities. This visualization is intended to illustrate the behavior of the
ACPs in relation to the spectral density, which is discussed in more detail later. The highest ACPs
are achieved by ClI3, followed by slightly lower values for CIy, and significantly lower ACPs for CI;.
For most frequencies, the ACPs of ClIy and CI3 remain close to the dashed red line representing
95% level. Even in the worst cases for M1, the ACPs rarely drops below 80%. In contrast, CIy
shows its poorest performance in scenarios with slopes different than one (i.e., L2 and L3 for both
models M1 and M2), where ACPs fall below 60% for most frequencies. For the model M1, both
the subsampling confidence intervals CI; and CIs exhibit lower ACPs at frequencies corresponding
to local maxima in the spectral density. However, for M2 and lines L1, L3 and L4 it can be noted
also for ClIs. For M2, the results are generally worse than for M1, but this may be attributed to
the previously mentioned issue, namely the potentially non-optimal choice of parameters.

In summary, the best performance is achieved by CI3. However, as discussed in Chapter [3]
constructing asymptotic confidence intervals can be challenging in practice. The subsampling con-
fidence interval Cly performs reasonably well, while CI; consistently exhibits poor performance in

all scenarios.
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— 95% — Clp Cl Clz

Figure 4.10: Results for M1. Confidence intervals for the magnitude of spectral density functions for
lines L1-L4. Green solid line: theoretical values of the magnitude of the spectral density function.
Blue solid line: bounds of confidence intervals CI;. Blue dashed line: bounds of confidence intervals

CI,. Blue shaded area: bounds of confidence intervals Cls.
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Figure 4.11: Results for M2. Confidence intervals for the magnitude of spectral density functions for
lines L1-L4. Green solid line: theoretical values of the magnitude of the spectral density function.
Blue solid line: bounds of confidence intervals CI;. Blue dashed line: bounds of confidence intervals

CI;. Blue shaded area: bounds of confidence intervals CIs.
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Figure 4.12: Results for M 1. Confidence intervals for the magnitude of spectral coherence functions
for lines L1-L4. Green solid line: theoretical values of the magnitude of the spectral coherence
function. Blue solid line: bounds of confidence intervals CI;. Blue dashed line: bounds of confidence

intervals CIs. Blue shaded area: bounds of confidence intervals CIs.
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Figure 4.13: Results for M 2. Confidence intervals for the magnitude of spectral coherence functions
for lines L1-L4. Green solid line: theoretical values of the magnitude of the spectral coherence
function. Blue solid line: bounds of confidence intervals CI;. Blue dashed line: bounds of confidence

intervals CI5y. Blue shaded area: bounds of confidence intervals ClIs.
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Figure 4.14: Results for M1. ACPs for confidence intervals for the magnitude of spectral density
functions for lines L1-L4. Blue line: results for CI;. Green line: results for CI5. Violet line: results
for CI3. Red dashed line: 95% level.
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Figure 4.15: Results for M2. ACPs for confidence intervals for the magnitude of spectral density
functions for lines L1-L4. Blue line: results for CI;. Green line: results for CI5. Violet line: results
for CI3. Red dashed line: 95% level.
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CHAPTER 5

ANALYSIS OF SIGNALS EXHIBITING IRREGULAR
CYCLICITIES

The analysis of cyclic data plays a fundamental role in the study of stochastic processes. Various
modeling approaches for such data have been proposed in the literature [2], [42] 43, 55, [62] [76],
including PC and APC processes discussed in Section However, a key challenge in modeling
cyclic data is the natural irregularity observed in many real-world signals, particularly in biomedical
applications. As a result, the study of processes that exhibit irregular cyclicity has gained increasing
interest in recent years [15] [34] [48] [49] 63, 65].

In this chapter, we present some of our findings obtained in this field. However, since this topic
lies outside the main scope of this thesis, we focus only on the main results. In Section 5.1 we
discuss our results from [31I], where we develop a statistical approach for ECG signals using an
amplitude-modulated time-warping periodically correlated (AM-TW PC) model [64]. We propose
two bootstrap procedures, based on the Circular Block Bootstrap [75], to perform statistical infer-
ence for ECG signals. In Section we present our results from [26], where we introduce a new
semiparametric continuous-time model for signals with irregular cyclicities and propose estimators

for the first- and second-order characteristics.

5.1 Inference for signals exhibiting irregular statistical cyclicity

with applications to electrocardiograms

In the literature, PC processes have been used to model ECG signals and have found applications
in arrhythmia detection [38], heart and respiratory monitoring [45] 46], as well as in the separation
of heart and lung sounds [35]. However, PC models assume a constant heart rate. This assumption
is quite restrictive and generally only holds over very short time intervals, typically no longer than
10 seconds [64]. Consequently, the practical application of such models is limited, especially in
long-term monitoring scenarios in which patients with potential cardiac conditions are observed

over several hours. To address this limitation and capture irregular cyclicities in signals, Napolitano

7
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proposed an AM-TW PC model in [64]. This model has been applied to the ECG analysis and was
used to study a signal recorded over 800 seconds.

The statistical methods proposed in [34] 62], [64] for the AM-TW PC model provide only point
estimates of certain characteristics. All existing approaches first require estimating the underlying
PC process before estimating the specific characteristics of interest. However, these methods do not
provide statistical inference tools such as hypothesis testing and confidence interval estimation. To
overcome this limitation, we develop the bootstrap approach. In Section [5.1.1] we review the ECG
model proposed by Napolitano. In Section [5.1.2] we propose two bootstrap methods that can be
applied to the AM-TW PC model. In Section [5.1.3] we outline the application of our bootstrap
approaches to ECG signals. In Section [5.1.4] we present the analysis of the ECG signal based on

our bootstrap inference. Finally, Section [5.1.5] includes proofs of the theoretical results.

5.1.1 Amplitude-modulated time-warped periodically correlated processes

In our paper [30],we consider is the model of Napolitano [64]. In the sequel, we review this model
and discuss the existing results.

Let Ty be the average time to complete one ECG signal cycle and by Ay we denote the average
heart rate. That is, A\g = Tio. In [64], the ECG signal {Y'(¢), t € R} is proposed to be modeled using

Y(t) = A(t) X (t + (b)), (5.1)

where A(t) # 0 and (t) are deterministic functions. For a process {X (¢), ¢t € R}, we assume that it
is an unobserved real-valued PC process with period Tj. Moreover, it can be decomposed into two
components X (t) = ux(t) + X,(t), where pux(t) is a periodic deterministic function with period Tj
and X,(t) is a zero-mean PC process with period Ty. The component px(t) represents the mean
function of X (¢), and X, (¢) contains information about its periodic autocovariance function.

A process {Y(t), t € R} given by is called an amplitude-modulated time-warped periodi-
cally correlated (AM-TW PC) process. In [34] [62, [64], periodically correlated processes are referred
to as cyclostationary processes. Consequently, processes of the form are alternatively referred
to as amplitude-modulated time-warped cyclostationary (AM-TW CS) processes.

Both functions e(t) and A(t) represent fluctuations in the propagation of electrical waves
throughout the heart. The time-warping function £(¢) can specifically model the variability of heart
rate over time, which can arise from various factors, including sensor movement during signal mea-
surement, individual patient characteristics, arrhythmia, physical activity, or other irregular phe-
nomena. In [64], certain conditions are assumed for the derivative of the time-warping function (t),
as a consequence of which the time-warping function changes slowly over time.

As noted in Section the analysis of the PC process X (¢) can be performed using Fourier
analysis of the mean function px(t) = EX(¢) and the autocovariance function Rxx(t,t 4+ 7) =
Cov(X(t), X(t + 7)). Therefore, assume that

e 27kt > 27kt
ux(t) = Z b(%) e o, Rxx(t,t+7)= Z a(TiO,T) e To

k=—o00 k=—o00
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where

b(y) = lim

T
; 1 )
o px(t)e ™At a(\,7) = lim / Rxx(t,t +7)e 2 d¢.
—00

|
MH\MH
~
L
3
N

Consequnelty, the mean and autocovariance functions of Y (¢) have the following representation

oo , 00 .
py (t) = Z ”(T%vt) e%, Ryy(t,t+71) = Z P(T%vth) e%,
k=—o00 =—0
where r(7,t) = A(t) b(y) e2™®) and p(\, t,7) = A(t) A(t+7) a(\, T +e(t+7) —e(t)) 2™ Note
that the functions (A, t) and p(A,t,7) depend on time ¢, which implies that Y (¢) is not PC.

Now, let us present the idea of statistical procedures for the model proposed in [34] 62} [64].
The analysis of the AM-TW PC model involves estimating the time-warping function &(¢) and the
amplitude modulation function A(t). Having estimates of () and A(t), we can reconstruct the
underlying PC process X (t). However, due to the complexity of these methods, we omit their de-
scription and refer the reader to [34], 62, [64], with additional details available in our paper [30].
Finally, Fourier analysis can be applied to the reconstructed process denoted by X (t). Conse-
quently, one can estimate the functions b(7y) and a(\, 7), using standard estimators developed for
PC processes [42, 62]. However, in our model, the process X (t) is unobservable. To address this, we

substitute X (¢) with )?(t) Then, in our case the estimators of b(y) and a(\,7), 7 > 0, are

T
> 1 IS .
b(y) = = [ X(t)e ™ dt,
T 0/
T—71 (52)
a\7) = (X(t) — ix () (X (t +7) — fix (t + 7)) e ™ dt,

N
o

where [ix(t) is the estimator of pux(t). That is,

Ax(t) = S b(n) e,

vef

and T is finite subset of the set T containing the frequencies at which the cyclic mean function is
significantly non-zero, for example, determined by a statistical test (see, e.g., Section .

The main interest of our paper [31] is to provide statistical inference based on cyclic functions b(~y)
and a(\, 7). This allows us to understand the structure of the underlying PC process X (t) and how
ECG signals relate to heart rhythm abnormalities. These functions are also essential for estimating
related quantities like k(7y,t) and p(A, t, 7). Our goal is to develop a framework for hypothesis testing
and confidence interval construction for the underlying process X (¢). A key challenge is that the
asymptotic covariance matrices of the rescaled estimators ?)\(’y) and a(\,7) depend on infinitely
many unknown parameters, making statistical inference based on asymptotic distributions difficult
in practice (see, e.g., Theorem 2.6 in [85]). In the next subsection, we introduce bootstrap methods

to address this issue.
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In the sequel, we assume that the underlying PC process X (t) is directly observable. However,
in the real-data application, we substitute X (¢) in place of X (¢). Our condition is necessary because
there is strong evidence that the consistency of the estimators for the cyclic statistical functions b(~y)
and a(A, 7), based on measurements from X (t) cannot be established. Specifically, the estimators
of A(t) and &(t) proposed in the literature are, to date, biased (even asymptotically). We therefore
treat our results as the upper bound of achievable performance. Since there is a lack of methods
in the literature that provide theoretical guarantees in this context, we consider our work a step
toward advancing the field. Our future research will focus on refining both the existing methods
and the model to facilitate the derivation of theoretical results. In [31], we include an extensive

simulation study to demonstrate the performance of our proposed bootstrap methods.

5.1.2 Bootstrap inference

Bootstrap is a very popular resampling approach used to approximate the sampling distribution of
statistics, for example, to construct confidence intervals. The main idea of bootstrap for independent
and identically distributed data is to construct bootstrap sample by drawing with replacement data
point from the original data set. For dependent data, such as in our case, it is crucial to construct
a bootstrap sample in a way to preserve the original dependence structure. For this propose, block
bootstrap methods are used (see, e.g, [47]). Such methods involve splitting the data into blocks and
then drawing them with replacement. The important and well-known block bootstrap method is
the Circular Block Bootstrap (CBB) method, introduced by Politis and Romano [75]. The CBB
method was designed for stationary data. However, it can be adapted for our nonstationay setting.
For the convenience of the reader, we first recall the algorithm of the CBB approach.

Fix n € N. Let (X1, Xo,...,X,,) be a sample from a time series {X;, t € Z}. For j =1,2,...,n
define the block of observations Bj of length b € N (0 < b < n) starting at X; and given by

(X5, Xjt1, s Xjqp—1), j=1l...,n—b+1,

‘7 i
(Xj,Xj+1,. vy X, X1,y aXb—n+j—1)a j=n—-b+2,...,n.
The name “circular” derives from the fact that the data are wrapped around a circle, allowing the
construction of additional blocks for j = n — b+ 2,...,n. This approach was proposed to reduce
the edge effect. That is, if we consider only the blocks for j =1...,n—b+ 1, then the observations
near the beginning and the end of the sample appear in fewer blocks, introducing the bias of the

estimators. In the following, we present the usual CBB algorithm.

Algorithm.
1. Fix b € N such that 0 < b < n.

2. From {1,2,...,n} choose randomly with replacement [ + 1 numbers ki, ko, ..., kj11 where [
is the smallest integer such that [b > n. The probability of choosing any number is % Then
fort=1,2,...,1 4+ 1 the bootstrap blocks are given by

* * * *
Bkt = (XkﬂXk’t"Fl’ oo 7th+b—1) = (Xt7 t4+1s s t+b—1) = Bt'

B. Majewski Statistical inference for harmonizable processes



5. Analysis of signals exhibiting irregular cyclicities 81

3. Join the selected [ + 1, blocks B* = (B}, B3, ..., B} ;). The bootstrap sample is obtained by
taking the first n observations from B*, i.e., (X7, X5,..., X}).

The CBB method cannot be applied directly to our case, as it is designed for discrete-time
processes. Moreover, this approach does not preserve the periodic structure of the data. To overcome

these limitations, we develop two bootstrap procedures based on the above algorithm.

Circular Extension of the Moving Block Bootstrap for the sampled process. The CBB
method is primarily designed for stationary time series. For discrete-time PC time series, it provides

consistent results only for the overall mean, defined as

n—oo N

1 n
pw= lim —ZEXk,
k=1

where {X;, t € Z} is a PC process [85]. In the nonstationary setting, in [23] 24] it is introduced
the Circular Extension of the Moving Block Bootstrap (CEMBB), which retains information about
the original time indices to construct consistent bootstrap estimators in the nonstationary case.
However, the CEMBB method was developed for discrete-time models. Therefore, we generalize
this approach to continuous-time processes X (t).

Fix T > 0. Let {X(t), t € [0,T]} be an observed PC process with period Tj. By h = L5 we
denote the discretization size. We consider the sampled data (X (0), X(h),...,X((n —1)h)). Note
that if the ratio Tio is a rational number, then the resulting discrete-time process is also PC, with
period equal to the denominator of the ratio (assuming that the numerator and denominator are
relatively prime), see [62] Section 3.6.2|. If the ratio is irrational, the sampled process becomes an
APC process. Both PC and APC processes are nonstationary, and for such processes, the CEMBB
algorithm can be appropriately applied [23], 24].

Below, we present the CEMBB algorithm for a sampled process.

Algorithm.
1. Define U; = (X (jh),j) for j =0,1,...,n — 1.
2. Do the CBB algorithm for the sample (Up, Uy, ...,U,—1) to obtain (U, Uf,...,U}_;).

The major advantage of this method is its ability to keep the information about the original
time index of each observation. The bootstrap estimators for cyclic mean functions b(y) and cyclic

autocovariance functions a(X, 1), 7 > 0, have the following form

n—1
Tx 1 * —i2w\k*
) = = 3 X (K Ry e W,
ki

n:Ifk:T
Z (X (k*h) — f(k*h)) (X (h(k* + kz)) — fi(k* + k,)) e 2™
k=0

(A7) =

S|

where k; is the nearest integer to 7 and U} = (X(k*h),k*) are the elements of the bootstrap
sample. There is an implicit mapping from k to k*, given by the CEMBB algorithm. Then we can
write a summation of fi(k*h) and u(k* + k;) over k =0,...,n —1 — k.
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Let us formulate the bootstrap consistency theorem for a(\, 7). Let r € N, 7 = (1q,...,7.)T € R"

be a vector of lag parameters and A = (\,..., A1) € R” be a vector of frequencies. We consider
a(\,7) = [Rea(A, 1), Ima(A,71), ..., Rea(Ar, 7), Ima(\,, 7.)] T € R?",

and analogously we define a(\,7) € R?" and a*(\,7) € R*. For * = (z1,...,72,) € R?" and

Y= (y1,---,Y2r) € R¥ we write ¢ <y, when z; < y; for j =1,2,...,2r.
Theorem 5.1. Assume that {X(t), t € R} is a a-mizing PC process such that

(i) functions E[X (t)X (t +71)X(t + m2) X (t + 73)] and E[X (¢) X (t + 1) X (t + 72)] are periodic in
t € R for any m,70,73 € R;

(ii) the sets I' = {y € R: b(7) # 0} and A = |J,cg{A € R: a(A,7) # 0} are finite;
5
(iii) supE|X ()32 < 0o and [Tay (1)dT < oo for some & > 0;
teR R

(iv) X (t) is strictly band-limited with bandwidth B satisfying 1 > 2Bh;

(v) we have

Vih(@, ) — a(A, 7)) 5 Ny (0, (A, 7)),
where det(X(X, T) # 0.

Then for € € R?"

sup
zeR

P (Vah@A, m) — a(x 7)) < @) — B(Vah(@* (A7) - E'@* (A 7)) < @) | 0,

as b — 0o, n — oo with b/n — 0, where P* and E*, respectively, denote the conditional probability

and conditional expectation, gwen (US,Uy,...,Uf_).

Proof. See Section [5.1.5 O

Recall that the concept of a-mixing is introduced in Section The condition (iv) means that
the spectral density functions are supported within specific frequency ranges. This requirement is
necessary to avoid aliasing. For further details, we refer the reader to [62], Section 3.6].

Analogously, we obtain results for cyclic mean functions b(7). In this case, the condition (3) is
no longer required, and in the condition (i), the exponent 8 + 24 can be replaced with 4 + 6.

Moreover, to construct the bootstrap simultaneous confidence intervals, we require the consis-
tency of our bootstrap procedure for smooth functions of the estimator. This consistency can be

achieved by following the same steps as in the proof of Theorem 4 in [23].

Circular Block Bootstrap for the averaged process. Selecting an appropriate block length
is crucial to perform the block bootstrap method. This problem has been extensively studied for
stationary processes [47), Chapter 7|. However, for nonstationary processes, there is a significant lack

of results in this area. Recently, Bertail and Dudek [3] provided the first known result for PC time
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series, focusing on the first-order characteristics in the time domain of a discrete-time PC process
with a known integer-valued period. However, their result does not directly apply to our setting,
which involves a continuous-time PC process whose period may not be an integer multiple of the
discretization step. To overcome this limitation, we propose a bootstrap methodology suited for
PC processes in continuous time. In addition, we are able to apply results of Berial and Dudek to
determine the optimal block length, defined as the length that minimizes the mean-squared error
of the bootstrap variance estimator, for characteristics in the frequency domain.

The core idea of our approach is to average the process over disjoint intervals equal to one period
in length. This transformation produces a time series such that its mean function remains periodic
and the autocovariance depends only on the lag, i.e., does not depend on time.

Fix T > 0. Let {X(¢),t € [0,7]} be an observed PC process with period Tp. For simplicity,
we introduce the bootstrap algorithm for the cyclic autocovariance function a(\, 7) assuming that
EX(t)=0.Fix 7 >0 and A = q%o, where p, ¢ € Z. Define n = LTJTOTJ.

Algorithm.
1. For each s =1,2,...,n compute
STO
1 —i2m At
Zs(A\, 1) = o Xt)X(t+71)e dt. (5.3)
0
(s—1)To

2. Do the CBB for the sample (Z1(\, 1), Z2(\, 7),..., Zy(\, 7)) to obtain the bootstrap sample
(ZT (A7), Z5 (A7), 23 (A7)

Observe that a(\, 7) represents the overall mean of Zg(\, 7), while a(\, 7) denotes its estimator.
That is,

n n

1 ~ 1 ~
CL(}\,T) = lim % ZEZS()‘7T) = HzZ(\7)s a()‘aT) = ﬁ ZZS()‘vT) = Hz(\7)-
s=1 s=1

Consequnelty, a bootstrap estimator of a(A, ) is given by

n

~x 1 % ~x
a’(A\7) = n Z Zi(\T) = Hz(\r)
s=1

Let us discuss the statistical properties of the resulting time series {Z5(\, 7), s € N}.

Proposition 5.1. Let A = q%, where p,q € Z are relatively prime. Assume that the process X (t)
is PC with period Ty and its fourth moments are periodic with period Ty. Then the complez-valued
process {Zs(\, ), s € N} given by equation has a periodic mean function with integer period
q and its autocovariance function does not depend on time. For ¢ = 1 the time series Zs(\, T) is

stationary.

Proof. See Section [5.1.5 O

By properly averaging the process X (¢) as shown in (/5.3)), we obtain stationary or PC processes.

This allows us to apply the bootstrap consistency results from [85], which we adapt to our settings.
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Theorem 5.2. Assume that {X (t), t € R} is a zero-mean a-mizing PC process such that
(1) functions E[X (t) X (t + 71) X (t + 72) X (t + 73)] are periodic int € R for any 71,12, 3 € R;
(ii) the set A = J cp{X € R:a(X, 1) # 0} is finite;

(iii) supsep E| X (1)[8720 < 0o and fTCk4+6( )d < oo for some § > 0;

(iv) /n(@aA\, 1) —a(\, 1)) LN N3 (0,3), where det(X) # 0.

Then

sup [P* (VaRe (5 0,) ~ BTy ) < @) = P(VRe (izon — nzom) < 2)| =0,

zeR

and

sap P*(\/ﬁlm (ﬂ}(x,r) - E*ﬁ*Z(Aﬂ-)> = 93) - ]P’(\/ﬁlm <ﬁz(m) - :UJZ(A,T)) < x)‘ 0,

as b — 0o, n — oo with b/n — 0, where P* and E*, respectively, denote the conditional probability

and conditional expectation, given (Z1(N\,7T), Za(A,T),..., Zn(A,T)).
Proof. See Section O

Now, let us derive the formula for the optimal block length. For clarity, we focus on the real
part of pz(x -, since the results for the imaginary part are analogous. Fix A = qT , where p,q € Z
are relatively prime, and 7 > 0. Since Z4(A, 7) is a PC time series with a known integer period ¢,

we can apply the result from [3]. Consequently, the optimal block length takes the form b = lq + 1,

[2G?
bopt,Re = bopt,Re()\a T) =3 7%7 (54)

=q Z ‘ || YRe(z) (B D = 3(27q)?| fre(z)(0)|*-

h=—o

Moreover, Yre(z)(h) = Cov(Re(Zs(A, 7)), Re(Zsn(A, 7))) and

with [ € Z, and is given by

where

1 < ;
fRe Z) - 27 Z Re(Z Tl

Detailed assumptions for the above results can be found in [3]. The derivation of ([5.4)) is provided
in Section [5.1.5

Remark 5.1. Note that for the cycle frequency A = =, where [ € Z, of the PC process X (t) yields
a mean function for Zs(\, 7) with period ¢ = 1. Consequently, Zs(A, 7) is a stationary time series,
and the formula for the optimal block length simplifies to the well-known expression used in the

stationary case for the CBB method (see [47, Chapter 7]).
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Remark 5.2. The bootstrap approach above can also be applied to the estimation of the cyclic mean

function b(7y). Specifically, we define the process Zs(y) as

sTo
1 .
Zs(*r):f) / X(t)e ®tdt, s=1,2,...,n,
(s—1)To

where n = LT%J In this case, to obtain results analogous to those in Proposition , it is not
necessary to assume the periodicity of the fourth moments of X (¢). The arguments for consistency
and the selection of the optimal block length follow in the same manner as those for the cyclic

autocovariance function.

The above results are established when the mean function is zero. However, they can be extended
to cases where the mean function is periodic, provided that the third moments of X (¢) are also
periodic with period Ty. This extension follows by applying reasoning analogous to the discussion
following Corollary 3.5 in [85].

In contrast to the CEMMB for the sampled process, the focus here is not on constructing
simultaneous confidence intervals. Instead, the primary objective is to determine the optimal block

length for each frequency.

5.1.3 Application of the bootstrap inference

In this section, we discuss the applications of bootstrap methods in the model .

As noted previously, the Fourier analysis of the underlying PC process X (t) is crucial for the
analysis of the original ECG process Y (). Specifically, the estimators of (v, t,7) and p(A, t,7) can
be determined by the estimators b(v) and @(A, 7). In addition, the functions b(y) and a(),7) char-
acterize the cyclical properties of the signal under consideration. Therefore, one may be interested
in constructing confidence intervals for them.

The consistency of the bootstrap procedure allows for replacement of the quantiles of the asymp-
totic distribution with the quantiles of the bootstrap distribution to construct pointwise confidence
intervals for the real or imaginary part of cyclic statistical functions b(y) and a(X, 7). In many
practical scenarios, confidence intervals are required for a range of frequencies. To address this,
simultaneous confidence intervals can be constructed. The pointwise and simultaneous bootstrap
confidence intervals for discrete-time PC processes are discussed in detail, for example, in [28].

Another important application of the bootstrap method is performing hypothesis testing, partic-
ularly to identify significant frequencies. Specifically, we can verify at which frequencies the functions
b(v) and a(\, 7) are significantly different from zero. Detecting significant frequencies of b(7y) allows
us to construct the estimator for the mean function. Identifying significant frequencies of a(\, 7)
provides a deeper analysis of the underlying process. For example, in machine diagnostics, the ap-
pearance of a new frequency component can signal mechanical failure [I]. A similar approach can
be applied for the ECG signal, where the detection of new frequencies may indicate abnormalities

in heart anatomy or function.
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Let us formulate the problem of identifying a significant frequency of a(\, 7). For fixed 7 € R
and A € R

Hy:a(\ 1) =0,
H1 ICL()\,T) 7é 0.
Define two test statistics

ReUr(t) =vrRea(A,7) and ImUp(r) =vrIma(, 1),

where v denotes the appropriate rate of convergence, which depends on the specific bootstrap
approach employed. For the CEMBB for the sampled process, we have vy = /T, while for the CBB

T,ITTJ

Both test statistics are asymptotically normal with unknown covariance matrices [I§]. Under

for the average process, we have vp = /|

the null hypothesis, we have
Rea(\, 1) 50 and Ima(\, 7) 50 as T 00,
whereas under the alternative hypothesis,
Rea(\, 1) 4 Re a(A,7) and Ima(\ 1) N Ima(A,7) as T — oc.

If the observed test statistic Re Ur(7) or Im Up(7) deviates far from zero relative to the reference
distribution, this suggests that the alternative hypothesis holds. The critical values for the tests are
determined using the quantiles of the bootstrap distribution. Under the null hypothesis, we have

P(ﬂ% < Re Ur(7) <al_%) —1—a as T — oo,

whereas under H;

P <ﬂ% <ReUr(7) < ﬂl_%) — 0 as T — oo,
with ﬂ% and Hl,% denoting the § and 1 — § quantiles, respectively, of the bootstrap distribution
corresponding to vp(Rea(A,7) — Rea(A, 7)). The procedure for the imaginary part Ima(A, 1) is
analogous.

For PC processes, cyclic functions have non-zero values only at frequencies that are integer
multiples of the inverse of the period. However, if the considered process is actually an AM-TW
PC, but we assume that it is a PC and estimate the cyclic functions accordingly, the resulting
values tend to spread around the cycle frequencies [64]. In such cases, the bootstrap tests described
above can be used to verify the significance of frequencies in the neighborhood of cycle frequencies.
This approach serves as a useful tool for determining whether the cyclic structure is concentrated at
integer multiples of the inverse of the period, which indicates a PC model, or spread across infinitely
many frequencies, which would suggest that an AM-TW PC model may be more appropriate.

Additionally, the bootstrap test can be used to evaluate the quality of the underlying PC signal
reconstruction. This step is particularly important because the reconstruction is sensitive to the
choice of certain parameters. If after reconstruction, the cyclic functions remain spread around
the cycle frequency, it may indicate that the parameters need to be adjusted. Alternatively, such

dispersion could be due to a time-warping function £(¢) that varies too rapidly.
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5.1.4 Real data example

In this section, the proposed methodology is applied to ECG data. Specifically, we analyze the
ECG signal Y (¢) recorded from a 30-year-old Caucasian male who is a non-smoker, leads a seden-
tary lifestyle, had consumed coffee prior to recording, and was listening to classical music during
the session. More details on the data set can be found at https://physionet.org/physiobank/
database/cebsdb/ and [32].

For our analysis, we consider a recording duration of T' = 200 seconds with a sampling rate of
200 Hz, which corresponds to a discratization step of h = 0.005s and yields a total of n = 40000
time points. First, we subtract the overall mean from the ECG signal. From now, we consider the

signal Y () = Y (t) — + (;‘F Y (s) ds. The first 15 seconds of the signal Y () are shown in Figure

1.00
0.75
0.50
0.25
0 2 4 6 8 10 12 14
Time (s)

Figure 5.1: A 15-second recording of the signal Y (¢).

We assume that Y'(t) can be modeled by . We start with reconstructing the underlying
PC signal X (t) from the observed signal Y (t). To achieve this, we apply the amplitude-modulation
compensation and de-warping method proposed in [64]. Further implementation details are provided
in our paper [31]. A comparison between the observed signal Y (¢) and the reconstructed signal X (t)
is shown in Figure Furthermore, we present the estimated cyclic mean functions of both X (t)
and Y (t), assuming that each is a PC process. Note that the cyclic functions of X (t) are more
concentrated around the cycle frequency ag = 0.0055244655 h~1 compared to those of Y (t).

Next, we estimate the mean function of the underlying PC process using its Fourier series

representation. The estimated mean function is given by

K

Ax(t)= Y blkag) ",
k=—K

where K = 90. This procedure cannot be applied directly to Y(¢), as a finite set of significant
frequencies cannot be clearly identified for this signal.

We now perform bootstrap inference. First, we test the null hypothesis that b(y) = 0 for each
v € Ay, where

Aoy = {ap + khag : k= —14,-13,...,14}.
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Figure 5.2: Comparison of results for the signal Y (¢) and the estimated underlying PC signal X (t).
Top panel: signals Y (¢) and X (t). Bottom panel: magnitude of the cyclic mean functions b(vy) of
Y (t) and X(t) for v € [—0.02,0.02]. Orange line: results for Y (). Blue line: results for X ().

The significance level we set to a = 0.05. Second, we compute 95% bootstrap confidence intervals
for a(A,0), for each A € A,,. For both hypothesis testing and confidence interval construction, we

apply the two proposed bootstrap approaches. The results for each method are reported below.

CEMBB for the sampled process. We fix the block size as b = 10| ay ' | +1 = 906. We generate
B = 999 bootstrap samples and perform hypothesis tests. The results, presented in Figure[5.3] show
that the null hypothesis is rejected only at the frequency «g. Next, we construct 95% bootstrap

simultaneous equal-tailed percentile confidence intervals for a(\, 0). These intervals are displayed in

Figure [5.4]

CBB for the averaged process. We first compute the optimal block lengths for b(+) separately
for each frequency v € A,,. Based on these, we generate B = 999 bootstrap samples and perform
hypothesis tests. The results, presented in Figure [5.5 show that the null hypothesis is rejected
only at the frequency ag. Next, we compute the optimal block lengths for a(A,0) for each A € A,,
individually. We generate B = 999 bootstrap samples with new block lengths and construct 95%
bootstrap pointwise equal-tailed percentile confidence intervals for a(\,0), for A € Ay,. These

intervals are displayed in Figure [5.6
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Figure 5.3: Results for the hypothesis tests based on the CEMBB for the sampled process. Green
points: real part of the cyclic mean function at frequencies where the null hypothesis is not rejected.
Violet points: imaginary part of the cyclic mean function at frequencies where the null hypothesis is
not rejected. Red points 'x’: real or imaginary part of the cyclic mean function at cycle frequencies

where the null hypothesis (that the cyclic statistical function is zero) is rejected.
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Figure 5.4: Results for the CEMBB for the sampled process. 95% bootstrap simultaneous equal-
tailed percentile confidence intervals for the real part (top panel) and the imaginary part (bottom
panel) of cyclic function a(\, 0). Blue dots: estimated values of a(A, 0). Vertical blue lines: confidence

intervals for a(A,0).
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Figure 5.5: Results for the hypothesis tests based on the CBB for the averaged process. Green

points: real part of the cyclic mean function at frequencies where the null hypothesis is not rejected.

Violet points: imaginary part of the cyclic mean function at frequencies where the null hypothesis is

not rejected. Red points 'x’: real or imaginary part of the cyclic mean function at cycle frequencies

where the null hypothesis (that the cyclic statistical function is zero) is rejected.
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Figure 5.6: Results for the CBB for the averaged process. 95% bootstrap pointwise equal-tailed

percentile confidence intervals for the real part (top panel) and the imaginary part (bottom panel)

of cyclic function a(\,0). Blue dots: estimated values of a(\,0). Vertical blue lines: confidence

intervals for a(A,0).
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5.1.5 Proofs of results presented in Section [5.1

This subsection contains proofs of the original results presented in Section [5.1}

Proof of Proposition[5.1 For simplicity, instead of Zs(\, 7) we write Zs. The mean function of Z;

is as follows

sToy
1 A
EZs = T / E[X(t)X(t + 7.)] e 12Tt 44
0
(s—1)To
To
1 .
T E[X(t +(s—=1)Tp) X(t+ (s —1)Tp + 7.)} e~ 2mA(t+(s—1)To) 44
°%
1
—z27r)\ s—1)T —iomA
CUR L JE[X@ X ()] e N e
0
)

_ E(Zl) 67i27r)\(371 To'

IfA= q%o with p, ¢ € Z, then the function e~ 2™ =170 viewed as a function of s € Z, is periodic
with period ¢g. As a result, the mean function of the time series Z; is also periodic with period gq.

Applying the same logic to the autocovariance, we show that it is independent of s. Specifically,
for each h € Z, we have

STO S+h)T0

Cov(Zs, Zsyn) = / / Cov(X(t) X (t+7), X (u) X (u+ 7)) e 2 270 4t dy
(s—1)Tp (s-+h—1)Tq
Ty (h+1)Tp
- 1102/ / Cov (X (¢ + (s — 1)To) X(t + (s — 1)Tp +7),
0 KTy

X(u+(s=—1)T) X(u+(s—1)Tp+ 1))
% o= i2TA(tH(s=1)T0) Li2mA(u+(s=1)T0) g4 dy,
Ty (h+1)Ty
/ / Cov (X (t) X (t+7), X (u) X (u+ 7)) e 2 272 4t dy.
0 RTp
0

Proof of Theorem[5.1. The proof follows the same reasoning as the proof of Theorem 3 in [23]. O

Proof of Theorem[5.9 It is enough to show that the assumptions of Corollary 3.2 in [84] are satisfied
for a PC time series Z5 = Zs(\, 7).

Assumption (i) of Corollary 3.2 in [84] is satisfied since the autocovariance function of Zs does
not depend on time.

Assumption (ii) of Corollary 3.2 in [84] follows from Minkowski integral inequality and Holder
inequality

1
1 sTo 2(4+9)

1
(E‘Zs‘4+5) its < — (E‘X(t)X(t + 7_)‘4—1—6) pev dt < (SupE]X(t)’2(4+5)>
To (s=1)To teR
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To show that assumption (iii) of Corollary 3.2 in [84] holds, note that
0(Zs) Co({X(t) : (s—1)Tp <t <7+ sTp}).

Then we get
o({Zs : s<p}) Co({X(t) : t <7+ pTH}),

and
o({Zs :s2p+aqp) Co({X(#) : t=(p+q—1)To}).
Therefore, the mixing coefficient az(-) of Z, satisfies
az(q) < ax(qTo —To —7)
for ¢To — Ty — 7 > 0. This shows that (iii) of Corollary 3.2 in [84] is satisfied. O

Proof of the optimal block length eq. (5.4]). For simplicity, instead of Zs(A, 7) we will write Z5. The
optimal block length for a sample (Re Z1,...,Re Z,,) from the PC time series with period ¢ is given
by the following formula

3/ 2G?
bopt Re Tna
where
q [e%e) q—1
=) Z ]| Cov(Re(Zs), Re(Zsyn)), D =350270)° Y | fire(z) (O
s=1 :— s=0

and fﬁe(z) (w), s=0,1,...,q — 1 are spectral densities of PC time series Re(Z;), see [3].
In our settings, a time series Re(Z;) has a periodic mean function with period ¢ € N and the
autocovariance function depends only on a lag parameter, i.e. Yge(z)(h) = Cov(Re(Zs), Re(Zs+n)),

then
G = Z Z | || Cov(Re(Zy), Re(Ziyh)) Z Z | [ VRe(zy () = q Z \ I YRe(z) (B
t=1 h=—00 t=1 h=—0c0 h=—00

Since the autocovariance Yre(z)(h) is constant in time, there is only one non-zero spectral density
function, corresponding to the main diagonal, denoted by fre(z) (w). Moreover, using the properties

of discrete-time PC processes, we have
1 :
fRe(Z 27 Z Re(Z va

and hence
D = 3(27q)*| fre(2)(0)*.
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5.2 Statistical properties of oscillatory processes with stochastic

modulation in amplitude and time

Continuous-time stochastic processes with irregular cyclicities can be modeled using the approach
discussed in Section Related methods have also been explored in [16] and in [54]. However, the
key limitation of these methods is the lack of asymptotic results for statistical methods. In this
section, we introduce the novel semiparametric continuous-time model for signals with irregular
cyclicities, which is related to parametric discrete-time models proposed by Lenart in [49] 48].
Unlike Lenart’s models, we depart from the assumption of a Gaussian distribution for the phase-shift
process. In Section [5.2.1] we introduce our model. In Section [5.2.2] we derive the first- and second-
order properties of the model. In Section [5.2.3] we propose estimation methods for a mean and an
autocovariance function. In Section [5.2.4] we examine the convergence rate of the autocovariance
estimator using Monte Carlo simulations. Finally, Section includes proofs of the results.

All theorems in this section are original contributions. These results can be found in [26].

5.2.1 Model construction

In 26], we propose a new continuous-time semiparametric model given by
J
X(t) = A(t) Y cjcos (Aj(t+ 4+ o) + 2()) +p, >0, (5.5)
j=1

where ¢ € R is an overall mean, 0 < A\ < Ay < ... < A; < o0 are frequencies, 1); € R are phase-
shifts, ¢; € R with ¢; = 1 are amplitudes, and J € N is any fixed number of frequencies. Moreover,

A(t), ¢(t) and z(t) are stochastic processes.

Assumption 5.1. We impose the following conditions on the processes A(t), ¢(t) and z(t).

(i) {A(t),t > 0} is any second-order stationary stochastic process with EA(t) = a # 0 and
autocovariance function y4(7) = Cov(A(t), A(t + 7)), for t,t +7 > 0.

(ii) {¢(t), t > 0} is a fractional Brownian motion (fBm) with Hurst index h € (0, 1) and variance
parameter 035 > 0. That is, ¢(t) is zero-mean Gaussian process that ¢(0) = 0 a.s., and it has

the following autocovariance function
%
Cov(@(t), o(t +7)) = == ([t + [t + 7/ = |7").

(iii) {z(t), t > 0} is any zero-mean stochastic process with stationary increments. That is, the

distribution of z(t) — z(s) depends only on ¢t — s for all 0 < s < ¢.
(iv) A(t), ¢(t) and z(t) are mutually independent.

The process A(t) is an amplitude modulation process and ¢(t) + z(t) is the phase shift process

of superposition of cosines

J
Z cjcos(Aj(t+15)) + p. (5.6)
j=1
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Note that is an almost periodic function (see Definition . To model irregular cycles that
cannot be captured using almost periodic functions, we introduced a random phase shift ¢(t) + z(t)
into our model. The choice of a nonstationary phase shift process ¢(¢)+z(t) is motivated by its ability
to represent scenarios in which the exact position within the cycle at a given time is unknown. In
contrast, if the random phase is stationary, the cycles remain closely synchronized with the reference
almost periodic function , deviating only slightly.

Recall that the Hurst index h of the fBm process measures its long-range dependence. If A > 0.5,
then increments on non-overlapping time intervals of fBm are positively correlated, while if A < 0.5
they are negatively correlated, resulting in more erratic process paths. In the special case h =
0.5, fBm reduces to a Brownian motion (also known as the Wiener process) and has independent
increments. By changing the value of h, one can control the behavior of the phase shift process in

our model. For further details on the fBm process, we refer the reader to [56, [66].

5.2.2 Statistical properties of the model

In this section, we present the first- and second-order properties of the model (5.5). Note that the
existence of moments of X (t) is ensured by the existence of moments of A(t).

Below, we present the form of the mean function of a process X (¢).

Theorem 5.3. Let Assumption[5.1] holds. Then for t > 0, we have

J
EX(t) = p+ay eEcos (N(t + o5+ 2(t))) e 25780
j=1

Proof. See Section [5.2.5 O

Observe that the mean function of X (t) is less related to the frequencies A1, Ag,...,A; over
time. Its almost periodic nature weakens more rapidly as the Hurst index h increases.

Now, we consider the second-order moment of a process X (t).
Theorem 5.4. Let Assumption [5.1] holds. Then for t,t + 1 > 0, we have
E(X (1) =) (Xt +7) = ) = yx(7) + W(t,7),
with

J
1x(7) = 5 (a(r) + @) 3 eI Beos(y(Ie] + ()

and

(W (t, )| < Coecolltl? +lt+r*), (5.7)
for some positive constants cy, Cy, which do not depend on t and 7.

Proof. See Section [5.2.5 O
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The second-order moment of X (¢) can be decomposed into two components. The first component
depends on the lag parameter 7 and does not depend on time ¢. In contrast, the second component
depends on both 7 and ¢, and vanishes as ¢ increases. For the formula of W (t,7), see (5.10).

As a conclusion, we get that as time tends to infinity, the autocovariance gradually loses its

nonstationary (cyclic) properties at a rate determined by the Hurst index h.
Corollary 5.1. Let Assumption[5.1] holds. Then
(i) lim EX(t) = ;
(ir) Jim E((X (1) = p)(X(t +7) = p)) = 7x(7) for 7 € R;
(iii) tliglo Cov(X(t), X(t+ 7)) = vx (1) for T € R.
Proof. See Section [5.2.5] O

In the next subsection, we propose estimators of the mean i and the autocovariance function

Yx (7).

5.2.3 Mean-square consistent estimators of mean and autocovariance functions

From the previous subsection, we know that the process X (t) given by is nonstationary,
however over time its nonstationary properties vanishes in time. Therefore, we propose standard
estimators of the mean and autocovariance functions for stationary processes to estimate p and
vx (), respectively. Fix T' > 0. Let {X(¢), t € [0,7]} be an observed sample of the process X ().

Then to estimate p and yx(7), 7 > 0, we use the following estimators

T

T—
=g [ X0t Axe) =g [ (X0 =R @) - at
0 0

T

Below we establish mean-square consistency of these estimator.

Theorem 5.5. Under Assumption[5.1] the estimator iy is a mean-square consistent estimator of
. Moreover,
E | — pf? :O(T_l), as T — oo.

Proof. See Section [5.2.5 O

To obtain the mean-square consistency of x 7(7) we impose additional moment and a-mixing
conditions. Recall that the concept of a-mixing is introduced in Section [3:1}
Assumption 5.2. Assume that {X (), t > 0} is a-mixing with an a-mixing coefficient ax(+). More-

over, there exists some § > 0 such that SUP;>( E|A(t)|4+25 < oo.

Theorem 5.6. Under Assumption and the estimator yx r(7) of vx(T) is mean-square

consistent for any T > 0. That is,

lim E[Axr(r) = vx ()] = 0.
T—oc0
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Proof. See Section [5.2.5] O

Compared to the mean estimator fip, we did not derive the theoretical convergence rate of the
autocovariance estimator Jx (7). Therefore, in the sequel, we examine this rate of convergence

using Monte Carlo simulations.

5.2.4 Investigate the rate of convergence of the autocovariance estimator

In this section, based on simulation study, we investigate the convergence rate of E|yx (1) —vx (7)]?.
Below, we outline the approach used to conduct this investigation.

For each 7 > 0, we assume for sufficiently large T', we have
E Fx,7(7) = vx(7)]* = CL(n)T "D (1 + vr (7)),

with some positive constants x(7) and C1(7) and with vp(7) = o(1), as T' — oo. In other words,
the theoretical convergence rate of E|7x.r(7) — yx (7)[? is of the order T=*("). Then for sufficient

large T', we get

tog (E[Fx7(7) = 1x (1)) = —(7) log(T) +log (C1(r)(1 + vr())) .

Therefore, based on a linear regression model, we can compute the least squares estimates of —k(7).
That is, we obtain an estimator of the rate of convergence of E [Jx 7 (1) — vx (7)[%.

For simulation, we consider the process X (t) given by that consists of two cosine waves,
that is, J = 2. We set Ay = 0.05, A\a = 0.2, ¢c; =1, co =5, u = 25, and a = 10. For the amplitude
process A(t), we consider A(t) = p+ A(t), where A(t) is an Ornstein-Uhlenbeck process defined by

the following stochastic differential equation
dA(t) = —paA(t)dt + oA dW (t), >0,

where pa,04 > 0 and W (t) is the Wiener process. For the process z(t), we consider a fractional
Gaussian noise with drift equal to zero, volatility o, > 0, and Hurst index g € (0,1). Thus,
2
Cov(z(t), 2(t + 7)) = = (I + 1% = 2r* + |7 — 1]).

We consider four different scenarios M1, M2, M3, and M4 with different parameter values for
OAs PA, Pz, 9,04, h. These parameter values are summarized in Table

oA pA | p: g |0y h
ML| % 5|5 3|3 1
M2 |5 3 |1 5|3 3
M3 | 1 wo|5 5|3 1
M4 | 3 55|35 6|5 1

Table 5.1: Parameters 04, pa, p-, 9,04, h in scenarios M1-M4.
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We generate realizations from scenarios M1-M4 for T' = 1000, 2000, ..., 250000. For each T
we generated B = 1500 independent samples and estimate the value E[Jx (1) — yx(7)|?, for 7 =
0.5,1,...,120, using a Monte Carlo procedure. The estimates obtained are denoted by MSE g(r,T).

We apply the linear regression model for point
<10g(T), log (MSTEB(T, T))) T =1000, 2000, . . ., 250000,

and calculate the least squares estimates —kp(7) of —k(T).
In Figure we show the estimation results of x(7). The left panel presents the estimates as
functions of 7. It is evident that the convergence rate depends on the model parameters for a fixed

7. In particular, we observe the following patterns.

e In model M1, where h < 0.5 (¢(t) exhibits short-range dependence), the convergence rate
appears to be faster than 771.

e In model M2, where h = 0.5 (¢(t) reduces to the Wiener process), the convergence rate is

very close to T71.

e In models M3 and M4, where h > 0.5 (¢(¢) exhibits long-range dependence), the convergence

rate appears to be slower than 7.

Furthermore, for each model, the convergence rate clearly depends on 7 and exhibits a cyclic pattern.
The right panel of Figure presents values of the coefficient R?, which remain close to 1 in all
cases. Furthermore, the values of R? also show a cyclical pattern with respect to 7. In [26], we

presented further simulation studies of the proposed model.

Estimates K(T) R? coefficiens
0.99

097

095

— M M2 — M3 — M4

Figure 5.7: Results of convergence rate estimation. Left panel: estimates k(1) of k(7r) for 7 =
0.5,1,...,120. Right panel: corresponding R? for 7 = 0.5,1,...,120.

5.2.5 Proofs of results presented in Section [5.2

This subsection contains proofs of the original results presented in Section [5.2]
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Lemma 5.1. Let X and Y be independent random variables. Assume that X has a normal distri-

bution with mean p € R and variance 0® > 0. Then
Esin(X +Y) = e 2E sin(p+Y), Ecos(X+Y)= e 2K cos(u+Y).

Proof of Lemma[5.1. The proof follows from the property of the characteristic function of the sum

of independent random variables. O

Proof of Theorem[5.3 The proof follows directly from Lemma [5.1] O

Lemma 5.2. Let h € (0,1) and o, 8 > 0, o # B. Then there exists a positive constant cy (which
depends only on o, 5, h,04) such that

Var(ag(t) — B¢(s)) = co([t]™ + [s|"),
fort,s > 0.
Proof. Without loss of generality we take s =t 4+ 7 with some 7 > 0. We have

Var(agp(t) — Bo(t + 7)) = o Var(p(t)) — 208 Cov(é(t), d(t + 7)) + B2 Var(¢(t + 7))
= 03) (aﬁTQh + ala— ﬂ)t% + B(8 — a)(t + T)Qh) )

It is sufficient to prove that there exist constants ¢; > 0 and co > 0 such that
aBr +ala — B)E" + B(B — ) (t + 1) > cr|t, (5.8)

and
afr? + afa = B)t*" + BB — a)(t + 1) > colt + 7| (5.9)

for t,7 > 0. Note that for t = 0 and any 7 > 0, as well as for 7 = 0 and any ¢t > 0, the statement
holds trivially. Hence, in the sequel, we focus on the case where ¢, 7 > 0. We split the proof into two
steps. In the first step, we establish the existence of constant ¢; in the inequality (5.8, and next,
we establish the existence of the constant c2 in the inequality (5.9).

Step 1. In (5.8), we substitute y = 7. Then the existence of a constant c; > 0 satisfying

afT®" + ala = I + BB — a)(t + 1) > erft]
is equivalent to the existence of a constant ¢; > 0 such that
F(y) = aBy® + ala = B) + B(B — a) (1 +y)*" > e1 > 0,

for y > 0. The first derivative of f(y) is given by

! - _ B @ 1 2h—1
7'@) =28 (o™ + (8= )1 +1)* 1) = 28(a — By~ (0_3 - (y + 1) ) .

If B > a, then f'(y) > 0, which means that f(y) > f(0) = (o — 8)? > 0 for y > 0. If a > 3, then

we consider two cases: h € (0,1] and h € (3, 1).
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For h € (0, %], we have

which implies

Consequnelty, f/(y) > 0, and hence f(y) > f(0) = (a — B)? for y > 0.

For h € (3,1), the function f(y) has one local minimum at

1
Yo = > 0,

1
2h—1
(52)" " 1

since f'(y) < 0 for y € (0,y0) and f'(y) > 0 for y € (yo,00). We consider the following substitution

ﬂ:L’Qh_l
o= ———-
thfl _ 1’

with # > 1 and h € (1,1). Then

2h
f(yo) = > <ﬁ> o h),

(x — th)Q

with
Flz,h) =2 — 2?2 - 1) — 142 =(z - 1)1 -2+ (x —1)27 ).

Therefore, it is enough to show that (z — 1)*~1 > 2?"=1 — 1 for any z > 1 and h € (3,1). We
substitute 2 =  — 1 > 0, we obtain 22"~! + 1 > (2 + 1)2"~! which is true for any z > 0 and
h € (3,1). This finishes this step.

Step 2. The proof is similar to that of Step 1. In (5.9), we substitute y = . Then it is enough to

show that there exists a constant ¢y > 0 such that

9(y) = BB —a) +aly+ 1) (a+8 (1" ~1)) > >0,

for y > 0. The first derivative of g(y) is

J(y) = 208h(y + 1)1 <y2h—1 _(a ; 5)) .

For B > a we have ¢'(y) > 0, which means that g(y) > g(0) = (a— 8)? > 0. For a > 3 the function

o = (agﬁ>2h1 >0,

since ¢'(y) < 0 for y € (0,40) and ¢'(y) > 0 for y € (yo,00). By substitution o = 3 (2271 + 1),

g(y) has one local minimum at

with > 0 we get

9(yo) = 525}6%_2(36 + 1)_2h ((:L‘ +1) <x2h + :r) —xz(r+ 1)2h> )
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Observe that
(x+1) <x2h + a:) —xz(z + 1)2h =z(z+1) <($2h—1 +1) - (z+ 1)2h—1> 7
and 22771 +1 > (z+1)?*7! for any « > 0 and h € (0,1). This finishes the proof. O

Proof of Theorem[5.4. Denote &;(t) = Aj(t +; + z(t)). Using the following trigonometric product-
to-sum identity

cos(z) cos(y) = % (cos(z —y) +cos(x +vy)), =z,y€R,

we have
E((X() = p)(X(t+7) = p))
J o J
=E(A( t+7) Z Z ¢j, ¢j, B cos quf)(t) + &5, (t)) cos ()\jlgb(t +7) 4+ &, (t+ 7-)))
J1=1j2=1
1 J J
5 +a Z Z C]1032< COS ()\jlgf)(t) *)\jQQb(thT) Jrgjl(t) *ij(tﬂLT)))
Jji=172=1

+ I (cos (Aj, ¢(t) + Xjp ot +7) + &, (1) + &5 (t+7))) ) :
By Lemma [5.1] we get

E (cos (A, 6(t) & Ay d(t +7) + &, (1) & €5, (¢ + 7)) = ¢ e Ecos (€, (1) + &, (¢ + 7)),

where
() Ly
Mg (8 7) = 5 Var(Xj, ¢(8) £ Xj,$(¢ + 7))
1
=3 (A2, Var(s(t)) =+ 2X5, Aj, Cor(¢(t), ¢(t + 7)) + A3, Var(¢(t + 7))
1
= 0% (N2 gy g (12 [t 2 = [7[2) 4 X2, [t 4 72"
1
= 5037 ()‘j1|t|2h(/\j1 + )‘]é) + Ajz’t + T|2h(>‘j2 + /\j1) + )‘jl)‘j2|7_’2h>
1
= 0% (O £ M) Qa2 = Nt + 7128) F g A2
Note that for j; = jo = j, by stationary increments of z(t), we obtain

2/\2‘ |2h

e 7 BT cos (&(t) = &(t+ 7)) = e 27N B eos(\; (7] + 2(I7]))).

Consequently,
E((X(t) = p)(X(t+7) — p) =vx(7) + W(t,7),
with
Wit 7) = % (va(7) +a?) (i:lc]?e‘”%)(t”)ll«: cos (&) + &t +7))
i
£ chen (TR E cos (6,(6) — e+ 7)) .10

J1#j2

+e 77]1 JQ( )Ecos (5]1( )—|—£j2(t+7')))>.
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Moreover,

J J
1 —n{h. —n{)
W) < 5l +a| | 32 D7 leseple ™07 4 3 fejiegle T

j1=1ja2=1 J17#7j2
7n(+) ,—,
<03 Z e 3 ehhen).
J1=1j2=1 J1#72
with
1
C==1su 7) + a®| max 2.
2 Te%’YA( ) 1<j<g 7

Finally, by Lemma [5.2] and

A6 m) = 5 (W, Var(8(1)) + 25, A5, Cor(9(1), B(t + 7)) + N, Var(6(t + 7))
> 102 Var(6(0) + A4 Var(o(t + 7))
= %Ji (/\j1 27 + 22 |t + T\Zh) ,
we end the proof. .

Proof of Corollary[5.1. The proof of (i) follows from Theorem [5.3] By Theorem we obtain (ii)
since tlim W (t,7) =0 for any 7 > 0. From (3), (i) and
—00

Cov(X (1), X(t + 7)) = E((X (1) = p)(X(t +7) — p)) = B(X(t) = p)E(X( +7) — p),
we immediately get (7). O

Lemma 5.3. Under Assumption we have
[iwteniae< cw <.

where Cyy 1s some positive constant that does not depend on 7.

Proof. Using (5.7) we get

/ Wt 7)|dt < Co / et +t+7M) 44 < / ol g
0 0

with some positive constants cg, Cy > 0 that does not depend on 7 and ¢. Finally, by the change of

variables u = ¢gt?", we obtain

o0 o0
1 1
/6_60t2h dt / udu = TF <2h> < o0, (511)
s 2hc§h d 2hel"
where T'(x foo r—le—= dz, x > 0, is the Gamma function. O
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Proof of Theorem[5.5 Applying Theorem [5.4] we get

Elfr —pl* = E((X(#) = p)(X(s) — p)) ds dt

3=

Il
3~
O\ﬂ O\ﬂ o\ﬂ
L\ﬂ o\ﬂ

—t

E((X () — 1) (X(t +u) — 1)) dudt

~

—t t

1 1 T T—
vx (u dudt+T2//W (t,u) dudt.
0 —t

2

~

Let us consider the first term on the right-hand side. Using ([5.11)), we have

T
1
T2
0

Applying Lemma for the second term on the right-hand side of ((5.12)), we obtain

—t

L\ﬂ

t 00

T T—
1 1 20
TQ//|Wtu|dudtT2//|Wtu|dtdu< v,
0 —t

-T 0

where Cyy > 0 is some positive constant.

Lemma 5.4. Under Assumption[5.1 and[5.3, for any 7 > 0 we have

lim E[{xr(r) —Fxr(r)]> =0,
T— o0

where
1 T—1
() = [ (X0 = WX+ 7) - )
0
Proof. Note that
1 T—1
() = Txa(r) = 3. [ (@ = i+ (0= Fr)(XO) + X e+ 7))
0
T 1 T—1
—r
= (i = p*) = (fir — / )+ X(t+7)) dt
0
T—T1

= (i — p)(pir + p) — (ir — p) Rr,

where
-

T—
/ t)+ X(t+ 7)) dt.
0

H\H

By Minkowski inequality and Hélder inequality, we obtain

1
~ - 2 T—r1 - ~
(EWXJ‘(T) - VX,T(T)I2> < (EIMT — pl*-E iy +u!4)

W=

vx (u) du dt<s‘1p“€RE|A Z / —3Ao 2\u\2hdu:o(T—1).

+ (B far — i EIRr|) "

(5.12)

PN
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Using Minkowski integral inequality, we get

=
=

T
—~ R 1
(Bl +ul')" < (Elael") +1ul = |E |7 / x| |+l
0

PN

T
1
/ E|X(t) dt—|— | < <supE|A(t)|4> + |p] < 0.
>0
/ >

Similarly, we have

T T—1

T—
/ (EIX () + X (t+7)[*)% dt < /(E\A(t)!4)‘l‘+(E1A(t+r)!4)
0 0

-

(E[Rr|*)*

N
=

dt

H\’—‘
N[ =

<227 (swElaw) )‘1‘ o),

>0
as T" — oo. Therefore, it remains to show that Tlim E|fr — p|* = 0. We have
—00
~ 4 ~ 2 ~ 2
E|fir — ul* = E* |fir — +Var<\uT—u! )

From Theore we have Tlim E|ar — u|2 = 0. Moreover, by the property of a-mixing measure
— 00
B.2)

(see Lemma [B.2]), we obtain

T T
Var (|7 = f?) = Var | 5 [ (X0 = 0)(X(5) = ) das
0 0

Cov((X(t) — u)(X(s) — ). (X (u) — ) (X (v) — ) dt ds dudv

3-

)

20 (min{|t — ul, |t —v|,|s — ul,|s — v|}) dt ds du dv,

IN

(65

C
T4

]
/l

O — 5 O —

e
/

where

246
C=3 <supIEA( )|2<5+2>> =
t>0

Let us consider the change of variables z =t —u, y =t —v, 2 = s —u and w = s — v. The Jacobian

of this transformation equals . Moreover, (z,y,z,w) € [T, T]*. Then

c T T T T 5
Var (1ar ) < o [ [ [ [ o3 Guin{lal. ol o [ul}) de dydzdu
-T-T-T-T
4‘0 T w z Yy s
24////04+ (|z]) dz dy dz dw
-T-T-T-T
T
<960/a65 |z]) d
- T
=T
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)
Fix € > 0. Then one can choose Ty > 0 such that ‘aﬁ 7)} < e for all 7 > Ty. Moreover, ax(r) < 1
for 7 € R, see [2I]. Consequently, for T > , we have
T To
1 5 1 L Ty T -1y
6 25 — 246 < — 2 .
/a T/a (1) dtau + / dtau_4T—|— 7€ <2, (5.13)
0 0 To
which ends the proof. O

Proof of Theorem[5.6, By Minkowski inequity and Lemma[5.4] it is sufficient to show that
lim E[Fxr(r) —vx(1)* = 0.
T—o00

First, we discuss the convergence of Eyx (7). Applying Theorem we get

T—
Eyxr(r) = = /IE — (X (t+7) — ) dt
0

Consequnelty, by Lemma [5.3|

T

T—

1
/\Wtr|dt</|WtT|dt<CT
0

where Cy > 0 is some positive constant. Therefore, Tlim Evx,r(r) = vx (7).
—00

Next, we demonstrate that the variance converges to zero. By inequality for a-mixing processes
(Lemma [B.2) and the change of variables u =t — s

"i
3
T]
3

Var(Yx,r(1)) = Cov((X (1) = ) (XX +7) = p), (X(s) = p)(X(s +7) — p)) dt ds

3~

5
ay” (min{|t — s|,[s +7 —¢|,[t + 7 — s|}) dtds

|
\f Ot~

|
3
"ﬂ o
i
~‘

5
ay” (min{lul, |7 — ul, |u + 7|}) duds,

3lQ

IN
el
o\'ﬂ o\ﬂ o\

|
»

where
2

245
C=38 <supE\A( )|2<2+5>> .
t>0
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Hence,

2

*(min{|ul, |7 — ul, |Ju+ 7|}) duds

=

=

@)

=

=R

3

I\
Sla
o
B

Q
><+‘en

T-21
c(T—r .
— (Tz) / ay (min{|ul, |7 — u|, |u + 7]}) du
—T—7
( ) —7/2 ( ) T/2
c(T—r o c(T -7 S
— T / a?‘s(]u—l—ﬂ)du—l—T / a§(+5(|u])du
—T—7 —7/2
C(T ) T-21 s
-7 5
+T / a§(+5(|u—7'\)du.
/2

Similarly to (5.13]), we obtain that the first and last terms of the above sum tend to zero as T' — oo.

Additionally, the second term also converges to zero since ax(7) is bounded by i. O
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we presented new results on the statistical inference for nonstationary processes.
Mainly, we focused on the spectral analysis of harmonizable whose spectral measure is concen-
trated on the union of lines. We introduced the periodogram frequency-smoothed along the line as
an estimator on the spectral density function. We established its mean-square consistency in the
cases where the support line is known and where it must be estimated. Furthermore, we derived
its asymptotic distribution. Based on this estimator, we proposed an estimator for the spectral co-
herence function. Additionally, we introduced a subsampling procedure and proved its consistency
for spectral analysis in harmonizable processes with spectral measures concentrated on a union
of lines. Finally, we discussed two models for signals that exhibit irregular cyclicity, both consist-
ing of modulation of time and amplitude. The first model is a nonparametric approach proposed
by Napolitano [63], where both modulations are deterministic. For this model, we proposed two
bootstrap procedures for Fourier analysis. The second model is a newly introduced semiparametric
approach in which both modulations are stochastic. We established its statistical properties and

discussed the estimation of the mean and autocovariance.

In the following, we outline the problems that will be addressed in the future.

1. Statistical inference for harmonizable processes whose spectral measure is con-
centrated on the union of curves. This thesis examines spectral density estimation for
harmonizable processes whose spectral mass is concentrated on lines. However, a more general
class of harmonizable processes, known as spectrally correlated (SC) processes, has been stud-
ied in the literature [61, Chapter 4]|. SC processes are harmonizable processes whose spectral
measure is concentrated on a union of curves. Such processes result from frequency wrapping
of APC processes [62, Section 13.6.6]. So far, research on SC processes has focused only on
point estimation of spectral density functions. We plan to extend the results from Chapters
and [3] Specifically, we will investigate a periodogram frequency-smoothed along the estimated

support curve and develop statistical inference methods based on subsampling.
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2. Spectral density estimation for discretized harmonizable processes. In this thesis,
we examine continuous-time stochastic processes, which are common in telecommunications,
where many physical phenomena are described only in continuous time. In practice, how-
ever, we observe discretized data, making spectral estimation challenging due to the aliasing
problem (the spectral density function of the sampled process is the superposition of the spec-
tral density functions of the continuous-time process [52]). While significant results exist for
stationary processes, research on nonstationary processes, such as APC, remains relatively
limited. For stationary processes, the spectral analysis is performed on a line R, while in the
case of nonstationary processes, on a two-dimensional plane R?, making the aliasing effects
more complex. Our goal will be to study the estimation of the spectral density of discretized

processes whose spectral measure is concentrated on the union of lines.

3. Further work on models for oscillatory processes with stochastic modulation in
amplitude and time. In Section [5.2] we present the semiparametric continuous-time model
for signals exhibiting irregular cyclicity. Our future research will focus on exploring additional
theoretical properties of this model, including the asymptotic distributions of estimators for
the mean and autocovariance functions, and on aspects of spectral analysis. We also aim
to extend the model proposed in [26] since currently we assume that the amplitude and
phase-shift processes are independent. In many real-world applications, these processes are
interdependent. In ECG signals, amplitude variations occur throughout the cycle, reaching
their maxima near the so-called 'R-peak’. Finally, we plan to develop a nonparametric model
with stochastic modulation in both amplitude and time. Compared to the semiparametric

approach, a nonparametric model would offer greater flexibility.
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APPENDIX A

COMPLEX-VALUED RANDOM VARIABLES AND VECTORS

In this chapter, we discuss the characterization of complex-valued random variables and vectors.
This is essential to our study, as we consider complex-valued stochastic processes. In addition,
spectral density estimators have complex values. The notation in this chapter mostly follows the

conventions established in [62, Appendix E|.

A.1 Second-order characterization of complex-valued random vari-

ables and vectors

A complex random variable Z defined on a probability space (2, F,P) is a function Z : Q +— C such
that Re(Z) and Im(Z) are both real-valued random variables on (Q, F,P). If E|Re(Z)| < oo and
E|Im(Z)| < oo, then the expectation of Z exists and it is defined as

EZ = ERe(Z) + iEIm(Z).

Since

max{|Re(Z)|,[Im(Z)[} < [Z] < [X[+]Y],

it follows that E|Z| < oo if and only if both E|Re(Z)| < oo and E|Im(Z)| < oo, see [6, Chapter 3].
Now, let us introduce second-order characterization. Let Z and W be two complex-valued ran-

dom variables such that E|Z|? < oo and E|W|? < co.

e The variance of Z exists and is defined as

Var(Z) = E[|Z — EZ|*];

e The covariance of Z and W exists and is defined as
Cov(Z,W) =E[(Z —EZ)(W —EW)]| =E[ZW]| — EZEW;
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e The conjugate covariance (or pseudo-covariance) of Z and W exists and is defined as

Cov(Z,W) =E[(Z -EZ)(W —EW)] =E[ZW]| — EZEW;

To fully characterize the second-order properties of complex-valued random variables, one should
consider the covariance and conjugate covariance.

A complex random vector Z = [Zi,...,Zy|T defined on a probability space (Q2,F,P) is
a function Z : Q +— CM such that

[Re(Z1),...,Re(Zy), Im(Zy), ..., Im(Zy)|"

is 2M-dimensional real-valued random vector on (2, F,[P). Below we present two approaches to

fully describe second-order characteristics of complex-valued random vectors.

e A M-dimensional complex-valued vector Z = X + 1Y with two M-dimensional real-valued

vectors X and Y can be viewed as 2M-dimensional real-valued random vector
V=,..., Vo]t = [ X5, YT)T = [Re(Z1),...,Re(Zyr), Im(Zy), ..., Im(Zy)] "
with a mean vector
py =BV = [uk, 3]t = [ERe(Z1),...,ERe(Zy), EIm(Zy), ..., EIm(Zy)]T,
and covariance matrix

Xxx XXy

9

YSyy =E[(V-EV)(V -EV)T| = [

Yyx Yyy
where
Syx =E[(X —-EX)(X -EX)"],
Yyy =E[(Y —~EY)(Y - EY)"],
Yxy =E[(X —EX)(Y —-EY)"] =2{.
e A M-dimensional complex-valued vector Z can be viewed as 2M-dimensional complex-valued

random vector
¢=12,2)" =(Z1,....Zu, 71, ..., Zu)"

with a complex-valued mean vector
pe =EZ,EZ)* = [EZy,...,EZ\,EZy,. .. ,EZy)"
and complex-valued covariance matrix

See =E[(C— no) (¢ —no)] = FZZ 2z

Yzz Yzz

where
Szz=Cov(Z,Z) =E[(Z -EZ)(Z -EZ)"],
Y, =Cov(Z,Z2)=E[(Z-EZ)(Z-EZ)"].
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Moreover using the Euler formula, i.e., Re(z) = #5% and Im(z) = 4% for z € C, we get

py = [# ZQ‘Z-Z} o me = [px tipy, px —ipy),
and
Yzz =Yxx —iXxy —iXyx + lyy,
Y7 =Yxx tiXxy +iXyx — Yyy,
and
1 1
EXX:§R6(2Z7+Ezz), EXY:_ilm(Ezf_EZZ)y
1 1
nyzilm(zzé—l-zzz), EYYziRe(EZZ_EZZ)-

A.2 Cumulant of complex-valued random vectors

Cumulants of random variables are tools to characterize the statistical properties of random vari-
ables. In this section, we introduce the cumulants of complex-valued random variables.

Before doing so, we recall the notation of cumulants for real-valued random variables. Let
Xi,..., X be areal-valued random variables. Assume that, for fixed M € N, we have E| X M < o0

for all j =1,2,..., M. The joint cumulant of X7, ..., X is defined as

M

cum(X1, ..., Xn) = (—i)MM log <E (el‘tTX)) (A1)

1512...:t]\/[=07
where t = [t1,...,ty]T and X = [X1,..., X]T. We have the following relationship between

moments and cumulants

cum(X1,..., Xp) = > ()" 'e-D]E | ] X (A.2)

P i=1 |len,

where P is the set of distinct partitions of {1,..., M} each constituted by the subset {u;, j =
1,...,p}. For instance, for a zero-mean random vector, we have

cum(X;) =EX; =0,

cum(Xy, Xo) = E(X1, Xo) = Cov(X1, Xo),

cum(X1, Xo, X3) = E(X71 X2 X3)

cum(X1, Xo, X3, X4) = E(X1, X2, X3, Xy) — E(X1, X2)E(X3, X4),

— E(X1, X3)E(Xs, X4) — E(X1, X4)E(Xo, X3).
For more details on cumulants and their properties, we refer to [10} 22| 68|
Using we can define the comulants for complex-valued random variables [62], Appendix EJ.

Let Zi,...,Zy be complex-valued random variables. Assume that, for fixed n € N, we have

E|Zj|M < oo for all j = 1,2,..., k. The joint cumulant of Z, ..., Zy is defined as

P
cum(Zy, ..., Zy) = Z(—l)p_l(p— 1)!HE H Z |,

P =1 ZGTI']'
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where P is the set of distinct partitions of {1,..., M} each constituted by the subset {u;, j =
1,...,p}. Note that may not exist if we replace the real-valued vector X by the complex-
valued vector Z = [Z1, ..., Zy]. For this reason, we use the equation . Moreover, this definition
ensures that all the algebraic properties of the cumulants for real-valued random variables also hold
for complex-valued random variables. In contrast to the cumulants of real-valued variables, the

second-order cumulant cum(Z7, Z2) is not equal to the covariance Cov(Z1, Z2). Specifically,
Cum(Zl, ZQ) = E(21Z2) - EZlEZQ == COV(Zl,Z).

In the following, we present a property of cumulants that plays a key role in the proof of
Theorem To the best of our knowledge, it has not been presented in the literature before.
Let k € Z such that 0 < k < M. Note that

cum (Re(Zl), ey Re(Zk), Im(Zk+1), N ,Im(ZM))

gy

Z1+ 71
2

7. Z -7 —
:Cum< Zk;-Zk’ k+1 i k+1 AY: Z]M>

21 L 21

By 21 we denote the optional complex conjugation of z, i.e., 2B e {z,Z}. Applying multilinearity

of joint cumulants, the joint cumulants
cum (Re(Z1),...,Re(Zk), Im(Zk11), ..., Im(Zn))
can be rewritten using linear combination of
cum(ZF}, cey Z};})

Consequnelty, if
cum (Zg*], e Z][\t[}) =0

for all possible choices of Z j[*}, then

cum (Re(Z1),...,Re(Zk), Im(Zk+1),...,Im(Zy)) = 0.

A.3 Complex normal vectors

Let Z = [Z1,...,Zy|" be a random vector. We say Z has a M-dimensional complex normal

distribution if and only if
[RG(Z)T, Im(Z)T]T = [Re(zl)a s 7Re(ZM)’ Im(Zl)a s alm(ZM)]T

has a 2M-dimensional normal distribution. A complex normal random vector Z can be parameter-

ized in two ways

Z ~N(py,Svv),
Z ~ N(pe, B¢e)-
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using the notation from Section [A7I] Based on the first parametrization, the characteristic function

of Z is given by
¢V (t) — eituv—%tTZVvt7 t E RQM

As noted in [58], the normal distribution is the only distribution in which the logarithm of the

characteristic function is a polynomial. Moreover, it is a quadratic polynomial

log d)V = ituv — %thvvt.

As a result, to prove that a complex-valued random vector Z has a complex normal distribution

vector, it is sufficient to show that
cum(V,, ..., V4,) =0,

for any {t1,...,tx} C {1,...,2M} and k > 3. From the observation stated in Section it is
enough to show that
cum (Zg*], .. .,Z}j) =0,

]

for all possible choices of Z j[* , to obtain that Z has a complex normal distribution vector.
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APPENDIX B

LEMMAS

In this chapter, we provide the tools and the auxiliary lemmas used in this thesis.
Let us start with a formula for the joint cumulants of products of random variables. For this

purpose, we introduce a notations from Section 2.3 in [10]. Consider a table

. . . (B.l)
and a partition v1 UvaU- - -Uwyys of its entries. We say that sets v, u of the partition hook if there exist
(11,41) € v and (ig, j2) € u such that i; = i5. We say that sets v and u communicate if there exists

a sequence of sets v = vy, Uy, « - ., Umy = u such that vy, and vy, ., hook forn =1,2,..., N —1.

A partition is called to be indecomposable if all sets communicate.

Lemma B.1 (Theorem 2.3.1 in [I0]). Consider random variables X;j, with i = 1,...,P and
j=1,...,R. Define

Yi=]][ X, i=1,...,P.

j=1
Then
cum(Yy,...,Yp) = Z cum(X, 5, (4,7) € v1)...cum(X; j, (¢,7) € vr),
v=(v1,...,01)
where the summation is over all indecomposable partitions v = (v1,...,vr) of a table (B.1)).

In Chapter [3| we often use some inequalities for covariance. To present them, we first define the

a-mixing measure for two o-fields A and B:

a(A,B)= sup |P(ANB)—-P(A)P(B)|. (B.2)
AcA, BeB

The measure «(A, B) is used to measure the dependence between A and B, see [2I]. Below, we

present two inequities related to the a-mixing measure.
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Lemma B.2 ([2I]). Let X and Y be random variables. Assume that E|X|P < oo and E|Y|? < oo,
with p,q > 1 such that ]l) —l—% < 1. Then

Cov(X,Y)| < 8 (B|X[”)7 (E|X|%)7 o' 7771 (0(X),0(Y)).

Lemma B.3 ([21]). Let X and Y be random variables. Assume that there exists Mx, My > 0 such
that | X| < Mx and |Y| < My a.s. Then

|Cov(X,Y)| <4Mx My a(o(X),0(Y)).

In proofs of the asymptotic properties of the periodogram frequency-smoothed along the line, we
require auxiliary lemmas concerning the properties of the Fourier transform W of the data-tapering

window w (see Chapter . These lemmas are provided below.

Lemma B.4. Assume that w is a continuous function on the interval (—%, %) with compact support
11
[—5, §] . Th@n
/’IU (t—CT> e—i27rl/t dt = d W(d V)e—iQﬂVCT
dr T T .
R

t—cr
dr

Proof. By changing the variables u = , we have

/w <t;;T) €7i271'1/t dt = dTefiZm/cT /w (u) e*’iZﬂ'VdT’u, du = dTW(dTV)ef'iZm/cT.
R R

Lemma B.5. Assume that W € L*(R). Then for a # 0

b—oo

lim / |W (z) W(az + b)| dz = 0.
R
Proof. Let My, = o(b) as b — oo. For sake of simplicity, we write M instead of M;. Define Wy (x) =

W (z)1i_pran (). Then we have ||[W — Way|l2 — 0 as b — oo. Note that Wy (x) Was(ax +b) = 0
for b > $M(a + 1). Consequently, there exists by such that for b > by

/ Wt (2) Was(az + b)| dz = 0.
R

Now, we consider

/W(x) W(az +b)dz — /WM(a?) W (az +b) dz
R R
_ /W(x) W (az + b) dz — /WM(:E) W (az +b) dz
R

R
+ [ Wy(z) W(az +b)de — | War(x) War(ax + ) dz.
! !
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Moreover, by Holder inequality

/ (W (2) W (az + b) — W (2) W(az + b)) da
R

2
g/!W(am+b)|2dx/|W(:L‘)—WM(:U)|2d33
R R

< Ja| 7MW IW = W3,

and similarly
2
< lalHWIZ W = W3,

/ (W (az + b) Wag () — Wiy (az + b) Wiy (2)) da
R

which ends the proof since ||[WW — W[l — 0 as b — oo. O
Lemma B.6. Assume that W € L%(R). Then for ai,az,as # 0
blim |W (z1) W (z2) W (z3)W (@121 + agz2 + agxs + b)| day deg dxs = 0.
—00
R3
Proof. Let My = o(b) as b — oo. For simplicity, we write M instead of M;. Define Wys(x) =

W(x)1_p,p(w). Then we have [|[W — WM||% — 0 as b — o00. Also there exists by such that
Wi (1) Wi (x2) War(x3)War(arx1 + agwe + aszs + b) = 0 for b > by. Consequently, for b > by

/ ‘WM(-TI) WM(:L'Q) WM(:L'3)WM(CL11'1 + a9 + azxrs + b)’ dzq dxo dxg = 0.
R3
Let us consider the following change of variables
Y1 = aixy,
Y2 = a1x1 + az2x2,
Y3 = a1T1 + a2 + a3rs.
We have
R = / W(.Tl) W((L‘Q) W($3)W(a1$1 “+ a2x2 + azxs + b) dxq dao dag
]R3

— /WM(l‘l) WM(IQ) WM(xg)WM(alxl + asx9 + azxrs + b) dxq dxg das

R3
= (a1azaz) ™" / w (2—1) w (%) w (yga_s”) W (ys + b) dy1 dy2 dys
R3
~ (@razag) ™ [ War () War (250) Wi (B52) W (g + ) da dyn
RS

Therefore, using convolution operator, we can write
R = (W1 % Wy x Wz s Wy)(=b) — (Wi ar* Wonr x Waar x Waar)(—b)
= (W1 — Wy ) = Wo x Wa x Wy)(—D)
+ (Wi n x (Wo — Wapr) * Wi s Wy)(—b)
+ (Wi * Wa s+ (Wa — Waar) * Wy)(—b)
+ (Wi * Wanr x Wy + (W — Wy ar)(—b),
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where Wj(y) = [W(Z£)| and Wja(y) = (W ()| for j = 1,2,3, while Wy(y) = |[W(—y)| and

aj J
Wanm(y) = |[Wum(—y)|. Applying Young’s inequality, we obtain
((Wl — Wl,M) * W2 * W3 * W4>(—b) S H(Wl — Wl,M) * W2 * W3 * W4)Hoo
S NWL = W) « Walla - [[Ws * Wall (B.3)
< W1 = Waadlls - [Walls - [Walls - Wi,

since % + % =1 and % + % =1+ % Hence, the left hand-side of the inequality (B.3]) converges to
zero since ||Wy — Wy ar]ja — 0 as b — oo.
2
Using the the same reasoning applies to the remaining terms and the fact that |[W; ar||P < [|[W;|?

for j = 1,2,3,4 and any p > 1, we conclude that all terms converge to zero, completing the proof. [

Lemma B.7. Assume that W € L>*(R) and there exists a positive constant K such that
sup,eg |[2W(z)| = K. Then W € LP(R) for all p > 1.

Proof. For any ¢ > 0, we have

C o 1
/\W(x),p dz — / W ()P e+ / W ()P dz < 26| W) + QK/ e < oo,
R “o R\(=60) e

since p > 1. O

Lemma B.8. Assume that W € L*(R). Moreover, cp/dr — ¥ € R. Then

Tlgl;o gCT/dT (a) = Ey(a).

Proof. Tt follows immediately from the dominated convergence theorem since the magnitude of the
integrand function is |W ()W (—an)| which is integrable on R. The integrability of |W (n)W (—an)|
follows from Holder inequality. Namely,

2

/IW(n)W(—an)!dV S/\W(U)IQdV/\W(—Om)\QdV—\a\_llWH‘zl-
R R R

O

Lemma B.9. Assume that W € L*>®(R) and there exists a positive constant K such that
sup,eg [tW ()| = K. Define Wy (z) = W(x)L_pan(x) with M > 0. Then for constants a # 0
and b € R

/ W ()W (az + b)| dz = / War(@)War(az + )| dz + O(M~3),

R R
as M — oo.

Proof. Note that

/]W(a:) W (@) da = / W(2)[2dz < K / 2 2de = 2K M.
R |z|>M ||>M
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Moreover,

/\W(m)W(aw—l—b)\dx < /\W ) = Wit (2)] W (az + b)| da
R

/|W ()| |W (ax + b) — Wis(azx + b)| dz
+ / [Was(x)| [W(az + b) — Was(ax + b)| dz

+/‘WM($)WM(G$+5)’ dz.

For the first term on the right-hand side, using Holder inequality we have

1
2

/yw — Wat(@)] Wt (az + b)| d < /\W W ()2 dx-i/|WM(x)\2 dz

2

]2\2/|W(x)|2dx — O(M™3).

The function W € L?(R) by Lemma By Holder inequality, the second term is bounded as

follows

/|W — W)W (az +b) - WM<ax+b>\dx</\w — Wa(@)? da = O(M7),

For the third term, we have analogously to the first term, i.e.

1

/ War(2)| [W(az +b) — War(az + b)| de = O(M ),

Note that the boundedness of the above three terms depends on M, K, a, and not on b. O

Lemma B.10. Assume that W € L>*(R) and there exists a positive constant K such that
sup,er [tW (z)| = K. Then for k> 2 and a; #0, j =1,2,...,k and b e R

/Rk (W(z1)...W(zp)W(arx1 + ... + agzg + b)| dzy ... dog < Claq, ..., ax) < 00,
where C(a1,...,a) > 0 and does not depend on b.
Proof. Let us consider the following change of variables
Y1 = a1,

Y; =a1ry + ...+ a;x;, 71=2,3,...,k.
Thus,

|W(a;1) - W(l‘k)W(aliL‘l + ...+ agx + b)| dzy ... dzyg
k

:]Hlaw/

(Z%) W(%) W(%) W(?/k"‘b)‘ dyi ... dyg

k—1
:H aj\ 1W1*W2* *Wk)( b)
j:
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where Wj(y) = [W(£)|, with j =1,2,...,k — 1, and Wy(y) = [W(—y)|. By the Young inequality,

aj

we get

Wi Wo sk Willoo < [Wllpy [[Wa 5o Wil

< [Willp, [Wallp, [[Ws % ... % W[,
< Wil IWallpy - - [[Wellp, < o0,

with p; = 2 and
1 1 1
1+- = + , n=23,...,k.
Ppn  Pn+1 Pn+l

Moreover, it can be shown that

2n
pn:2n71>1, n=12 ... k.
By Lemma functions W; € LP(R), for all p > 1. O
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