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ABSTRACT

Harmonizable processes are widely used to model nonstationary signals in fields such as economics,

engineering, and medicine. They can be seen as a superposition of sine and cosine waves with random

amplitudes. This representation allows us to analyze the dependency between their frequencies. In

this context, spectral density and spectral coherence serve as frequency domain analogs of covariance

and correlation, respectively.

In this thesis, we focus on harmonizable processes whose spectral measure is concentrated on

a union of lines (so-called support lines), potentially with non-unit slopes. This class of processes is

a generalization of almost periodically correlated processes. It has practical applications in commu-

nication, particularly in the location of moving sources such as aircrafts, rockets, or hostile jamming

emitters that transmit signals.

First, we address the spectral density estimation problem. We propose a periodogram frequency-

smoothed along the support line as its estimator. We establish its mean-square consistency, consid-

ering scenarios in which the parameters of the support line are known or unknown. In addition, we

derive the asymptotic distribution of the rescaled estimator when the support line is known. Con-

sequently, we obtain the asymptotic distribution of the rescaled spectral coherence estimator. In

addition, we introduce a subsampling technique designed specifically for the class of processes con-

sidered. We establish its consistency and construct subsampling-based confidence intervals for the

spectral characteristics of harmonizable processes. To illustrate the theoretical results, we present

a simulation study for models commonly used in acoustics and communication.

Finally, we present our results obtained for other classes of nonstationary processes. These

findings are related to modeling and statistical inference for signals exhibiting irregular cyclicities,

which are observed, for example, in medicine.

Keywords

confidence interval, periodogram, harmonizability, nonstationarity, resampling methods, spectral

analysis, spectral coherence
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STRESZCZENIE

Procesy harmonizowalne są szeroko stosowane do modelowania sygnałów niestacjonarnych w dzie-

dzinach takich jak ekonomia, inżynieria i medycyna. Procesy te można postrzegać jako superpozycję

fal sinusoidalnych i cosinusoidalnych o losowych amplitudach. Representacja ta ułatwia nam ana-

lizować zależność między częstotliwościami tych procesów, przy czym rolę kowariancji w dziedzinie

częstotliwości odgrywa gęstość spektralna, a koherencja spektralna odpowiada korelacji w dziedzinie

częstotliwości.

W niniejszej rozprawie skupiamy się na procesach harmonizowalnych, których miara spektralna

jest skupiona na sumie prostych (tzw. prostych nośnych) o współczynnikach kierunkowych, które

niekoniecznie są równe jeden. Klasa ta stanowi uogólnienie procesów prawie okresowo skorelowanych.

Ma ona praktyczne zastosowanie w telekomunikacji, m.in. w lokalizacji ruchomych źródeł, takich

jak samoloty, rakiety czy wrogie nadajniki zakłócające sygnał.

W pierwszej części pracy zajmujemy się problemem estymacji gęstości spektralnej. Estymujemy

ją używając periodogramu wygładzonego wzdłuż prostej nośnej. Wykazujemy zgodność w sensie

średniokwadratowym rozważając przypadki, gdy parametry prostej nośnej są znane lub nieznane.

Ponadto wyprowadzamy rozkład asymptotyczny przeskalowanego estymatora w sytuacji, gdy znamy

postać prostej nośnej. W konsekwencji uzyskujemy również asymptotyczny rozkład przeskalowanego

estymatora koherencji spektralnej. Dodatkowo wprowadzamy metodę subsamplingu dla rozważanej

klasy procesów. Pokazujemy jej zgodność i konstruujemy przedziały ufności oparte na

subsamplingu dla charakterystyk spektralnych procesów harmonizowalnych. Aby zilustrować

wyniki teoretyczne, przedstawiamy symulacje dla modeli powszechnie stosowanych w akustyce

i komunikacji.

W drugiej części pracy dodatkowo prezentujemy wyniki uzyskane dla innych klas procesów

niestacjonarnych. Dotyczą one modelowania i wnioskowania statystycznego dla sygnałów charakte-

ryzujących się nieregularną cykliczność, które to są obserwowane na przykład w medycynie.

Słowa kluczowe

analiza spektralna, harmonizowalność, koherencja spektralna, metody resamplingowe, niestacjonar-

ność, przedział ufności, periodogram
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INTRODUCTION

The covariance function is a common tool for analyzing stochastic processes, which measures the

relationship between processes at different time points. However, it is not always sufficient, since the

nature of the dependency in the observed phenomenon may be more complex and not fully captured

by covariance, which measures only a linear dependency. For example, many stochastic processes

can be represented as superpositions of sine and cosine waveforms with random amplitudes [67].

For this reason, Michel Loève introduced the concept of harmonizable processes in [53, Section 27].

A harmonizable process {X(t), t ∈ R} is expressed as

X(t) =

∫
R

ei2πωt dξX(ω),

where ξX(ω) can be interpreted as a random amplitude associated with a frequency ω ∈ R (for

a formal definition, see Definition 1.2). The spectral analysis of such processes involves examin-

ing how different signal frequencies are correlated. To achieve this, a spectral measure is used. In

addition, there are two commonly used tools for describing such a spectral dependency. That is,

the spectral density function, which corresponds to covariance in the frequency domain, and the

coherence function, which corresponds to correlation in the frequency domain.

A fundamental subclass of harmonizable processes are stationary processes, which have uncorre-

lated frequency components (see [11, Chapter 4] and [53, Section 27]). That is, the spectral measure

has a support contained in the main diagonal of the bifrequency plane R2. In contrast, nonstation-

ary processes exhibit correlated frequencies. In recent decades, significant developments have been

made in the spectral analysis of nonstationary processes. In particular, many results were obtained

for almost periodically correlated harmonizable processes, that is, harmonizable processes with al-

most periodic mean and autocovariance functions with respect to time (see Section 1.2). Research

on these processes was pioneered by Gladyshev in 1961 [36, 37]. Harmonizable almost periodically

correlated processes are a suitable model for data generated by interacting randomness with peri-

odic phenomena exhibiting incommensurate frequencies. They have applications in fields such as

acoustics, biology, climatology, econometrics, mechanics, and telecommunications. For references,

see, for example, [1, 33, 42, 62, 78].

Dehay [17] showed that the spectral measure of harmonizable almost periodically correlated

processes has support contained in a countable union of lines parallel to the main diagonal of

the bifrequency plane. In this thesis, we study the class that generalizes a class of harmonizable

almost periodically correlated processes. Namely, we consider harmonizable processes with spectral

measure concentrated on lines with possibly non-unit slopes. These processes may result from linear

xi



time-varying transformations of almost periodically correlated processes, such as the multi-path

Doppler channel [61, Section 4]. This model effectively represents the received complex envelope in

the context of locating a moving source that emits a communication signal, using measurements

from two sensors [63].

Statistical inference for almost periodically correlated processes is well established (see, for exam-

ple, [42, 62]), including their spectral analysis [25, 50, 51, 82]. In contrast, results for harmonizable

processes with spectral measure concentrated on lines with possibly non-unit slopes remain limited.

Most studies on the spectral analysis of such processes focus on the periodogram and its various

modifications as estimators of spectral densities. To estimate spectral density functions across the

entire bifrequency plane, a time-smoothed bifrequency periodogram was proposed by Napolitano

in [60]. However, Napolitano showed that this estimator lacks mean-square consistency. Another

approach considered in the literature involves evaluating the periodogram along the (estimated)

support line [81, 83]. Unfortunately, the non-smoothed periodogram is not a mean-square consistent

estimator even for stationary processes [11, Theorem 10.3.2]. The periodogram frequency-smoothed

along a support line serves as a mean-square consistent estimator of the spectral density func-

tion corresponding to that support line [52, 61]. Moreover, this estimator has been shown to be

asymptotically normal [61].

First, we focus on the estimation of the spectral density in the case when the support line is

not known. This case is crucial because, in many real-world data applications, the location of the

support line is unknown (see, for example, [63]). In contrast to [81] and [83], we present a mean-

square consistent estimator, that is, a periodogram frequency smoothed along an estimated support

line. Another aspect of our research involves statistical inference that goes beyond point estimation

of spectral density functions, specifically by constructing confidence intervals. To do this, one needs

to derive the asymptotic distributions of the rescaled estimator. It is difficult because the asymptotic

covariance has a very complicated structure. To address this, we introduce a resampling method that

approximates the asymptotic distribution of statistics. Our approach is based on the subsampling

method, where the estimator is computed on subsamples of the data and these values are used to

approximate the sampling distribution. A key advantage of subsampling is its consistency under

relatively mild assumptions. Specifically, it only requires the existence of a non-degenerate limiting

distribution for the statistic of interest, without a prior knowledge of its exact form (including

its asymptotic variance or covariance), see e.g., [72]. We propose a continuous counterpart to the

subsampling method introduced by Politis and Romano in [74]. Although the subsampling technique

has been explored in the continuous-time setting in [4], these results are not applicable to our

problem because the required assumptions are not satisfied.

In Chapter 1, we introduce in detail the concept of harmonizable processes. We begin by com-

paring stationary processes with harmonizable nonstationary processes. Then, we discuss a class of

harmonizable periodically correlated processes. Next, we introduce harmonizable processes whose

spectral measure is concentrated on the union of lines. Finally, we provide examples of these pro-

cesses and their applications in acoustics and communications. In Chapter 2, we address the problem



of point estimating of the spectral density for harmonizable processes with spectral mass concen-

trated on lines. As an estimator, we propose a periodogram frequency-smoothed along a known

line. First, we establish the mean-square consistency of the proposed estimator under assumptions

weaker than those presented in [61, Chapter 4]. Based on that, we prove mean-square consistency

in the case where the support line is unknown but its estimator is available. We provide an ex-

ample of an estimation of the support line in a specific model. Finally, we present a result on the

asymptotic normality of the rescaled estimator. As a consequence of this result, we also derive the

asymptotic distribution of the rescaled spectral coherence estimator. In Chapter 3, we introduce the

subsampling procedure for harmonizable processes with spectral mass concentrated on lines. This

chapter begins by reviewing the notation for subsampling in time series as presented in [72]. Next,

we tailor this approach for our continuous-time processes. We establish the asymptotic properties

of the subsampling counterpart of the frequency-smoothed periodogram. In particular, we establish

the consistency of our subsampling procedure. Finally, we construct two types of subsampling-

based confidence intervals for spectral density and spectral coherence functions. In Chapter 4, we

describe the simulation study that illustrates the theoretical findings of Chapter 2 and Chapter 3.

Specifically, we conduct Monte Carlo simulations to validate the mean-square consistency of the

frequency-smoothed periodogram in both scenarios: with a known support line and an estimated

support line. Furthermore, using Monte Carlo simulation, we compare asymptotic confidence inter-

vals and two subsampling-based confidence intervals for spectral density and spectral coherence.

In Chapter 5, we present two results on analysis of nonstationary processes that go beyond

spectral analysis. In particular, we focus on the analysis of processes that exhibit irregular cyclicity.

This subject has gained increasing attention in recent years, as many biomedical signals contain such

irregularities. An example is the electrocardiogram (ECG) signal. Modeling ECG signals as processes

with cyclic regularities has significant limitations, as it requires the assumption of a constant heart

rate over time. This assumption is quite restrictive and is valid only for very short time intervals [63].

To capture this phenomenon, many new models with modulation of time and amplitude have been

developed recently [15, 34, 48, 49, 63, 65]. In [31], we provide a statistical approach for analyzing

electrocardiogram signals using amplitude-modulated time-warped periodically correlated processes,

originally proposed by Napolitano in [63]. We develop two bootstrap procedures, based on the

well-known Circular Block Bootstrap method. In [26], we propose a model that is constructed as

a superposition of cosines with a nonstationary phase-shift process and a stationary amplitude

process. The properties of the first- and second-order moments of the process are analyzed. In

addition, estimators for the asymptotic mean and autocovariance functions are introduced along

their asymptotic properties.

Finally, in Chapter 6, we summarize the results presented in this dissertation and outline possible

further research directions. Moreover, the thesis includes two appendices. Appendix A summarizes

some properties of complex-valued random variables. Appendix B contains the auxiliary lemmas

used in this thesis. In the bibliography, the PhD candidate’s papers [26, 29, 30, 31] have been

highlighted by bolding his name.





LIST OF SYMBOLS

N = {1, 2, . . .} set of natural numbers

Z = {. . . ,−2,−1, 0, 1, . . .} set of integers

R = (−∞,∞) set of real numbers

C = {a+ ib : a, b ∈ R} set of complex numbers

i =
√
−1 imaginary unit

z complex conjugate of z ∈ C
z[∗] optional complex conjugate of z ∈ C, i.e.,

z[∗] ∈ {z, z}
Re(z) real part of z ∈ C
Im(z) imaginary part of z ∈ C

⌊x⌋ = max{m ∈ Z : m ≤ x} floor of a number x ∈ R
⌈x⌉ = min{m ∈ Z : m ≥ x} ceil of a number x ∈ R

AT transposition of a matrix A

⟨x, y⟩ =
∑d

j=1 xiyi scalar product of x = [x1, . . . , xd] ∈ Cd and

y = [y1, . . . , yd] ∈ Cd

(Ω,F ,P) probability space

L(X) law of a random variable X

E(X) expected value of a random variable X

Var(X) variance of a random variable X

Cov(X,Y ) covariance of two random variables X and Y

cum(X1, . . . , Xn) joint cumulant of random variables

X1, . . . , Xn

N (µ, σ2) normal distribution with

a mean µ and a variance σ2

Nd(µ,Σ) d-dimensional normal distribution with

a mean vector µ ∈ Rd and a covariance

matrix Σ ∈ Rd×d

d−→ convergence in distribution
P−→ convergence in probability

xv



a.s almost surely, i.e. except on a set of

probability zero

a.e almost everywhere, i.e. except on a set of

measure zero

Lp(X) set of all measurable functions f : X → C
whose absolute value raised to the p-th

power has a finite integral (see [9,

Chapter 4])

L∞(X) set of all measurable bounded almost

everywhere functions f : X → C (see [9,

Chapter 4])

∥f∥p =
(∫

X |f(x)|p dx
)1/p

p-th norm of a function f : X → C with

p ≥ 1

∥f∥∞ = inf{C > 0 : |f(x)| ≤ C a.e. on X} essential supremum of a function f : X → C
(f ∗ g)(x) =

∫
R f(t)g(x− t) dt convolution of two functions f, g : R → C

1A(x) =

1, x ∈ A

0, x /∈ A
indicator function of a set A

δx =

1, x = 0

0, x ̸= 0
Kronecker delta function

sinc(x) =


sin(πx)

πx , x ̸= 0

1, x = 0
sinc function

δ(x) Dirac delta function (see [20, Chapter III])

For two functions f, g : R 7→ R, we use the following asymptotic notation:

• f(x) = O(g(x)) as x → ∞ if and only if there exists M > 0 and x0 ∈ R such that |f(x)| ≤
M |g(x)| for x0 ≥ x;

• f(x) = o(g(x)) as x → ∞ if and only if for every M > 0 there exists x0 ∈ R such that

|f(x)| ≤M |g(x)| for x0 ≥ x.

Throughout the thesis, we use the following abbreviations:

• PC – periodically correlated;

• APC – almost periodically correlated;

• JAPC – jointly almost periodically correlated;

• AM-TW APC – amplitude-modulated time-warping periodically correlated.



CHAPTER 1

HARMONIZABLE PROCESSES

This chapter reviews the concepts of spectral analysis to provide a deeper understanding of the

processes studied in this thesis. Section 1.1 recalls the definition of harmonizable processes and

demonstrates how they generalize stationary processes. Section 1.2 presents almost periodically

correlated processes as examples of nonstationary harmonizable processes with a specific spectral

dependence structure. Section 1.3 discusses a class of harmonizable processes characterized by spec-

tral mass concentrated along lines. Finally, Section 1.4 illustrates the practical applications of these

processes in acoustics and communication.

1.1 Harmonizability and stationary processes

First, we establish the basic notation for stochastic processes. A stochastic process {X(t), t ∈ R} is

a family of complex-valued random variables defined on a common probability space (Ω,F ,P) and

indexed by the set R. A second-order stochastic process is a stochastic process {X(t), t ∈ R} such

that E|X(t)|2 <∞ for all t ∈ R. A mean function of a second-order stochastic process {X(t), t ∈ R}
is µX(t) = EX(t). An autocovariance function of a second-order stochastic process {X(t), t ∈ R} is

RXX(t, s) = Cov
(
X(t), X(s)

)
= E

(
(X(t)− EX(t))(X(s)− EX(s))

)
, t, s ∈ R.

A cross-covariance function of two zero-mean second-order stochastic processes {X(t), t ∈ R} and

{Y (t), t ∈ R} is

RXY (t, s) = Cov
(
X(t), Y (s)

)
= E

(
(X(t)− EX(t))(Y (s)− EY (s))

)
, t, s ∈ R.

Furthermore, conjugate autocovariance function and conjugate cross-covariance function are given

by RXX(t, s) = Cov
(
X(t), X(s)

)
and RXY (t, s) = Cov

(
X(t), Y (s)

)
, for t, s ∈ R, respectively.

To fully characterize complex-valued processes at the second-order level, both the covariance

and conjugate covariance functions must be considered (see, e.g. [69, 70, 79, 80]). However, for

the sake of simplicity, we will focus only on the autocovariance and cross-covariance functions. To

1



1. Harmonizable processes 2

obtain results for their conjugate versions, it suffices to replace the process Y (t) with its complex

conjugation Y (t). For details on complex-valued random variables, see Appendix A.

Throughout this dissertation up to Chapter 4, we assume that all the processes considered are

zero-mean second-order stochastic processes, that is, µX(t) = 0 for all t ∈ R. Such processes are

encountered in communication and acoustics, which are our main areas of interest. However, in

general, stochastic processes may have a non-zero mean function. In particular, it is common for

almost periodically correlated processes discussed in Section 1.2.

In the following, we present the definition of the harmonizability of the covariance and the

process introduced by Michel Loève [53, Section 37].

Definition 1.1 (Harmonizable covariance [53, p. 140]). A covariance RXY (t, s) is said to be har-

monizable if there exists a covariance function FXY (ω, ν) of bounded variation on R × R such

that

RXY (t, s) =

∫∫
R2

ei2π(tω−sν) dFXY (ω, ν). (1.1)

Definition 1.2 (Harmonizable process [53, p. 140]). A second-order zero-mean stochastic process

{X(t), t ∈ R} is said to be harmonizable if there exists a second-order stochastic process ξX(ω)

with a covariance FXX(ω, ν) of bounded variation on R× R such that

X(t) =

∫
R

ei2πωt dξX(ω) a.s. (1.2)

If a stochastic process is harmonizable, then its autocovariance function is also harmonizable.

Conversely, if the covariance function of a stochastic process is harmonizable, then the process is

harmonizable [53, Section 37].

Remark 1.1. In the literature, FXY is sometimes considered as a measure (see, for example, [42,

Chapter 5]), however, we follow the definition proposed by Loève.

Remark 1.2. In the literature, spectral representations sometimes use Fourier waveforms eiωt instead

of ei2πωt. This variation can lead to ambiguities in applications, implementations, and formulas. The

presence or absence of the factor 2π may require an appropriate scaling of the Fourier transform.

Note that in this thesis, the factor 2π is present in the exponent.

Observe that equation (1.2) can be seen as the decomposition of X(t) into sine waves

ei2πωt dξX(ω) with frequencies ω and random amplitude dξX(ω). This provides a spectral repre-

sentation of the process. The function FXX associated with RXX(t, s), describes the covariance

between the spectral components dξX(ω) of X(t) and is called the spectral measure. For two har-

monizable processes X(t) and Y (t), their dependency can be analyzed in terms of the covariance

between their spectral components between frequencies using FXY . This function is known as cross-

spectral measure. A comprehensive explanation of the spectral dependence can be found in [67]. For

a complete analysis of the complex-valued process, it is essential to consider not only the spec-

tral measures FXX , F Y Y and FXY , but also the conjugate spectral measures FXX and F Y Y , and

conjugate cross-spectral measure FXY .

B. Majewski Statistical inference for harmonizable processes



1. Harmonizable processes 3

The following illustrates that the concept of a harmonizable process generalizes the spectral

representation of a stationary process.

Definition 1.3 (Wide-sense stationary process [11, p. 11]). A zero-mean second-order stochastic

process {X(t), t ∈ R} is called (wide-sense) stationary if for all t, s ∈ R we have µX(t) = µX(s)

and RXX(t, s) = RXX(t− s, 0).

For simplicity, we omit the term “wide-sense” throughout this dissertation. The autocovariance

function of stationary processes depends only on t− s. Therefore, for a stationary process X(t), we

can consider autocovariance as a function of one variable, i.e., RXX(t− s) instead of RXX(t− s, 0).

For a stationary process, we have the following spectral representation. Let {X(t), t ∈ R} be

a zero-mean second-order stationary process. Then

X(t) =

∫
R

ei2πωt dξX(ω), t ∈ R,

and

RXX(τ) =

∫
R

ei2πωτ dFXX(ω), τ ∈ R,

where FXX(ω) is a right-continuous, non-decreasing function with a bounded variation on R, and

ξX(ω) is a second-order complex-value process of orthogonal increments, i.e.,

Cov(ξX(ω1)− ξX(ω2), ξX(ω3)− ξX(ω4)) = 0, (ω1, ω2] ∩ (ω3, ω4] = ∅.

Moreover, FXX(ω) = E|ξX(ω)|2. If the spectral measure of a stationary process X(t) is absolutely

continuous, then there exists a unique function f(ω) such that dF (ω) = f(ω) dω. The function f(ω)

is called a spectral density function of the processX(t). More discussion of the spectral representation

of a stationary process can be found in [11, Chapter 4],[39, Chapter II] and [53, Chapter 37].

Observe that stationary processes are harmonizable processes with uncorrelated spectral com-

ponents dξX(ω) at different frequencies. Thus, we can write dFXX(ω, ν) = dFXX(ω)δ(ν − ω),

where δ(·) is a Dirac delta function. Nonstationary harmonizable processes, on the other hand, are

characterized by the fact that there is a correlation between spectral components of different fre-

quencies. This enables more complex dependency to be captured. In the next section, we discuss the

spectral properties of almost periodically correlated processes that are examples of nonstationary

harmonizable processes.

1.2 Harmonizable almost periodically correlated processes

In this section, we present harmonizable almost periodically correlated processes, an important class

of harmonizable nonstationary processes with a specific structure of spectral dependence. We start

our discussion with the definition of an almost periodic function introduced by Harald Bohr in [8].

Definition 1.4 (Almost periodic function [8]). A function g : R → R is called almost periodic (in

the sense of Bohr) if, for every ε > 0, there exists lε > 0 such that for any interval Iε of length lε,

there exists τε ∈ Iε such that supt∈R |g(t+ τε)− g(t)| < ε.
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Almost periodic functions generalize periodic functions. For example, consider the function

cos
(
2πt
T0

)
+ cos

(
2πt
T0

√
2

)
. This function is a sum of two periodic components with periods T1 = T0

and T2 = T0
√
2, respectively. Since these periods are incommensurate (the ratio of periods T2

T1
=

√
2

is irrational), the function is not periodic but is instead almost periodic. The crucial property of

continuous almost periodic functions is that they can be represented as the limit of a uniformly

convergent sequence of trigonometric polynomials, as shown in [5].

Definition 1.5 (Almost periodically correlated process [37]). A second-order stochastic process

{X(t), t ∈ R} is said to be almost periodically correlated (APC) when its mean function µX(t) and

autocovariance function RXX(t, t+ τ) are almost periodic with respect to t for all τ ∈ R.

Definition 1.6 (Jointly almost periodically correlated process [85]). Two second-order stochastic

process {X(t), t ∈ R} and {Y (t), t ∈ R} are said to be jointly almost periodically correlated (JAPC)

if for all τ ∈ R cross-covariance function RXY (t, t+ τ) is an almost periodic function with respect

to t.

The analysis of APC processes is often conducted by representing the covariance and conjugate

covariance functions in terms of its Fourier series. Let us assume that {X(t), t ∈ R} and {Y (t), t ∈
R} are JAPC processes. Then for any t, τ ∈ R we have

RXY (t, t+ τ) =
∑

λ∈Λτ
XY

aXY (λ, τ)e
i2πλt, (1.3)

where Λτ
XY = {λ ∈ R : aXY (λ, τ) ̸= 0}. Functions aXY (λ, τ) are Fourier coefficients given by

aXY (λ, τ) = lim
T→∞

1

T

T
2∫

−T
2

RXY (t, t+ τ)e−i2πλt dt

and are called cyclic autocovariance functions. The set ΛXY =
⋃

τ∈R Λτ
XY is countable, and its

elements are known as cycle frequencies.

Every stationary process is harmonizable, but nonstationary processes are not necessarily har-

monizable, in particular, not every APC process is harmonizable. However, if {X(t), t ∈ R} and

{Y (t), t ∈ R} are both harmonizable processes, then their spectral measure FXY is concentrated

in the union of the straight lines {(ω, ν) ∈ R2 : ν = ω − λ}, with λ ∈ ΛXY , parallel to the main

diagonal {(ω, ν) ∈ R2 : ν = ω}, see [17]. That is, we can write

dFXY (ω, ν) =
∑

λ∈ΛXY

dFXY
λ (ω)δ(ν − (ω − λ)).

Note that a function FXY
λ can be viewed as the restriction of the spectral measure FXY to the

line {(ω, ν) ∈ R2 : ν = ω − λ}. If FXY
λ is absolutely continuous, there exists the spectral density

function fXY
λ corresponding to cyclic frequencies λ ∈ ΛXY , such that dFXY

λ (ω) = fXY
λ (ω) dω. In

addition,

fXY
λ (ω) =

∫
R

aXY (λ, τ) e
−i2πωτ dτ, aXY (λ, τ) =

∫
R

fXY
λ (ω) ei2πωτ dω. (1.4)
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This is a generalization of the known relationship between the covariance function and the spectral

density in the stationary case. Spectral density functions are the Fourier transforms of the corre-

sponding cyclic autocovariance functions. For more details on the spectral theory for APC processes,

we refer to [17, 41, 42, 62].

An important subclass of APC processes is the class of periodically correlated (PC) processes [42,

Definition 1.4]. For (jointly) periodically correlated processes, the autocovariance function and cross-

covariance function are periodic with some period T0. Consequently, the set of cycle frequencies is

a subset of
{

k
T0

: k ∈ Z
}
, which means that the cyclic frequencies are integer multiples of the

reciprocal of the period T0. Note that the spectral measure for PC processes is concentrated in

a union of equidistant straight lines parallel to the main diagonal of R2.

In the following, we present an example of an APC process.

Example 1.1. Define

X(t) =
K∑
k=1

cos(2πλkt)Zk(t), t ∈ R, (1.5)

where Zk(t) are mutually independent stationary processes, 0 ≤ λ1 < . . . < λK <∞ and K ∈ N is

fixed. By γk(τ) we denote the autocovariance function of Zk(t), and ϕk(ω) represents its spectral

density function. Then a process X(t) is harmonizable APC with ΛXX = {0,±2λ1, . . . ,±2λK},

aXX(λ, τ) =


1
2

K∑
k=1

γk(τ) cos(2πλkτ), λ = 0,

1
4γk(τ)e

i2πλkτ , λ = ±2λk,

0, otherwise,

and

fXX
λ (ω) =


1
4

K∑
k=1

(ϕk(ω − λk) + ϕk(ω + λk)) , λ = 0,

1
4ϕk(ω ∓ λk), λ = ±2λk,

0, otherwise.

Observe that, there are 2K + 1 cyclic frequencies. In Figure 1.1, we illustrate the support of the

spectral measure in three cases:

• Stationary case: K = 1 and λ1 = 0;

• PC case: K = 2, λ1 = 1
4 , and λ2 = 1

2 ;

• APC case: K = 4, λ1 = 1
2 , λ2 =

√
2
4 , λ3 = 1

4 , and λ4 =
√
2
8 .

For the stationary case, the spectral measure is supported by the main diagonal of the bifrequency

plane. For the PC case, the support consists of a union of equidistant straight lines parallel to the

main diagonal. Finally, in the APC case, the support is constituted by a union of straight lines

parallel to the main diagonal but with varying distances between the lines.
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Figure 1.1: Spectral measure supports of the process given by (1.5) in three cases. Left panel: K = 1

and λ1 = 0 (stationary case). Center panel: K = 2, λ1 = 1
4 and λ2 = 1

2 (PC case). Right panel:

K = 4, λ1 = 1
2 , λ2 =

√
2
4 , λ3 = 1

4 and λ4 =
√
2
8 (APC case).

1.3 Harmonizable processes with spectral mass concentrated on

lines

In this section, we introduce a class of processes that extend harmonizable APC processes by

incorporating a more general spectral dependency structure.

Let {X(t), t ∈ R} and {Y (t), t ∈ R} be two zero-mean complex-valued harmonizable stochastic

processes. We consider the case when the support of the spectral measure FXY (ω, ν) is contained

in ⋃
(α,β)∈KXY

{
(ω, ν) ∈ R2 : ν = αω + β

}
,

where KXY ⊂ R2 is a countable set. This means that the spectral measure is constituted in the

countable union of the lines with possibly non-unit slopes. Lines ν = αω+ β, for (α, β) ∈ KXY , are

called a support lines. Note that we have

dFXY (ω, ν) =
∑

(α,β)∈KXY

dFXY
α,β (ω)δ(ν − (αω + β)). (1.6)

Such processes are the main interest of this thesis. They generalize harmonizable APC pro-

cesses, as the support lines may have non-unit slopes compared to harmonizable APC processes.

In that case, the support lines may even intersect. This makes their analysis more challenging.

These processes can be encountered in communication as linear time-variant transformations of

APC processes, which are widely recognized as suitable models for almost all modulated signals in

this domain. A specific example of such linear time-variant transformations is the multipath Doppler

channel, which introduces a different scaling amplitude, time delay, frequency shift, and time scale

factor for each path [61, Chapter 4] and [62, Chapter 13].

In the following, we provide the formula for the cross-covariance function of X(t) and Y (t).
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Proposition 1.1 ([61]). Assume that∑
(α,β)∈KXY

∫
R

|fXY
α,β (ω)|dω <∞.

Then for t, τ ∈ R

RXY (t, s) =
∑

(α,β)∈KXY

∫
R

fXY
α,β (ω)ei2πω(t−αs) dω

 e−i2πβs.

Proof. The above property follows directly from (1.1) and (1.6). See [61, Theorem 4.2.9].

The formula shown in Proposition 1.1 recalls the Fourier representation (1.3) and relations (1.4)

for APC processes (all slopes equal one). However, in the case considered, the “Fourier coefficients”

depend on time t and s, not only on the lag parameter τ = t − s. As a result, analyzing the

characteristics of these processes in the time domain becomes difficult because of their complex

structure. Therefore, spectral analysis provides a more efficient approach for their examination.

Remark 1.3. The processes introduced in this section are special cases of spectrally correlated

processes, also known in the literature as simple processes [81, 83]. Spectrally correlated processes

processes are characterized by a spectral measure that is supported by a countable union of curves.

For further details, see [61, Chapter 4] and [81, 83].

1.4 Examples in acoustics and communications

In this section, we discuss possible applications in acoustics and communications of harmonizable

processes with spectral mass concentrated on lines.

Example 1.2. Consider a process given by

X(t) = Z(t) +

K∑
k=1

ckZ(sk(t− τk)) cos(2πλkt), t ∈ R, (1.7)

where the process Z(t) is stationary, c1, . . . , cK ∈ C are complex amplitudes, 0 < λ1 < . . . < λK <

∞ are frequencies, s1, . . . , sK > 0 are time-scale factors, τ1, . . . , τK ∈ R are time delays, and K ∈ N.

The model (1.7) can be used for acoustic and communication signals of a multi-path character. It

contains time delays τk and Doppler stretches sk, which arise due to different propagation speeds

along different paths for a single receiver [52].

Let us now study the spectral properties of this model. While these proprieties are studied in [52]

only for K = 1, we extend them to any K ∈ N. For simplicity, we take τk = 0 for all k = 1, . . . ,K.

Since Z(t) is stationary, its spectral measure can be expressed as dFZZ(ω, ν) = ϕ(ω)δ(ν − ω) dω,

where ϕ(ω) is spectral density function of Z(t). Then by (1.1)

Cov(X(t), X(u)) =

K∑
k=0

K∑
j=0

ckcj cos(2πλkt) cos(2πλju)

∫∫
R2

ei2π(ξskt−ζsju) dFZZ(ξ, ζ),
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wit c0 = s0 = 1 and λ0 = 0. Using Euler formulas we get

cos(2πλkt) cos(2πλju) =
1

4

(
ei2π(λkt+λju) + ei2π(λkt−λju) + e−i2π(λkt−λju) + e−i2π(λkt+λju)

)
.

By changing variables ω = ξsk ± λk and ν = ζsj ∓ λj , we have

e±i2π(λkt+λju)

∫∫
R2

ei2π(ξskt−ζsju) dFZZ(ξ, ζ) =

∫∫
R2

ei2π(ωt−νu) dFZZ

(
ω∓λk
sk

,
ν±λj

sj

)
,

and by changing variables ω = ξsk ∓ λk and ν = ζsj ± λj , we have

e±i2π(λkt−λju)

∫∫
R2

ei2π(ξskt−ζsju) dFZZ(ξ, ζ) =

∫∫
R2

ei2π(ωt−νu) dFZZ

(
ω∓λk
sk

,
ν∓λj

sj

)
.

Consequently,

Cov(X(t), X(u)) =

∫∫
R2

ei2π(ωt−νu) dFXX(ω, ν),

where

dFXX(ω, ν) =
1

4

K∑
k=0

K∑
j=0

ckcj

(
dFZZ

(
ω−λk
sk

,
ν+λj

sj

)
+ dFZZ

(
ω−λk
sk

,
ν−λj

sj

)

+ dFZZ

(
ω+λk
sk

,
ν+λj

sj

)
+ dFZZ

(
ω+λk
sk

,
ν−λj

sj

))

=
1

4

K∑
k=0

K∑
j=0

ckcj
sk

(
ϕ
(
ω−λk
sk

)
δ
(
ν −

(
sj
sk
(ω − λk)− λj

))
dω

+ ϕ
(
ω−λk
sk

)
δ
(
ν −

(
sj
sk
(ω − λk) + λj

))
dω

+ ϕ
(
ω+λk
sk

)
δ
(
ν −

(
sj
sk
(ω + λk)− λj

))
dω

+ ϕ
(
ω+λk
sk

)
δ
(
ν −

(
sj
sk
(ω + λk) + λj

))
dω.

From the above, we can identify six types of support lines and their corresponding spectral

density functions.

• For the main diagonal {(ω, ν) ∈ R2 : ν = ω}, the spectral density is given by

f1,0(ω) = ϕ(ω) +
1

4

K∑
k=1

|ck|2

sk

(
ϕ
(
ω−λk
sk

)
+ ϕ

(
ω+λk
sk

))
• For support lines {(ω, ν) ∈ R2 : ν = ω ± 2λk}, where k = 1, . . . ,K, the spectral density is

given by

f1,β(ω) =
1

2

K∑
k=1

|ck|2

sk
ϕ
(
ω±λk
sk

)
,

• For support lines {(ω, ν) ∈ R2 : skω ± λk}, where k = 1, . . . ,K, the spectral density is given

by

fα,β(ω) =
1

2

K∑
k=1

ckϕ(ω),
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• For support lines {(ω, ν) ∈ R2 : ν = 1
sk
(ω ± λk)}, where k = 1, . . . ,K, the spectral density is

given by

fα,β(ω) =
1

2

K∑
k=1

ck
sk
ϕ
(
ω±λk
sk

)
,

• For support lines {(ω, ν) ∈ R2 : ν =
sj
sk
(ω±λk)±λj}, where k, j = 1, . . .K, k ̸= j, the spectral

density is given by

fα,β(ω) =
ckcj
4sk

ϕ
(
ω±λk
sk

)
• For support lines {(ω, ν) ∈ R2 : ν =

sj
sk
(ω±λk)∓λj}, where k, j = 1, . . .K, k ̸= j, the spectral

density is given by

fα,β(ω) =
ckcj
4sk

ϕ
(
ω±λk
sk

)
To simplify the indexing of spectral densities, the subscripts α and β in fα,β(ω) denote slope and

intercept of the support lines, respectively.

Note that the number of support lines is 1+3 ·2K+2 ·2K(K−1) = 4K2+2K+1. For the case

of τk ̸= 0, the formulas for the support lines are the same and spectral density formulas include an

additional complex exponential depending on sk, λk, τk, ω.

Figure 1.2 shows an example of the spectral measure support of X(t) with K = 1, λ1 = 0.25
π

and s1 = 1
2 . Observe that there are 7 support lines in the bifrequency plane (ω, ν) ∈ R2, specifically

ν = ω, ν = sω ± η, ν =
ω ± η

s
, ν = ω ± 2η,

These support lines intersect at 12 points.

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

=

Figure 1.2: Spectral measure support of the process given by (1.7) with K = 1, λ1 = 0.25
π and

s1 =
1
2 .
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Example 1.3. Consider two processes given by

Xj(t) = cjZ(sj(t− τj))e
i2πηjt, j = 1, 2, (1.8)

where Z(t) is an APC process, s1, s2 > 0 are time-scale factors, η1, η2 ∈ R are frequency shifts,

τ1, τ2 ∈ R are time delays, and c1, c2 ∈ C are complex amplitudes. A system of processes (1.8)

is applicable in the problem of locating a moving source emitting a communication signal, based

on measurements from two sensors [63]. Let Z(t) be a signal transmitted by a moving source

(e.g., aircraft, rockets, or other hostile jamming emitters) and received by the two sensors (as

in Figure 1.3). If the relative radial speeds between the moving source and each receiver remain

constant within the observation interval, the received complex envelope signals can be modeled as

follows

Yj(t) = Xj(t) + εj(t), j = 1, 2,

where ε1(t) and ε2(t) are additive random noises generated by the same intentional jammer.

In [63], the following statistical properties of such a model have been shown. Assume that Z(t)

is harmonizable APC with

RZZ(t, t+ τ) =
∑

λ∈ΛZZ

aZZ(λ, τ)e
i2πλt,

where ΛZZ is a countable set. Let FZZ denote the spectral measure of Z(t), and fZZ
λ , λ ∈ ΛZZ ,

represent the spectral density functions of Z(t). Then the cross-covariance functions of Xj(t) and

Xk(t) is given by

RXjXk
(t, t+τ) = cjcke

−i2πηkτei2π(ηj−ηk)te−i2πλsjτj
∑

λ∈ΛZZ

aZZ(λ, t(sk−sj)+sjτj+sk(τ−τk))ei2πsjλt.

Clearly, if j = k, we get that processes Xj(t) are APC with cyclic frequencies ΛXjXj = {sjλ : λ ∈
ΛZZ}. If j ̸= k, the function RXjXk

(t, t + τ) is almost periodic with respect to t if and only if

s1 = s2. Consequently, X1(t) and X2(t) are not JAPC.

moving source: Z(t)

interferer

sensor #1: Y1(t)

sensor #2: Y2(t)

Figure 1.3: A moving source transmits a signal Z(t), which is received by two sensors. The first sensor

receives the signal Y1(t) and the second receives Y2(t). The interferer can come from intentional

jamming.
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Let us examine the spectral properties of these processes. Note that by (1.1)

RXjXk
(t, u) = cjck Cov(Z(sj(t− τj), Z(sk(u− τk))e

i2πηjte−i2πηku

= cjck

∫∫
R2

ei2π(ξsj(t−τj)−ζsk(u−τk)) dFZZ(ξ, ζ) e
i2πηjte−i2πηku

= cjck

∫∫
R2

ei2π(ξsj+ηj)te−i2π(ζsk+ηk)ue−i2πsjξτjei2πskζτk dFZZ(ξ, ζ).

By changing variables ω = ξsj + ηj and ν = ζsk + ηk, we obtain

RXjXk
(t, u) = cjck

∫∫
R2

ei2πωte−i2πνue−i2π(ω−ηj)τjei2π(ν−ηk)τk dFZZ
(
ω−ηj
sj

, ν−ηk
sk

)
=

∫∫
R2

ei2π(ωt−νu) dFXjXk (ω, ν) ,

where

dFXjXk (ω, ν) = cjcke
−i2π(ω−ηj)τjei2π(ν−ηk)τk dFZZ

(
ω−ηj
sj

, ν−ηk
sk

)
=

cjck
sj

∑
λ∈ΛZZ

e−i2π(ω−ηj)τjei2π(ν−ηk)τkfZZ
λ

(
ω−ηj
sj

)
δ
(
ν−ηk
sk

−
(
ω−ηj
sj

− λ
))

dω.

Moreover,
ν − ηk
sk

−
(
ω − ηj
sj

− λ

)
= 0

is equivalent to

ν −
(
sk
sj
(ω − ηj) + ηk − skλ

)
= 0.

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

=

=
s 2

s 1

Figure 1.4: A comparison of the support of the cross-spectral measure FX1X2 with parameters

η1 = η2 = 0, s1 = 1.1 and s2 = 0.9 (black lines) with the support of spectral measure FZZ (dashed

gray lines).
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Therefore, the cross-spectral measure FX1X2 is concentrated on the union of lines⋃
λ∈ΛZZ

{
(ω, ν) ∈ R2 : ν = sk

sj
(ω − ηj) + ηk − skλ

}
.

Note that all lines have the same slope sk
sj

. The spectral density functions corresponding to these

lines are expressed as

f
XjXk

α,β (ω) =
cjck
sj
fZZ
λ

(
ω−ηj
sj

)
e−i2π(ω−ηj)τje

i2π
((

sk
sj

(ω−ηj)+ηk−skλ
)
−ηk

)
τk

=
cjck
sj

fZZ
λ

(
ω−ηj
sj

)
e−i2πskλτk e

−i2π(ω−ηj)
(
τj−

sk
sj

τk

)
,

with (α, β) =
(
sk
sj
,− sk

sj
ηj + ηk − skλ

)
, λ ∈ ΛZZ .

In Figure 1.4, examples comparing the supports of the spectral measures FZZ and FX1X2 are

presented with η1 = η2 = 0 and s1 = 1.1 and s2 = 0.9. Non-zero νj only influences the intercept of

all the lines and is therefore omitted.

More motivating examples can be found in [44, p. 904], where a wideband communication

scenario is discussed, and in [59, p. 204], who cover ocean acoustic tomography. A related case for

seismic applications is presented in [12].
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CHAPTER 2

SPECTRAL DENSITY ESTIMATION PROBLEM

In this chapter, we focus on the problem of spectral density estimation for harmonizable pro-

cesses whose spectral measures are concentrated on a union of lines. In Section 2.1, we propose the

frequency-smoothed periodogram along the support lines as an estimator of the spectral density

function. In Section 2.2, we demonstrate the mean-square consistency of the normalized frequency-

smoothed periodogram in two scenarios: when the support line is known and when it is unknown.

Moreover, in Section 2.2.3, we present the estimation procedure of the support line in a specific

model, with applications to locate a moving source. In Section 2.3, we provide the asymptotic dis-

tribution of the rescaled estimator in the case where the support lines are known. Finally, Section 2.4

includes proofs of the results.

All theorems, propositions, and corollaries in this chapter are original contributions. These results

can be found in [29, 30].

2.1 Periodogram frequency-smoothed along the line

Let X(t) and Y (t) be two zero-mean complex-valued harmonizable stochastic processes with cross-

spectral measure supported on a countable union of lines (see Section 1.3). Fix T > 0, and assume

that we observe X(t) and Y (t) in the interval
[
−T

2 ,
T
2

]
. The bifrequency periodogram of observed

processes X(t) and Y (t) is defined as

IXY
T (ω, ν) =

1

T
DX

T (ω) DY
T (ν) , (ω, ν) ∈ R2,

where

DX
T (ω) =

T
2∫

−T
2

X(t)w
(
t
T

)
e−i2πωt dt, DY

T (ω) =

T
2∫

−T
2

Y (t)w
(
t
T

)
e−i2πωt dt,

are the short-time Fourier transform of X(t) and Y (t), respectively. We assume that the function

w is even with compact support
[
−1

2 ,
1
2

]
. The function wT (t) = w

(
t
T

)
is referred to as the data-

tapering window. Data tapering is applied in spectral density estimation to reduce spectral leakage

13
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(the spectral power at a single frequency leaks into all frequencies around), particularly when the

spectral density function exhibits high peaks (see, for example, [7]). Some authors consider the

complex-valued window w since an appropriate choice of such a window can reduce the bias of the

estimator by orders of magnitude [71]. Our consideration can be easily generalized to this case.

For stationary processes, the spectral density estimator is obtained by setting ν = ω, which

corresponds to computing the periodogram along the main diagonal of the bifrequency plane [10, 11].

In the case of harmonizable APC processes, the periodogram is calculated along the line ν = ω−λ to

estimate the spectral density function associated with the cyclic frequency λ [42, 50, 62]. Therefore,

in our case, it is natural to compute the periodogram along the support line of interest. This approach

is considered in [81, 83]. However, it has been established that the periodogram is not mean-square

consistent, even for stationary processes [11, Theorem 10.3.2]. To obtain a mean-square consistent

spectral density estimator, smoothing techniques can be applied. We focus on the periodogram

frequency-smoothed along the support line. This estimator is studied in [29, 30, 52, 61].

Let q : R → R be an even and continuous function on the interval
(
−1

2 ,
1
2

)
with compact support[

−1
2 ,

1
2

]
. The function qhT

(ω) = 1
hT
q
(

ω
hT

)
is referred to as the frequency-smoothing window with

a bandwidth hT = O (T−κ), κ ∈ (0, 1). Then the spectral density function corresponding to the line{
(ω, ν) ∈ R2 : ν = αω + β

}
can be estimated by the normalized periodogram frequency-smoothed

along the line

f̂XY
α,β (ω) =

f̃XY
α,β (ω)

E(α)
, (2.1)

where f̃XY
α,β (ω) is the periodogram frequency-smoothed along the line, defined as

f̃XY
α,β (ω) =

∫
R

IXY
T (µ, αµ+ β) 1

hT
q
(
ω−µ
hT

)
dµ,

and E(α) is the normalizing factor, given by

E(α) =
∫
R

W (ν)W (−αν) dν.

By W we denote a Fourier transform of w, that is, W (ν) =
∫
Rw(t)e

−i2πνt dt. Note that W is well

defined if w ∈ L1(R), particularly when w is a continuous function on the interval
(
−1

2 ,
1
2

)
with

compact support
[
−1

2 ,
1
2

]
. For more details on Fourier transforms, see [77].

The normalizing factor E(α) is required to obtain an asymptotically unbiased estimator of the

spectral density function along the line with slope α [29, 30, 52, 61]. It depends only on the choice

of data-tapering window w and considered slope α. Using the properties of the Fourier transform,

we derive the formula for the normalizing factor in terms of w. Furthermore, we demonstrate that

the normalizing factor has positive values. In particular, it is non-zero, and hence division by it is

possible.

B. Majewski Statistical inference for harmonizable processes
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Window w(t) W (ν) E(α)

Rectangular

1, |t| ≤ 1
2

0, |t| > 1
2

sinc(ν)

1, |α| ≤ 1

1
|α| , |α| > 1

Triangular

1− 2|t|, |t| ≤ 1
2

0, |t| > 1
2

sinc2(ν)


1
2 − |α|

6 , |α| ≤ 1

1
2|α| −

1
6|α|2 , |α| > 1

Hann

cos2(πt), |t| ≤ 1
2

0, |t| > 1
2

1
2
sinc(ν)
1−ν2

1 + sinc(α) + 1
2(sinc(1− α) + sinc(1 + α))

Table 2.1: Three examples of window functions w(t), along with their Fourier transforms W (ν) and

normalizing factors E(α) as a function of α.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Window functions w(t)

4 3 2 1 0 1 2 3 4

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fourier transforms W( )

4 3 2 1 0 1 2 3 4
0.5

0.0

0.5

1.0

1.5

2.0

Normalazing factors ( )

Rectangular Triangular Hann

Figure 2.1: Top panel: windows w(t). Middle panel: Fourier transforms W (ν). Bottom panel: the

normalizing factor E(α) as a function of α. Blue line: rectangular window function. Orange line:

triangular window function. Green line: Hann window function.
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Proposition 2.1. Assume that w is a non-negative continuous function on the interval
(
−1

2 ,
1
2

)
with compact support

[
−1

2 ,
1
2

]
. Then for all α ̸= 0

E(α) =

1
2 min

(
1,

1
|a|

)∫
−1
2 min

(
1,

1
|a|

) w(t)w(αt) dt.

Moreover, for all α ̸= 0

0 < |E(α)| ≤ ∥w∥2∞min
(
1, 1

|a|

)
. (2.2)

Proof. This result is a special case of Proposition 3.1 given in Chapter 3.

The normalizing factors E(α) corresponding to some commonly used windows w are presented

in Table 2.1. Here, sinc(·) is a sinc function i.e. sinc(ν) = sin(πν)
πν for ν ̸= 0 and sinc(0) = 1. Observe

that the normalizing factor reaches the upper bound (2.2) for the rectangular window. Figure 2.1

illustrates window functions given in Table 2.1 with their Fourier transforms and normalizing factors.

In the following sections, we investigate the asymptotic properties of the normalized frequency-

smoothed periodogram along the line.

2.2 Mean-square consistency of the spectral density estimator

In this section, we establish the mean-square consistency of the normalized frequency-smoothed

periodogram along the line in two cases: when the support line is known and when it is unknown.

The results discussed here are based on those presented in [30].

2.2.1 Known support line case

First, we focus on the scenario where the slope and intercept of the support line are known.

Assumption 2.1. Consider the following assumptions.

(i) For any V1, V2 ∈ {X,Y,X, Y }, processes {V1(t), t ∈ R} and {V2(t), t ∈ R} are zero-mean

harmonizable and

Cov (V1(t), V2(s)) =
∑

(α,β)∈KV1V2

∫
R

fV1V2
α,β (ω) ei2π(ωt−(αω+β)s) dω,

where KV1V2 is a finite set in R2 and α > 0, for (α, β) ∈ KV1V2 . The spectral density functions

fV1V2
α,β (ω) are almost everywhere continuous and belong to L1(R) ∩ L∞(R).

(ii) The function w is even, non-negative, continuous on the interval
(
−1

2 ,
1
2

)
, with compact sup-

port
[
−1

2 ,
1
2

]
. Moreover, its Fourier transform W is continuous, and W ∈ L

4
3 (R) ∩ L2(R) ∩

L∞(R).

(iii) The function q is even, non-negative, continuous on the interval
(
−1

2 ,
1
2

)
, with compact support[

−1
2 ,

1
2

]
. Moreover,

∫
R q(ω) dω = 1.

B. Majewski Statistical inference for harmonizable processes
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(iv) For any V = (V1, V2, V3, V4), with Vj ∈ {X,Y,X, Y }, we have

cum (V1(t1), V2(t2), V3(t3), V4(t4))

=
∑

k=(α1,α2,α3,β)∈KV

∫∫∫
R3

fVk (η1, η2, η3) e
i2π(η1t1+η2t2+η3t3+ΦV

k (η1,η2,η3)t4) dη1 dη2 dη3,

where a set KV is a finite in R3, and ΦV
k (η1, η3, η3) = α1η1 + α2η2 + α3η3 + β, with αj > 0,

j = 1, 2, 3. The functions fVk (η1, η2, η3) are almost everywhere continuous and belong to

L1(R3) ∩ L∞(R3).

By the condition (i) we impose mild regularity conditions on the spectral density functions. We

assume a finite number of lines to ensure the validity of interchanging sums with integrals and limits

in the proofs. The assumption (ii) on the data-tapering window is less restrictive than Assumption

4.6.2 in [61], where it is required that W ∈ L1(R). Moreover, the commonly used rectangular window

function does not meet the assumption considered in [61]. The assumption (iii) is a typical condition

for smoothing windows in spectral density estimation problems. This condition is met, for example,

by the windows listed in Table 2.1, normalized to have a unit area. By the condition (iv) we establish

the regularity of higher-order spectral densities. This assumption is satisfied by various signals, such

as those encountered in telecommunications, which are often modifications of harmonizable APC

processes with almost periodic fourth-order moments [61, 62]. For the definition of the joint cumulant

of complex-valued random variables, see Appendix A.

In the following, we present results on the asymptotic expected value and covariance of the

normalized frequency-smoothed periodogram along the line.

Theorem 2.1. Let conditions (i),(ii) and (iii) in Assumption 2.1 hold. Let (α, β) ∈ KXY be fixed.

Then for every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}, we have

lim
T→∞

E
[
f̂XY
α,β (ω)

]
= fXY

α,β (ω).

Proof. See Section 2.4.

Remark 2.1. In order to prove Theorem 2.1, the condition W ∈ L
4
3 (R) is not required.

Theorem 2.2. Let Assumption 2.1 holds. Let (α1, β1), (α2, β2) ∈ KXY be fixed. Then for ω1, ω2 ∈ R
excluding points of intersection of support lines, we have

lim
T→∞

ThT Cov
(
f̂XY
α1,β1

(ω1), f̂
XY
α2,β2

(ω2)
)

=
∑

(γ1,δ1)∈KY Y

∑
(γ2,δ2)∈KXX

fY Y
γ1,δ1 (ω1) f

XX
γ2,δ2 (−α1ω1 − β1) Q(γ1)

W0(α2γ1, γ2, α2)

E(α1) E(α2)

× δα2γ1−γ2α1 δα2δ1−γ2β1+δ2+β2 δγ1ω1+δ2−ω)2,

+
∑

(γ1,δ1)∈KY X

∑
(γ2,δ2)∈KXY

fY X
γ1,δ1(ω1) f

XY
γ2,δ2(−α1ω1 − β1)Q(γ1α1)

W0(α2γ2, α2, γ1)

E(α1) E(α2)

× δγ1−α2γ2α1 δα2δ2+β2+δ1−α2γ2β1 δω2+γ2(α1ω1+β1)−δ2 ,
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where

Q(a) =

∫
R

q(λ)q(aλ) dλ,

W0(a1, a2, a3) =

∫
R

∫
R

∫
R

W (η1)W (η2)W (η2)W (a1η1 + a2η2 + a3η3) dη1 dη2 dη3.

Proof. This result is a special case of Theorem 3.3 given in Chapter 3.

Based on the above results, we establish the mean-square consistency of the normalized estimator

for the spectral density function at points that are not the intersection of the support lines.

Corollary 2.1. Let Assumption 2.1 holds. Let (α, β) ∈ KXY be fixed. Then for every ω ∈ R such

that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}, we have

lim
T→∞

E
∣∣∣f̂XY

α,β (ω)− fXY
α,β (ω)

∣∣∣2 = 0.

Proof. The proof follows immediately from Theorems 2.1 and 2.2.

Mean-square consistency can also be achieved under alternative assumptions.

Remark 2.2. The theses of Theorem 2.2 and Corollary 2.1 hold if condition (iv) in Assumption 2.1

is substituted with any of the following:

(iv)′ For any k ∈ N and l ∈ N, and for any time instants t1, . . . , tk, s1, . . . , sl ∈ R, the vector

[X(t1), . . . , X(tk), Y (s1), . . . , Y (sl)]
T has a multivariate normal distribution.

(iv)′′ There exists a positive constant K4 > 0 such that for all T > 0

sup
t∈
[
−T

2
,T
2

]
T
2∫

−T
2

T
2∫

−T
2

T
2∫

−T
2

∣∣∣cum(Y (t), X(s), Y (u), X(v)
)∣∣∣ ds dudv ≤ K4.

From (iv)′, it follows that all cumulants of order higher than two are zero, simplifying the proof of

Theorem 2.2. Assumption (iv)′′ facilitates the proof of Theorem 2.2 compared to the proof conducted

under condition (iv) or (iv)′. Since our results can be applicable to communication (see Section 1.4),

it should be noted that the cumulants of communication signals can often be calculated analytically,

and their summability can be proven, not just assumed [61, 62].

2.2.2 Unknown support line case

In the previous subsection, we assumed that the slope α and intercept β of the support line are

known. However, this scenario has limited practical applicability in many real-world data applica-

tions (see, for example, [63]). Therefore, in this subsection, we consider the estimation of the spectral

density corresponding to unknown support lines, assuming that the estimation of the support lines

is feasible. Our approach consists of replacing the unknown slope α and the intercept β with their

estimators. By α̂T and β̂T we denote the estimators of α and β, respectively. Then we propose the
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periodogram frequency-smoothed along the estimated support line ν = α̂Tω + β̂T as an estimator

for fXY
α,β (ω). That is,

f̂XY
α̂T ,β̂T

(ω) =
1

E (α̂T )

∫
R

IXY
T

(
µ, α̂Tµ+ β̂T

)
1
hT
q
(
ω−µ
hT

)
dµ.

To obtain mean-square consistent of the above estimator we consider Assumption 2.1 with the

following additional assumptions.

Assumption 2.2. Consider the following assumptions.

(i) The function w is a rectangular function (see Table 2.1).

(ii) Both processes {X(t), t ∈ R} and {Y (t), t ∈ R} are uniformly bounded, i.e., there exist

positive constants MX ,MY > 0 such that |X(t)| ≤MX and |Y (t)| ≤MY a.s. for all t ∈ R.

(iii) Condition (iii) in Assumption 2.1 holds. The inverse Fourier transform Q(t) =
∫
R q(ν)e

i2πνt dν

of the window function q belongs to L1(R) and its derivative Q′ exists and Q′ ∈ L1(R).

(iv) The estimators satisfy lim
T→∞

T r E |α̂T − α|2 = 0 and lim
T→∞

T r E
∣∣∣β̂T − β

∣∣∣2 = 0, with some r > 0.

Moreover, lim
T→∞

α̂T = α a.s.

The assumption (i) facilitates the proof. The relaxation of this assumption is addressed in Re-

mark 2.3. The assumption (ii) is generally satisfied by most signals used in applications such as

communications, radar, sonar, and telemetry, as discussed in [62, Chapter 7]. In addition, mea-

surements in fields such as acoustics, mechanics, econometrics, biology, and hydrology are typically

uniformly bounded, as discussed in [62, Chapter 10]. The assumption (iii) holds for various win-

dows, including the triangular window. An example illustrating where condition (iv) is satisfied is

provided in Section 2.2.3.

In the following, we demonstrate the mean-square consistency of the normalized frequency-

smoothed periodogram along the estimated support line.

Theorem 2.3. Let Assumption 2.1 and Assumption 2.2 hold. Let (α, β) ∈ KXY be fixed. Then for

every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}, we have

lim
T→∞

E
∣∣∣f̂XY

α̂T ,β̂T
(ω)− fXY

α,β (ω)
∣∣∣2 = 0,

with hT = O(T−κ), κ ∈
(
0, r−2

2

]
and r > 2.

Proof. See Section 2.4.

Remark 2.3. The proof of Theorem 2.3 presented in Section 2.4 is performed for the most general

case of a window w satisfying the condition (ii) of Assumption 2.1. The rectangular window w is

considered only where the convergence in the second moment of 1
E(α) −

1
E(α̂T ) to zero is proven.

To obtain this convergence, instead of the rectangular data-tapering window w (condition (i) in

Assumption 2.2), one can impose the following assumptions on w, specifically on the corresponding
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normalizing factor E(α). Assume that there exists a positive constant c > 0 such that E(α) > c

for all α ∈ R, and E(α) is a Lipschitz function with constant L > 0. These assumptions hold, for

instance, for the Hann window. Then

E
∣∣∣∣ 1

E(α)
− 1

E(α̂T )

∣∣∣∣2 = E
∣∣∣∣E(α̂T )− E(α)
E(α) E(α̂T )

∣∣∣∣2 < c−4 E |E(α̂T )− E(α)|2 ≤ Lc−4 E |α̂T − α|2 .

In this case, we do not have to assume that the estimator α̂T converges almost surely to α.

The natural question arises whether there exist support line estimators that satisfy condition (iv)

in Assumption 2.2. The following subsection presents a method for estimating support lines in some

specific model.

2.2.3 Example of support lines estimation in specific model

In this subsection, we provide an estimation procedure for the support line parameters in the model

presented in Example 1.3. Namely, we observe two processes

Xj(t) = cjZ(sj(t− τj))e
i2πηjt, j = 1, 2,

for t ∈ [−T
2 ,

T
2 ]. We assume that a process {Z(t), t ∈ R} is an unobserved harmonizable APC

process with the following autocovariance and conjugate autocovariance functions

RZZ(t, t+ τ) =
∑
λ∈Λ

aZZ(λ, τ)e
i2πλt, RZZ(t, t+ τ) =

∑
γ∈Γ

aZZ(γ, τ)e
i2πγt,

where Λ and Γ are a known countable set. The parameters c1, c2, s1, s2, τ1, τ2, η1, η2 are unknown.

As stated in Example 1.3, the autocovariance function of Xj(t) can be written in terms of Fourier

representation. That is,

RXjXj (t, t+ τ) =
∑

λj∈Λj

aXjXj (λj , τ)e
i2πλjt,

where Λj = {sjλ : λ ∈ Λ}. Similarly, one can show that

RXjXj
(t, t+ τ) =

∑
γj∈Γj

aXjXj
(γj , τ)e

i2πγjt,

where Γj = {sjγ + 2ηj : γ ∈ Γ}. In Example 1.3, we also show that spectral measure FX1X2 is

concentrated on the union of lines⋃
λ∈Λ

{
(ω, ν) ∈ R2 : ν =

sk
sj

(ω − ηj) + ηk − skλ

}
.

Note that sj =
λj

λ and ηj = 1
2(γj − sjγ). By λj = sjλ and γj = sjγ +2ηj we denote the frequencies

corresponding to specific cyclic frequencies λ ∈ Λ and γ ∈ Γ, respectively. Then slope α and intercept

β of support lines can we written as follows

α =
sk
sj

=
λk
λj
, β = −sk

sj
ηj + ηk − skλ =

1

2

(
γk −

λk
λj
γj

)
− λk.
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Since processes X1(t) and X2(t) are observed, one can estimate their cyclic frequencies λj and

γj , allowing for the estimation of support line parameters. By λ̂j and γ̂j we denote estimators of

λ and γ, respectively. Then ŝj =
λ̂j

λ and ν̂j = 1
2(γ̂j − ŝjγ) and the estimators of α and β can be

obtained by the following formulas

α̂T =
λ̂k

λ̂j
, β̂T =

1

2

(
γ̂k −

λ̂k

λ̂j
γ̂j

)
− λ̂k. (2.3)

In the following, we establish the asymptotic properties of α̂T and β̂T .

Proposition 2.2. Let λ̂j and γ̂j be estimators of λj ̸= 0 and γj, respectively, for j = 1, 2. Assume

that there exist positive constants mj ,Mj such that 0 < mj ≤ λ̂j ≤Mj a.s., and

lim
T→∞

T r E
∣∣∣λ̂j − λj

∣∣∣2 = lim
T→∞

T r E
∣∣∣γ̂j − γj

∣∣∣2 = 0,

with some r > 0, and lim
T→∞

λ̂j = λj a.s. Then the estimators of α and β given by (2.3) satisfy the

condition (iv) of Assumption 2.2.

Proof. See Section 2.4.

Now, we briefly present the cycle frequency estimation proposed in [13, 14]. Let λ∗ ∈ Λ be the

known frequency that corresponds to the strongest cyclic characteristic of Z(t). For most commu-

nication signals, λ∗ is the smallest non-negative cycle frequency. Assume that there exists a known

compact interval denoted by C(λ∗, δλ∗) that contains λ∗ with width δλ∗ such that it contains only

one cycle frequency of Xj(t) denoted by λ∗j = sjλ
∗ ∈ Λj . In the problem of locating a moving source,

it can be shown that the width δλ∗ is proportional to the maximum magnitude of the relative radial

speeds [63]. Then the estimator of λ∗j has the form

λ̂∗j = argmax
µ∈C(λ∗,δλ∗)

∫
Tj

∣∣âXjXj (µ, τ)
∣∣2 dτ, (2.4)

where the set Tj is such that aXjXj (λ
∗
j , τ) ̸= 0 for τ ∈ Tj . By âXjXj (µ, τ) we denote an estimator of

aXjXj (µ, τ) obtained by

âXjXj (µ, τ) =
1

T

T
2∫

−T
2

Xj(t+ τ)Xj(t)1[−T
2 ,

T
2

](t+ τ) e−i2πµt dt.

The estimator of γj is defined analogously starting from âXjXj
(µ, τ). Another method of estimating

cycle frequency is presented in [19].

Note that the estimator λ̂j is bounded, since we are looking for the cycle frequency λj within

a certain compact interval. Moreover, in [13, 14] it is shown that under the assumption of

summability of cumulants of the process, the estimator λ̂j of the cycle frequency λj satisfies

lim
T→∞

T 3E
∣∣∣λ̂j −λj∣∣∣2 = σ2λj

and lim
T→∞

T
∣∣∣λ̂j −λj∣∣∣ = 0 a.s. These assumptions hold and are verified, for

example, for communication signals. Consequently, the estimator (2.4) satisfies the assumptions of

Proposition 2.2 with all r ≤ 3.

The above estimation procedure of α and β has been discussed in [63], but without any theoretical

results.
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2.3 Asymptotic distribution of the rescaled spectral estimators

The next asymptotic property of the normalized periodogram frequency-smoothed along the line

that we present is its asymptotic normality. Moreover, we establish the asymptotic distribution of

the rescaled spectral coherence estimator. In this section, we concentrate on the scenario in which

the support lines are known. The results discussed here are based on those presented in [29]. To be

consistent with the previous section, we assume that the observation interval of X(t) and Y (t) is[
−T

2 ,
T
2

]
. However, in [29], we address a more general form of the observation interval. The general

case, essential for the subsampling procedure, is explored in Chapter 3. Therefore, all proofs of the

theorems outlined in this section can be found in Chapter 3.

2.3.1 Asymptotic distribution of the rescaled spectral density estimator

To obtain an asymptotic normality of the normalized periodogram frequency-smoothed along the

line, we consider Assumption 2.1 and the following additional conditions.

Assumption 2.3. Consider the following assumptions.

(i) There exists a positive constant KW > 0 such that sup
x∈R

|xW (x)| = KW .

(ii) For all (α, β) ∈ KXY , there exists a first derivative fXY
α,β

′ that belongs to L2(R) ∩ L∞(R).

(iii) For any r ∈ N and for any V = (V1, . . . , Vr), with V1, . . . , Vr ∈ {X,Y,X, Y }, we have

cum (V1(t1), . . . , Vr(tr)) =
∑

k=(α1,...,αr−1,β)∈KV

∫
· · ·
∫

Rr−1

fVk (η1, . . . ηr−1)

× ei2π(η1t1+...+ηr−1tr−1+ΦV
k (η1,...ηr−1)tr) dη1 . . . dηr−1,

where a set KV is a finite in Rr, and ΦV
k (η1, . . . ηr−1) =

∑r−1
j=1 αjηj + β, with αj > 0, j =

1, 2 . . . , r− 1. The functions fVk (η1, . . . ηr−1) are almost everywhere continuous and belong to

L1(Rr−1) ∩ L∞(Rr−1).

The assumption (i) is significantly less restrictive compared to the condition stated in Theo-

rem 4.7.11 in [61], where it is assumed that the function R ∋ x 7→ x2W (x) ∈ R belongs to L1(R).
This condition is not satisfied for many popular window functions, including those listed in Ta-

ble 2.1. In contrast, our assumption is weaker and is satisfied by the windows listed in Table 2.1 and

many others. By the assumption (ii) we impose some regularity of the spectral density functions.

This condition is required to obtain the convergence rate of the bias of f̂XY
α,β (ω). The assumption (iii)

refers to some regularity of higher-order spectral densities (see Section 4.2.3 in [61]). It is satisfied

by many signals, e.g. in telecommunications, which are modifications of APC processes.

First, we present some asymptotic properties of the estimator f̂XY
α,β (ω). Specifically, we derive

the convergence rate of the bias of this estimator and show that its joint cumulants of higher order

than two are asymptotically zero.

B. Majewski Statistical inference for harmonizable processes



2. Spectral density estimation problem 23

Theorem 2.4. Let Assumption 2.1, and the conditions (i) and (ii) in Assumption 2.3 hold. Let

(α, β) ∈ KXY be fixed. Then for every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈
KXY \ {(α, β)}, we have

lim
T→∞

√
ThT E

(
f̂XY
α,β (ω)− fXY

α,β (ω)
)
= 0,

provided that hT = O(T−κ), κ ∈
(
1
3 , 1
)
.

Proof. This result is a special case of Theorem 3.2 given in Chapter 3.

Theorem 2.5. Fix P > 2. Let Assumption 2.1, and (i) and (iii) in Assumption 2.3 hold. Let

(α1, β1), . . . , (αP , βP ) ∈ KXY be fixed. Then for ω1, . . . , ωP ∈ R, excluding points of intersection of

support lines, we have

lim
T→∞

(ThT )
P/2 cum

(
f̂XY
α1,β1

(ω1)
[∗], . . . , f̂XY

αP ,βP
(ωP )

[∗]
)
= 0.

By z[∗] we denote an optional complex conjugate of z ∈ C, i.e., z[∗] ∈ {z, z}.

Proof. This result is a special case of Theorem 3.4 given in Chapter 3.

Remark 2.4. To prove Theorem 2.5, in (iii) in Assumption 2.3, we can restrict to r ∈ [2, 2P ] ∩
N. Namely, to demonstrate the convergence of the P -th order cumulants of the spectral density

estimator to zero, it is sufficient to assume only regularity of the higher-order spectral densities up

to order 2P .

Below we present the asymptotic normality of the normalized periodogram frequency-smoothed

along the support line. For this purpose, we treat the complex number z ∈ C, as a two-dimensional

vector [Re(z), Im(z)]T ∈ R2.

Theorem 2.6. Let Assumption 2.1 and Assumption 2.3 hold. Let (α, β) ∈ KXY be fixed. Then for

every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}, we have√
ThT

(
f̂XY
α,β (ω)− fXY

α,β (ω)
)

d−→ N2(0,Σ(ω;α, β)),

provided that hT = O(T−κ), κ ∈
(
1
3 , 1
)
. The covariance matrix Σ(ω;α, β) is given by

Σ(ω;α, β) =
1

2

[
Re(σ2) + Re(σ2c ) Im(σ2)− Im(σ2c )

Im(σ2)− Im(σ2c ) Re(σ2c )− Re(σ2)

]
, (2.5)

where

σ2 = σ2(ω;α, β) = lim
T→∞

ThT Var
(
f̂XY
α,β (ω)

)
,

σ2c = σ2c (ω;α, β) = lim
T→∞

ThT Cov
(
f̂XY
α,β (ω), f̂XY

α,β (ω)
)
.

Proof. This result is a special case of Theorem 3.5 given in Chapter 3.

Using the continuous mapping theorem and the delta method, we can derive the asymptotic

distribution of the rescaled magnitude of the spectral density estimator.
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Corollary 2.2. Let Assumption 2.1 and Assumption 2.3 hold. Let (α, β) ∈ KXY be fixed. Let ω ∈ R
such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}. Assume that det(Σ(ω;α, β)) > 0,

where Σ(ω;α, β) is given by (2.5). Then√
ThT

(∣∣∣f̂XY
α,β (ω)

∣∣∣− ∣∣fXY
α,β (ω)

∣∣) d−→ J |fXY
α,β (ω)|,

where

J |fXY
α,β (ω)| =

L
(√

U2
1 + U2

2

)
, if fXY

α,β (ω) = 0,

N1(0,A1Σ(ω;α, β)AT
1 ), if fXY

α,β (ω) ̸= 0,

and the random vector [U1, U2]
T has a two-dimensional normal distribution N2(0,Σ(ω;α, β)), and

the vector A1 ∈ R1×2 has the form

A1 =
1

|fXY
α,β (ω)|

[Re
(
fXY
α,β (ω)

)
, Im

(
fXY
α,β (ω)

)
].

Proof. This result is a special case of Corollary 3.1 given in Chapter 3.

In the next subsection, we introduce the concept of spectral coherence and define its estimator.

Then, using Theorem 2.6, we determine the asymptotic distribution of the rescaled estimator of the

spectral coherence.

2.3.2 Asymptotic distribution of the rescaled spectral coherence estimator

As noted in Chapter 1, the spectral measure, and consequently the spectral density, correspond

to the covariance in the frequency domain. In this subsection, we introduce the spectral coher-

ence that can be treated as the spectral counterpart of the correlation [67]. Building on the

concept of spectral coherence for cyclic frequencies λ in the context of harmonizable APC pro-

cesses (see e.g. [62, eq. (8.116)]), we define the spectral coherence function along the support line{
(ω, ν) ∈ R2 : ν = αω + β

}
as follows

γXY
α,β (ω) =

fXY
α,β (ω)√

fXX
1,0 (ω)fY Y

1,0 (αω + β)
, ω ∈ R.

Note that γXX
1,0 (ω) = 1 for all ω ∈ R.

Based on the spectral density estimator (2.1), we propose the estimator of the spectral coherence

function. Namely, for fixed ω ∈ R, the spectral coherence γXY
α,β (ω) can be estimated by

γ̂XY
α,β (ω) =

f̂XY
α,β (ω)√

f̂XX
1,0 (ω)f̂Y Y

1,0 (αω + β)
. (2.6)

In the following, we can establish the asymptotic distribution of the rescaled estimator γ̂XY
α,β (ω).

Theorem 2.7. Let Assumption 2.1 and Assumption 2.3 hold. Let (α, β) ∈ KXY be fixed. Let ω ∈ R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY ,

FXX and F Y Y . Assume det(Λ(ω, αω + β)) > 0, where Λ(ω, αω + β) = D0(ω, αω + β;α, β) is an
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asymptotic covariance matrix from Lemma 3.1. Moreover, there exist first derivatives fXX
1,0

′, fY Y
1,0

′

that belong to L2(R) ∩ L∞(R). Then

√
ThT

(∣∣γ̂XY
α,β (ω)

∣∣− ∣∣γXY
α,β (ω)

∣∣) d−→ J |γXY
α,β (ω)|,

where

J |γXY
α,β (λ)| =


L

( √
U2
1+U2

2√
fXX
1,0 (ω)fY Y

1,0 (αω+β)

)
, if fXY

α,β (ω) = 0,

N1(0,A2Λ(ω, αω + β)AT
2 ), if fXY

α,β (ω) ̸= 0,

the random vector [U1, U2]
T has a two-dimensional normal distribution N2(0,Λ(ω, αω + β)), and

the vector A2 ∈ R1×2 has the form

A2 =
∣∣γXY

α,β (ω)
∣∣
Re

(
fXY
α,β (ω)

)
∣∣∣fXY

α,β (ω)
∣∣∣2 ,− 1

2fXX
1,0 (ω)

,− 1

2fY Y
1,0 (αω + β)

,
Im
(
fXY
α,β (ω)

)
∣∣∣fXY

α,β (ω)
∣∣∣2

 .
Proof. This result is a special case of Theorem 3.6 given in Chapter 3.

2.4 Proofs of results presented in Chapter 2

This section contains proofs of the original results presented in this chapter.

Proof of Theorem 2.1. By (i) of Assumption 2.1, we have

E
[
f̃XY
α,β (ω)

]
=

1

T

∫
R

T
2∫

−T
2

T
2∫

−T
2

E
[
X(t)Y (t)

]
w
(
t
T

)
w
(
s
T

)
e−i2πµt ei2π(αµ+β)s 1

hT
q
(
ω−µ
hT

)
dtds dµ

=
1

ThT

∑
(γ,δ)∈KXY

∫
R

∫
R

T
2∫

−T
2

T
2∫

−T
2

fXY
γ,δ (ν) ei2π(νt−(γν+δ)s)w

(
t
T

)
w
(
s
T

)

× e−i2πµt ei2π(αµ+β)s q
(
ω−µ
hT

)
dtds dµ dν

=
1

ThT

∑
(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ (ν) q

(
ω−µ
hT

) T
2∫

−T
2

w
(
t
T

)
ei2π(ν−µ)t dt

×

T
2∫

−T
2

w
(
s
T

)
e−i2π(γν−αµ+δ−β)s ds dµdν

=
T

hT

∑
(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ (ν) q

(
ω−µ
hT

)
W (T (µ− ν))W (T (γν − αµ+ δ − β)) dµ dν.
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The last equality follows from Lemma B.4. The interchange of integrals above is allowed by Fubini

theorem since

∫
R

∫
R

T
2∫

−T
2

T
2∫

−T
2

∣∣∣fXY
γ,δ (ν)w

(
t
T

)
w
(
s
T

)
q
(
ω−µ
hT

)∣∣∣ dt ds dµdν
≤ T 2∥w∥2∞

∫
R

∣∣fXY
γ,δ (ν)

∣∣ dν ∫
R

q
(
ω−µ
hT

)
dµ =

T 2

hT
∥w∥2∞

∫
R

∣∣fXY
γ,δ (ν)

∣∣ dν <∞.

We consider the following changing the variables η = T (µ− ν) and λ = ω−µ
hT

. Then

µ = ω − hTλ, ν = ω − hTλ+ η
T ,

T (γν − αµ+ δ − β) = −γη + T (γ − α)(ω − hTλ) + T (δ − β)︸ ︷︷ ︸
=ηT

.

Hence,

E
[
f̃XY
α,β (ω)

]
=

∑
(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ

(
ω − hTλ− η

T

)
q(λ)W (η)W (−γη + ηT ) dλdη

=
∑

(γ,δ)∈KXY

E(γ, δ).

Consider the limit of E(γ, δ) in two cases: (γ, δ) = (α, β) and (γ, δ) ̸= (α, β).

Let us start with the term corresponding to (γ, δ) = (α, β). In that case, we have ηT = 0.

Observe that the integrand function in E(α, β) is bounded by some integrable function that does

not depend on T . That is,∣∣fXY
γ,δ

(
ω − hTλ− η

T

)
q(λ)W (η)W (−γη)

∣∣ ≤ ∥∥fXY
γ,δ

∥∥
∞ |q(λ)| |W (η)W (−γη)| = G(λ, η).

By Hölder inequality the functionG ∈ L1(R2) sinceW ∈ L2(R). Therefore, by Lebesgue’s dominated

convergence theorem we obtain

lim
T→∞

E(α, β) = fXY
α,β (ω)

∫
R

q(λ) dλ

∫
R

W (η)W (−γη) dη = fXY
α,β (ω) E(α).

It remains to show that E(γ, δ), with (γ, δ) ̸= (α, β), converges to zero as T → ∞. Note that

the term E(γ, δ) can be bounded as follows

|E(γ, δ)| ≤
∥∥fXY

γ,δ

∥∥
∞

∫
R

FT (λ) dλ,

where

FT (λ) = q(λ)

∫
R

|W (η)W (−γη + ηT )|dη.

From Hölder inequality we have

|FT (λ)| ≤ q(λ)

∫
R

|W (η)|2 dη
∫
R

|W (−γη + ηT )|2 dη

 1
2

= q(λ) γ−
1
2 ∥W∥22,
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and hence the function FT (λ) is bounded by an integrable function and independent of T . Hence,

by Lebesgue’s dominated convergence theorem, we can interchange the order of the limit and the

integral with respect to the variable λ. Finally, using Lemma B.5 we have lim
T→∞

E(γ, δ) = 0, with

(γ, δ) ̸= (α, β), which ends the proof.

Below, we provide an alternative expression for the periodogram frequency-smoothed along the

line. This expression is then used to prove Theorem 2.3.

Lemma 2.1. Assume that q, w ∈ L∞(R) with compact support [−1
2 ,

1
2 ]. Moreover, there exist positive

constants MX ,MY > 0 such that |X(t)| ≤MX and |Y (t)| ≤MY a.s. for all t ∈ R. Then

f̃XY
α,β (ω) =

1

T

T
2∫

−T
2

T
2∫

−T
2

X(t)Y (s)w
(
t
T

)
w
(
s
T

)
Q(hT (t− αs)) e−i2π(ωt−(αω+β)s)dtds,

where Q denotes the inverse Fourier transform q, i.e., Q(t) =
∫
R q(λ) e

i2πλt dλ.

Proof of Lemma 2.1. Applying the Fubini theorem, we have

f̃XY
α,β (ω) =

1

T

∫
R

T
2∫

−T
2

T
2∫

−T
2

X(t)Y (s)w
(
t
T

)
w
(
s
T

)
e−i2πµt ei2π(αµ+β)s 1

hT
q
(
ω−µ
hT

)
dt dsdµ

=
1

T

T
2∫

−T
2

T
2∫

−T
2

X(t)Y (s)w
(
t
T

)
w
(
s
T

)
ei2πβs

∫
R

1
hT
q
(
ω−µ
hT

)
e−i2π(t−αs)µ dµ

 dt ds.

By changing the variables λ = ω−µ
hT

, we get∫
R

1
hT
q
(
ω−µ
hT

)
e−i2π(t−αs)µ dµ = e−i2π(t−αs)ω

∫
R

q(λ) ei2π(t−αs)hTλ dλ

= e−i2π(t−αs)ωQ(hT (t− αs)),

which ends the proof.

Proof of Theorem 2.3. Let us consider the following decomposition of the estimation error

f̂XY
α̂T ,β̂T

(ω)− fXY
α,β (ω) = R1 +R2 +R3,

where

R1 =
f̃XY
α̂T ,β̂T

(ω)

E(α̂T )
−
f̃XY
α̂T ,β̂T

(ω)

E(α)
= f̃XY

α̂T ,β̂T
(ω)

(
1

E(α̂T )
− 1

E(α)

)
,

R2 =
f̃XY
α̂T ,β̂T

(ω)

E(α)
−
f̃XY
α,β (ω)

E(α)
=

1

E(α)

(
f̃XY
α̂T ,β̂T

(ω)− f̃XY
α,β (ω)

)
,

R3 = f̂XY
α,β (ω)− fXY

α,β (ω).
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From Theorem 2.1 the term R3 approaches zero as T → ∞ in the second moment. In the sequel,

we show the convergence in the second moment of R1 and R2.

Let us start with the term R1. From Lemma 2.1 and by changing the variable u = hT (t− αs),

we obtain

∣∣∣f̃XY
α̂T ,β̂T

(ω)
∣∣∣ ≤ 1

T

T
2∫

−T
2

T
2∫

−T
2

∣∣∣X(t)Y (s)w
(
t
T

)
w
(
s
T

)
Q(hT (t− αs))

∣∣∣ dt ds

≤ ∥w∥2∞MXMY

T

T
2∫

−T
2

∫
R

|Q(hT (t− αs))|dtds ≤ ∥w∥2∞MXMY

ThT

T
2∫

−T
2

∫
R

|Q(u)|duds

=
∥w∥2∞MXMY ∥Q∥1

hT
.

Hence, there exists some positive constant C1 > 0 such that

E|R1|2 ≤ C1 T
2κ E

∣∣∣∣ 1

E(α̂T )
− 1

E(α)

∣∣∣∣2 .
For a rectangular function w we have E(α) = min

(
1, |α|−1 ) and ÊT (α) = min

(
1,
∣∣α̂∣∣−1) (see

Table 2.1). Thus, we examine separately two cases: |α| ≤ 1 and |α| > 1.

If |α| ≤ 1, the almost sure convergence of α̂T to α implies the existence of T0 > 0 such that

|α̂T | ≤ 1 a.s. for all T ≥ T0. Thus, R1 = 0 almost surely for T ≥ T0.

If |α| > 1, the almost sure convergence of α̂T to α implies the existence of T0 > 0 such that

|α̂T | > 1 a.s. for all T ≥ T0. Thus, for T ≥ T0

E|R1|2 ≤ C1 T
2κ E |α̂T − α|2 . (2.7)

Now, we consider the term R2. From Lemma 2.1, we get

|R2| ≤
1

E(α)T

T
2∫

−T
2

T
2∫

−T
2

∣∣∣X(t)Y (s)w
(
t
T

)
w
(
s
T

)
e−i2πωt

(
Q(hT (t− α̂T s)) e

i2π(α̂Tω+β̂T )s

−Q(hT (t− αs)) ei2π(αω+β)s
)∣∣∣dtds

≤ MXMY ∥w∥2∞
E(α)T

T
2∫

−T
2

T
2∫

−T
2

∣∣∣Q(hT (t− α̂T s)) e
i2π(α̂Tω+β̂T )s −Q(hT (t− αs)) ei2π(αω+β)s

∣∣∣dt ds.
From the Euler’s formula, for all ω1, ω2 ∈ R and t ∈ R, we have

ei2πω1t − ei2πω2t = −2i sin (πt(ω2 − ω1)) e
iπ(ω1+ω2)t,
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and hence∣∣∣Q(hT (t− α̂T s)) e
i2π(α̂Tω+β̂T )s −Q(hT (t− αs)) ei2π(αω+β)s

∣∣∣
≤
∣∣∣ei2π(α̂Tω+β̂T )s

∣∣∣ |Q(hT (t− α̂T s))−Q(hT (t− αs))|

+ |Q(hT (t− αs))| ·
∣∣∣ei2π(α̂Tω+β̂T )s − ei2π(αω+β)s

∣∣∣
= |Q(hT (t− α̂T s))−Q(hT (t− αs))|+ 2|Q(hT (t− αs))| ·

∣∣∣sin (πs((α̂T − α)ω + (β̂T − β))
)∣∣∣ .

Consequently, by inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R, we obtain

E|R2|2 ≤ 2
MXMY ∥w∥2∞

E(α)
(
E|R1,2|2 + E|R2,2|2

)
,

where

R2,1 =
1

T

T
2∫

−T
2

T
2∫

−T
2

|Q(hT (t− α̂T s))−Q(hT (t− αs))| dt ds,

and

R2,2 =
2

T

T
2∫

−T
2

T
2∫

−T
2

|Q(hT (t− αs))| ·
∣∣∣sin (πs((α̂T − α)ω + (β̂T − β))

)∣∣∣ dt ds.
It remains to discuss the convergence of R2,1 and R2,2 in the second moment.

Consider R2,1. By changing the variable u = hT (t−αs) and using the first-order Taylor approx-

imations, we have

R2,1 ≤
1

ThT

T
2∫

−T
2

∫
R

|Q(u+ hT (α− α̂T )s)−Q(u)|duds

=
1

ThT

T
2∫

−T
2

∫
R

∣∣Q′(u+ ϱhT (α− α̂T )s)
∣∣ · |hT (α− α̂T )s|duds

=
|α− α̂T |

T

∫
R

∣∣Q′(u)
∣∣ du

T
2∫

−T
2

|s| ds

= 1
4∥Q

′∥1 T |α− α̂T |,

where ϱ ∈ [0, 1] is some constant. Then there exists some positive constant C2,1 > 0 such that

E|R2,1|2 ≤ C2,1 T
2 E |α− α̂T |2 . (2.8)
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For R2,2, by changing the variable u = hT (t− αs), we obtain

R2,2 ≤
2

T

T
2∫

−T
2

∫
R

|Q(hT (t− αs))| ·
∣∣∣sin (πs((α̂T − α)ω + (β̂T − β))

)∣∣∣dtds

≤ 2

ThT

∫
R

|Q(u)|du

T
2∫

−T
2

∣∣∣sin (πs((α̂T − α)ω + (β̂T − β))
)∣∣∣ ds

≤ 2π∥Q∥1
ThT

T
2∫

−T
2

|s|
(
|α̂T − α| |ω|+

∣∣∣β̂T − β
∣∣∣) ds

≤ π∥Q∥1
2

T 1+κ
(
|α̂T − α| |ω|+

∣∣∣β̂T − β
∣∣∣) .

Therefore, there exists some positive constant C2,2 > 0 such that

E|R2,2|2 ≤ C2,2 T
2(1+κ)

(
|ω|2 E |α̂T − α|2 + E

∣∣∣β̂T − β
∣∣∣2) . (2.9)

Finally, combining inequities (2.7), (2.8) and (2.9), and by max
(
2κ, 2, 2(1+ κ)

)
= 2(1+ κ) ≤ r,

for all κ ∈ (0, r−2
2 ], we end the proof.

Proof of Proposition 2.2. Let k, j ∈ {1, 2}, k ̸= j. Note that

T r

∣∣∣∣∣ λ̂jλ̂k − λj
λk

∣∣∣∣∣
2

= T r

∣∣∣∣∣ λ̂j λk − λj λ̂k

λ̂k λk

∣∣∣∣∣
2

≤ 2T r

∣∣∣∣∣ λ̂j − λj

λ̂k

∣∣∣∣∣
2

+ 2T r

∣∣∣∣∣(λk − λ̂k)λj

λ̂k λk

∣∣∣∣∣
2

.

From λ̂k ≥ mk a.s. and lim
T→∞

T r E|λ̂k − λk|2 = 0, we have

lim
T→∞

T r E

∣∣∣∣∣ λ̂jλ̂k − λj
λk

∣∣∣∣∣
2

= 0. (2.10)

In an analogous way, we obtain an almost sure convergence of the slope estimator.

Now, we show the convergence of β̂T . We have

T r

∣∣∣∣∣ λ̂2λ̂1 γ̂1 − λ2
λ1
γ1

∣∣∣∣∣
2

≤ 2T r |γ̂1 − γ1|2 ·

∣∣∣∣∣ λ̂2λ̂1
∣∣∣∣∣
2

+ 2T r

∣∣∣∣∣ λ̂2λ̂1 − λ2
λ1

∣∣∣∣∣
2

· |γ1|2

From (2.10) and the fact that mj ≤ λ̂j ≤ Mj a.s. and lim
T→∞

T r E|γ̂j − γj |2 = 0, for j = 1, 2, we

obtain that

lim
T→∞

T r E

∣∣∣∣∣ λ̂2λ̂1 γ̂1 − λ2
λ1
γ1

∣∣∣∣∣
2

= 0,

and consequently, we obtain the convergence of β̂T .
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CHAPTER 3

SUBSAMPLING PROCEDURE IN SPECTRAL ANALYSIS

In the previous chapter, we considered the point estimation of the spectral density and spectral

coherence functions for harmonizable processes with spectral mass concentrated along lines. How-

ever, in practical applications, statistical inference goes beyond point estimation, including the con-

struction of confidence intervals and hypothesis testing. For this purpose, one can use asymptotic

distributions of rescaled estimators. Unfortunately, in that case, directly applying the asymptotic

distribution is highly challenging because of the need to estimate the asymptotic covariance. The

asymptotic covariance matrix of the rescaled estimator has a complex structure (see Theorem 2.2),

making it almost impossible to estimate accurately. Therefore, in this chapter, we introduce a resam-

pling method that allows us to obtain confidence intervals for parameters of interest and does not

require the estimation of the covariance matrix. The proposed method is based on the subsampling

method.

In Section 3.1, we recall the notation and outline the primary concept of the subsampling

procedure for time series. In Section 3.2, we introduce our subsampling procedure tailored for

continuous-time harmonizable processes. In Section 3.3, we define the subsampling estimators of

spectral density and spectral coherence. Moreover, we derive their asymptotic properties. In Sec-

tion 3.4, we establish the consistency theorem for the proposed subsampling procedure in spectral

analysis. In Section 3.5, we discuss the application of the subsampling procedure in constructing

confidence intervals for spectral characteristics. Finally, Section 3.6 includes proofs of the results.

All theorems, propositions, and corollaries in this chapter, except those in Section 3.1, are original

contributions. These results can be found in [29].

3.1 Brief overview of the subsampling for time series

In this section, we briefly recall the classical subsampling approach introduced by Politis and Ro-

mano [73, 74].
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Consider a time series {X(n), n ∈ N}, and let θ ∈ R be a parameter of interest. Fix n ∈ N. We

denote by θ̂n = θ̂n(Xn) an estimator of θ based on the sample Xn = (X(1), . . . , X(n)). To perform

inference on θ, it is essential to derive or approximate the sampling distribution of θ̂n. Let Jθ
n be

the sampling distribution of τn(θ̂n− θ), where τn is a normalizing factor. Moreover, we consider the

cumulative distribution function

Jθ
n(x) = P

(
τn(θ̂n − θ) ≤ x

)
, x ∈ R.

The idea behind subsampling is to approximate the sampling distribution Jθ
n of statistics based

on smaller data sets, referred to as subsamples. For time series, to mimic the time dependency, the

data set is divided into overlapping blocks of size b. Denote by Xs,b = (X(s), . . . , X(s + b − 1)),

with s = 1, 2, . . . , n− b+ 1, the subsample of length b from Xn. By θ̂n,b,s = θ̂b(Xs,b) we denote the

subsampling estimator of θ based on the subsample Xs,b. Let Jθ
b,s denote the sampling distribution of

τb(θ̂n,b,s−θ), where τb is some normalizing factor. Moreover, we consider the cumulative distribution

function

Jθ
b,s(x) = P

(
τb(θ̂n,b,s − θ) ≤ x

)
, x ∈ R.

Therefore,

Lθ
n,b(x) =

1
n−b+1

n−b+1∑
s=1

1{τb(θ̂n,b,s−θ̂n)≤x}

is used to approximate Jθ
n(x) for x ∈ R.

Note that the distribution Jθ
b,s may depend on the index s since time series X(t) can be nonsta-

tionary. To ensure an appropriate approximation of Jθ
n(x) based on Lθ

n,b(x), the following assumption

should be considered.

Assumption 3.1 ([72]). There exists a limiting law Jθ such that

(i) Jθ
n converges weakly to Jθ as n→ ∞.

(ii) For every continuity point x of Jθ(·) and for any sequences n, b with n, b→ ∞ and b/n→ 0,

we have
1

n− b+ 1

n−b+1∑
s=1

Jθ
b,s(x) → Jθ(x).

In [72], the consistency of subsampling for nonstationary time series is established under the

assumption of weak dependence. For this purpose, we introduce the concept of α-mixing.

Let {X(t), t ∈ T}, where T = Z or T = R. Then {X(t), t ∈ T} is called α-mixing if αX(τ) → 0

as τ → ∞, where

αX(τ) = sup
t∈R

sup
A∈FX(−∞,t)
B∈FX(t+τ,∞)

|P(A ∩B)− P(A)P(B)| ,

with FX(a, b) = σ ({X(t), a ≤ t ≤ b}). The coefficient αX(τ) is a standard measure of weak de-

pendence for stochastic processes. Namely, it measures the dependence between past and future

information. If αX(τ) = 0, then observations distant by at least τ time units are independent. For
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more information on weak dependency, we refer the reader to [21]. Furthermore, in Appendix B, we

recall two inequalities for bounding covariance using the α-mixing measure.

In the following, we present the theorem on the consistency of subsampling for nonstationary

time series.

Theorem 3.1 ([72]). Let {X(n), n ∈ N} be an α-mixing. Let Assumption 3.1 holds and that

τb/τn → 0, b/n→ 0, and b→ ∞ as n→ ∞. Then

(i) If x is a continuity point of Jθ(·), then Lθ
n,b(x) → Jθ(x) in probability.

(ii) If Jθ(·) is continuous, then supx∈R |Lθ
n,b(x)− Jθ(x)| in probability.

(iii) For ρ ∈ (0, 1), let cθn,b(1− ρ) = inf{x : Lθ
n,b(x) ≥ 1− ρ}. Correspondingly, define cθ(1− ρ) =

inf{x : Jθ(x) ≥ 1− ρ}. If Jθ(·) is continuous at cθ(1− ρ), then

P
(
τn(θ̂n − θ) ≤ cθn,b(1− ρ)

)
→ 1− ρ as n→ ∞.

Thus, the asymptotic coverage probability of the interval
[
θ̂n − τ−1

n cθn,b(1− ρ),∞
)

is the nom-

inal level 1− ρ.

Thus, the consistency of subsampling can be achieved under weak assumptions. Note that we do

not need to know the form of the sampling distribution of the estimator to prove the consistency.

Detailed discussion on subsampling can be found in [72].

In this section, we presented a subsampling for discrete-time stochastic processes. In our case,

we consider continuous-time stochastic processes, and in the subsequent section we adapt the sub-

sampling to this case.

3.2 Subsampling for continuous-time processes

In this section, we propose a continuous-time counterpart to the subsampling method introduced by

Politis and Romano. Although general results on subsampling for continuous-time processes have

been explored in [4], these results are not directly applicable to our specific problem. Our case

requires significantly weaker assumptions. This issue is further discussed in Section 3.4.

Let {X(t), t ∈ R} and {Y (t), t ∈ R} be two zero-mean complex-valued harmonizable stochas-

tic processes with cross-spectral measure supported on a countable union of lines. Fix T > 0.

Let XT =
{
X(t), t ∈

[
−T

2 ,
T
2

]}
and YT =

{
Y (t), t ∈

[
−T

2 ,
T
2

]}
be observed samples. We divide the

samples into overlapping blocks of length b (where 0 < b < T ), with an overlap determined by the

factor ∆ > 0. Assume that ∆ is such that qT = T−b
2∆ is an integer number. The resulting blocks

are defined as Xb,s∆ =
{
X(t), t ∈

[
s∆− b

2 , s∆+ b
2

]}
and Yb,s∆ =

{
Y (t), t ∈

[
s∆− b

2 , s∆+ b
2

]}
for

s = −qT ,−qT + 1 . . . , qT . Figure 3.1 illustrates an example of this block division.

Let θ ∈ R be a parameter of interest. By θ̂T = θ̂T (XT ,YT ) we denote the estimator of θ based

on the sample (XT ,YT ), and by θ̂T,b,s∆ = θ̂b(Xb,s∆,Yb,s∆) its counterpart based on the subsample
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−T
2 −qT∆ = −T

2
+ b

2
−T

2
+ b

b

. . .
s∆

(s+ 1)∆

. . .

b

b
∆

∆

qT∆ = T
2
− b

2
T
2
− b T

2

b

Figure 3.1: Splitting the observation interval
[
−T

2 ,
T
2

]
into overlapping blocks of size b with overlap

factor ∆.

(Xb,s∆,Yb,s∆). Our goal is to approximate the distribution of τT
(
θ̂T − θ

)
using τb

(
θ̂T,b,s∆− θ̂T

)
. For

this purpose, we define

Lθ
T,b(x) =

1

2lT + 1

lT∑
j=−lT

I{τb(θ̂T,b,j∆−θ̂T )≤x}, x ∈ R,

where 2lT + 1 is the number of blocks considered in the subsampling. Then Lθ
T,b(x) approximates

the cumulative distribution function of τT (θ̂T − θ) at point x ∈ R.

Our objective is to develop a consistent subsampling procedure that approximates the distribu-

tions of √
ThT

(∣∣∣f̂XY
α,β (ω)

∣∣∣− ∣∣fXY
α,β (ω)

∣∣) and
√
ThT

(∣∣γ̂XY
α,β (ω)

∣∣− ∣∣γXY
α,β (ω)

∣∣) .
for fixed ω ∈ R. Recall that the estimators f̂XY

α,β (ω) and γ̂XY
α,β (ω) are given by (2.1) and (2.6), respec-

tively. We start by defining the subsampling counterparts of f̂XY
α,β (ω) and γ̂XY

α,β (ω) and analyzing

their asymptotic properties.

3.3 Subsampling estimators and their properties

The purpose of this section is to define the subsampling estimator for the spectral density func-

tion and spectral coherence function. Specifically, these estimators are based on the subsamples{
X(t), t ∈

[
s∆− b

2 , s∆+ b
2

]}
and

{
Y (t), t ∈

[
s∆− b

2 , s∆+ b
2

]}
for s = −qT ,−qT + 1, . . . , qT ,

where qT = T−b
2∆ . For generality, we consider estimators based on

{
X(t), t ∈

[
cT − dT

2 , cT + dT
2

]}
and

{
Y (t), t ∈

[
cT − dT

2 , cT + dT
2

]}
. By dT we denote the length of the time interval and cT is the

midpoint of the observation time. Note that in Chapter 2, we focused on the specific case where

dT = T and cT = 0 and in this section we generalize it. We impose the following conditions on cT

and dT .

Assumption 3.2. dT → ∞ and cT /dT → ϑ ∈ R as T → ∞.

We define the short-time Fourier Transform

DX
cT ,dT

(ω) =

cT+
dT
2∫

cT− dT
2

X(t)w
(
t−cT
dT

)
e−i2πωt dt, DY

cT ,dT
(ω) =

cT+
dT
2∫

cT− dT
2

Y (t)w
(
t−cT
dT

)
e−i2πωt dt,

the bifrequency periodogram

IXY
cT ,dT

(ω, ν) =
1

dT
DX

cT ,dT
(ω)DY

cT ,dT
(ν),
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and the normalized periodogram frequency-smoothed along this line
{
(ω, ν) ∈ R2 : ν = αω + β

}
f̂XY
α,β (ω)cT ,dT =

f̃XY
α,β (ω)cT ,dT

EcT /dT (α)
, (3.1)

where

f̃XY
α,β (ω)cT ,dT =

∫
R

IXY
cT ,dT

(µ, αµ+ β) 1
hdT

q
(
ω−µ
hdT

)
dµ,

and

Eϑ(α) =
∫
R

W (ν)W (−αν) ei2π(α−1)ϑν dν.

Note that in the general case, the normalizing factor EcT /dT (α) depends on the length of the obser-

vation dT and the midpoint of the observation time cT . Finally, based on the estimator (3.1), we

define the estimator of the spectral coherence function γXY
α,β (ω) for ω ∈ R. That is,

γ̂XY
α,β (ω)cT ,dT =

f̂XY
α,β (ω)cT ,dT√

f̂XX
1,0 (ω)cT ,dT f̂

Y Y
1,0 (αω + β)cT ,dT

. (3.2)

In contrast to the spectral density function estimator considered in Chapter 2, in this more

general case, the normalizing factor EcT /dT (α) can be zero for some parameters α, cT , dT . The

following result specifies a condition that ensures that the normalization factor is non-zero.

Proposition 3.1. Assume that w is a non-negative function on the interval
(
−1

2 ,
1
2

)
with compact

support
[
−1

2 ,
1
2

]
. Then for all α > 0

Eϑ(α) =
∫
R

w(t)w(αt+ (α− 1)ϑ) dt.

For α ∈ (0,∞)\{1}, the normalizing factor Eϑ(α) is non-zero provided that |ϑ| ≤ 1
2

α+1
|1−α| . For α = 1,

the normalizing factor Eϑ(α) =
∫
Rw

2(t) dt is non-zero for any ϑ ∈ R.

Proof. See Section 3.6.

We now present the asymptotic properties of f̂XY
α,β (ω)cT ,dT and γ̂XY

α,β (ω)cT ,dT . The following

properties extend those discussed in Section 2.3.

Theorem 3.2. Let Assumption 2.1, Assumption 3.2, and (i), (ii) in Assumption 2.3 hold. Let

(α, β) ∈ KXY be fixed. Then for every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈
KXY \ {(α, β)}, we have

lim
T→∞

√
dThdT E

(
f̂XY
α,β (ω)cT ,dT − fXY

α,β (ω)
)
= 0,

provided that hdT = O(d−κ
T ), with κ ∈

(
1
3 , 1
)
, and EcT /dT (α) ̸= 0.

Proof. See Section 3.6.
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Theorem 3.3. Let Assumption 2.1 and Assumption 3.2 hold. Let (α1, β1), (α2, β2) ∈ KXY be fixed.

Then for ω1, ω2 ∈ R excluding points of intersection of support lines, we have

lim
T→∞

dThdT Cov
(
f̂XY
α1,β1

(ω1)cT ,dT , f̂
XY
α2,β2

(ω2)cT ,dT

)
=

∑
(γ1,δ1)∈KY Y

∑
(γ2,δ2)∈KXX

fY Y
γ1,δ1 (ω1) f

XX
γ2,δ2 (−α1ω1 − β1) Q(γ1)

Wϑ(α2γ1, γ2, α2)

Eϑ(α1) Eϑ(α2)

× δα2γ1−γ2α1 δα2δ1−γ2β1+δ2+β2 δγ1ω1+δ2−ω2

+
∑

(γ1,δ1)∈KY X

∑
(γ2,δ2)∈KXY

fY X
γ1,δ1(ω1) f

XY
γ2,δ2(−α1ω1 − β1)Q(γ1α1)

Wϑ(α2γ2, α2, γ1)

Eϑ(α1) Eϑ(α2)

× δγ1−α2γ2α1 δα2δ2+β2+δ1−α2γ2β1 δω2+γ2(α1ω1+β1)−δ2 ,

where

Q(a) =

∫
R

q(λ)q(aλ) dλ,

Wϑ(a1, a2, a3) =

∫
R

∫
R

∫
R

W (η1)W (η2)W (η2)W (a1η1 + a2η2 + a3η3)

× e−i2π(η1+η2+η3)ϑ ei2π(a1η1+a2η2+a3η3)ϑ dη1 dη2 dη3,

provided that EcT /dT (α1) ̸= 0 and EcT /dT (α2) ̸= 0.

Proof. See Section 3.6.

Theorem 3.4. Fix P > 2. Let Assumption 2.1, Assumption 3.2, and (i), (iii) in Assumption 2.3

hold. Let (α1, β1), . . . , (αP , βP ) ∈ KXY be fixed. Then for ω1, . . . , ωP ∈ R, excluding points of

intersection of support lines, we have

lim
T→∞

(dThdT )
P/2 cum

(
f̂XY
α1,β1

(ω1)
[∗]
cT ,dT

, . . . , f̂XY
αP ,βP

(ωP )
[∗]
cT ,dT

)
= 0,

provided that EcT /dT (αj) ̸= 0 for j = 1, 2, . . . , P .

Proof. See Section 3.6.

Theorem 3.5. Let Assumption 2.1, Assumption 2.3 and Assumption 3.2 hold. Let (α, β) ∈ KXY

be fixed. Then for every ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}, we

have √
dThdT

(
f̂XY
α,β (ω)cT ,dT − fXY

α,β (ω)
)

d−→ N2(0,Σϑ(ω;α, β)),

provided that hdT = O(d−κ
T ), with κ ∈

(
1
3 , 1
)
, and EcT /dT (α) ̸= 0. The covariance matrix Σϑ(ω;α, β)

is given by

Σϑ(ω;α, β) =
1

2

[
Re(σ2ϑ) + Re(σ2ϑ,c) Im(σ2ϑ)− Im(σ2ϑ,c)

Im(σ2ϑ)− Im(σ2ϑ,c) Re(σ2ϑ,c)− Re(σ2ϑ)

]
, (3.3)

where

σ2ϑ = σ2ϑ(ω;α, β) = lim
T→∞

dThdT Var
(
f̂XY
α,β (ω)cT ,dT

)
,

σ2ϑ,c = σ2ϑ,c(ω;α, β) = lim
T→∞

dThdT Cov
(
f̂XY
α,β (ω)cT ,dT , f̂

XY
α,β (ω)cT ,dT

)
.
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Proof. See Section 3.6.

Corollary 3.1. Let Assumption 2.1, Assumption 2.3 and Assumption 3.2 hold. Let (α, β) ∈ KXY

be fixed. Let ω ∈ R such that αω + β ̸= α′ω + β′, for all (α′, β′) ∈ KXY \ {(α, β)}. Assume that

det(Σϑ(ω;α, β)) > 0, where Σϑ(ω;α, β) is given by (3.3). Then√
dThT

(∣∣∣f̂XY
α,β (ω)cT ,dT

∣∣∣− ∣∣fXY
α,β (ω)

∣∣) d−→ J
|fXY

α,β (ω)|
ϑ ,

where

J
|fXY

α,β (ω)|
ϑ =

L
(√

U2
1 + U2

2

)
, if fXY

α,β (ω) = 0,

N1(0,A1Σϑ(ω;α, β)A
T
1 ), if fXY

α,β (ω) ̸= 0,

and the random vector [U1, U2]
T has a two-dimensional normal distribution N2(0,Σϑ(ω;α, β)), and

the vector A1 ∈ R1×2 has the form

A1 =
1

|fXY
α,β (ω)|

[Re
(
fXY
α,β (ω)

)
, Im

(
fXY
α,β (ω)

)
].

Proof. See Section 3.6.

Theorem 3.6. Let Assumption 2.1 and Assumption 2.3 hold. Let (α, β) ∈ KXY be fixed. Let ω ∈ R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY ,

FXX and F Y Y . Assume det(Λϑ(ω, αω+β)) > 0, where Λϑ(ω, αω+β) = Dϑ(ω, αω+β;α, β) is an

asymptotic covariance matrix from Lemma 3.1. Moreover, there exist first derivatives fXX
1,0

′, fY Y
1,0

′

that belong to L2(R) ∩ L∞(R). Then√
dThT

(∣∣γ̂XY
α,β (ω)cT ,dT

∣∣− ∣∣γXY
α,β (ω)

∣∣) d−→ J
|γXY

α,β (ω)|
ϑ ,

where

J
|γXY

α,β (λ)|
ϑ =


L

( √
U2
1+U2

2√
fXX
1,0 (ω)fY Y

1,0 (αω+β)

)
, if fXY

α,β (ω) = 0,

N1(0,A2Λϑ(ω, αω + β)AT
2 ), if fXY

α,β (ω) ̸= 0,

the random vector [U1, U2]
T has a two-dimensional normal distribution N2(0,Λϑ(ω, αω + β)), and

the vector A2 ∈ R1×2 has the form

A2 =
∣∣γXY

α,β (ω)
∣∣
Re

(
fXY
α,β (ω)

)
∣∣∣fXY

α,β (ω)
∣∣∣2 ,− 1

2fXX
1,0 (ω)

,− 1

2fY Y
1,0 (αω + β)

,
Im
(
fXY
α,β (ω)

)
∣∣∣fXY

α,β (ω)
∣∣∣2

 .
Proof. See Section 3.6.

3.4 Consistency of subsampling procedure

In this section, our aim is to establish the consistency of the subsampling procedure for spectral

characteristics. Recall that we focus on two cases:
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Case 1. The magnitude of the spectral density function corresponding to the line {(ω, ν) ∈ R : ν =

αω + β}, i.e., for the fixed point ω ∈ R, which is not the intersection point of the support

lines, we consider

θ =
∣∣fXY

α,β (ω)
∣∣ , θ̂T =

∣∣∣f̂XY
α,β (ω)

∣∣∣ , θ̂T,b,∆s =
∣∣∣f̂XY

α,β (ω)s∆,b

∣∣∣;
Case 2. The magnitude of the spectral coherence function corresponding to the line {(ω, ν) ∈ R :

ν = αω+β}, i.e., for the fixed point ω ∈ R, which is not the intersection point of the support

lines, we consider

θ =
∣∣γXY

α,β (ω)
∣∣ , θ̂T =

∣∣γ̂XY
α,β (ω)

∣∣ , θ̂T,b,∆s =
∣∣γ̂XY

α,β (ω)s∆,b

∣∣.
We exclude intersection points because we do not have asymptotic properties for them.

First, note that the subsampling estimators in both cases are not always well-defined for certain

subsamples. As stated in Proposition 3.1, the normalizing factor Es∆/b(α) ̸= 0 for α ̸= 1, if∣∣∣∣s∆b
∣∣∣∣ ≤ 1

2

α+ 1

|α− 1|
.

The above inequality is equivalent to

− b

2∆

α+ 1

|α− 1|
≤ s ≤ b

2∆

α+ 1

|α− 1|
.

To ensure well-defined estimators, we have to restrict the set of subsamples to those for which the

normalizing factor is non-zero, in order to avoid division by zero. That is subsamples indexed by

s = −lT ,−lT + 1, . . . , lT , where

lT =


T−b
2∆ , α = 1,⌊
b
2∆

1+α
|α−1|

⌋
, α ̸= 1.

(3.4)

Note that for α ̸= 1 the number of subsamples for which the subsampling estimator is well defined

is 2lT + 1. This quantity grows significantly slower than the total number of subsamples 2qT + 1,

as T → ∞ and b = o(T ). This is a crucial difference compared to subsampling in spectral analysis

for APC processes (α = 1), where we can select all available blocks (see [51]).

To obtain consistency of subsampling for time series using Theorem 3.1, it should be assumed

that the time series is α-mixing. However, in our case, this assumption does not hold. For exam-

ple, let X(t) be a stationary process with an autocovariance function γX(τ) taking the maximum

value at τ = 0, decreasing as a function of |τ | and lim|τ |→∞ γX(τ) = 0. Moreover, assume that

supt∈R E|X(t)|2+δ < ∞ for some δ > 0. Define Y (t) = X(st) with s > 0. Such processes are

a special case of those presented in Example 1.3. Note that

Cov(X(t), Y (t+ τ)) = γX(s(t+ τ)− t).
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The covariance can be bounded from above by an α-mixing measure between two σ-fields (see

Lemma B.2). That is,

0 < |γX(0)| = sup
t∈R

|Cov(X(t), Y (t+ τ))|

≤ 8 sup
t∈R

[(
E|X(t)|2+δ

) 1
2+δ
(
E|Y (t+ τ)|2+δ

) 1
2+δ

α
δ

2+δ

XY (|τ |)
]

≤ 8

(
sup
t∈R

E|X(t)|2+δ

) 2
2+δ

α
δ

2+δ

XY (|τ |),

where

αXY (τ) = sup
t∈R

α (FXY (−∞, t),FXY (t+ τ,+∞)) ,

with FXY (a, b) = σ ({X(t), a ≤ t ≤ b} , {Y (t), a ≤ t ≤ b}). For the definition of function α(·, ·)
see (B.2). The α-mixing function αXY is bounded from below by a positive constant and conse-

quently cannot converge to zero. Thus, a milder assumption of weak dependency should be made.

Assumption 3.3. Consider the following assumptions.

(i) Assume that there exists a function h(t, τ) such that for all t ∈ R is a decreasing function of

|τ |, with supt∈R
∫
R h(t, τ) dτ =M for some positive constant M . Moreover, for t, τ ∈ R

α (FXY (−∞, t),FXY (t+ τ,+∞)) ≤ h(t, τ) ≤ 1

4
.

(ii) b = O(T p) and ∆ = O(T−q), with p, q ∈ (0, 1). Moreover, bhb
ThT

→ 0 as T → ∞.

(iii) The asymptotic distributions of
√
bhb
(
θ̂T,b,s∆ − θ

)
do not depend on s = −lT ,−lT + 1, . . . , lT

The condition (i) is introduced to address the limitations of the α-mixing assumption that

appears in Theorem 3.1. The condition (ii) imposes the convergence rates of the subsample size

b and the overlapping factor ∆. The condition (iii) is used to address the issue of varying asymptotic

distributions across different subsamples. For example, using a rectangular window function as

a data-tapering window, the asymptotic distributions of the subsampling estimators are the same

across all subsamples. In particular, Assumption 3.1, assumed in Theorem 3.1, is satisfied.

Proposition 3.2. For Case 1, assume the same conditions as in Corollary 3.1. For Case 2, assume

the same conditions as in Theorem 3.6. Then using the rectangular window function as a data-

tapering window w, the asymptotic distributions of
√
bhb(θ̂T,s∆,b−θ) do not depend on s = −lT ,−lT+

1, . . . , lT , provided that

lT =


T−b
2∆ , α = 1,⌊
b
2∆

⌋
, α ̸= 1.

(3.5)

.

Note that the value of lT given by (3.5), for fixed α ̸= 1, is smaller than that in (3.4), however,

asymptotically, they behave in the same way.

In the following, we provide an example of processes that satisfy the condition (i). Specifically,

the processes in Example 1.3 fulfill this assumption.
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Proposition 3.3. Let Z(t) be an α-mixing process. Let L,K ∈ N. Consider two processes

X(t) = g1(Z(s1t), . . . , Z(sKt)), Y (t) = g2(Z(r1t), . . . , Z(rLt)),

where g1 : RK 7→ R and g2 : RL 7→ R are deterministic and Borel measurable functions, and

s1, . . . , sK > 0, r1, . . . , rL > 0. Assume that there exists some δ > 0 such that supt∈R E|Z(t)|2+δ <∞
and

∫
R α

δ/(2+δ)
Z (τ) dτ < ∞. Then the processes X(t) and Y (t) satisfy the condition (i) of Assump-

tion 3.3.

Proof. See Section 3.6.

The following result states the consistency of subsampling for both the spectral density estimator

and the coherence estimator.

Theorem 3.7. For Case 1, assume the same conditions as in Corollary 3.1. For Case 2, assume

the same conditions as in Theorem 3.6. Assume that lT is given by (3.5). In both cases, under

Assumption 3.3, we have that

(i) If x is a continuity point of Jθ(·), then Lθ
T,b(x) → Jθ(x) in probability.

(ii) If Jθ(·, ) is continuous, then supx∈R
∣∣Lθ

T,b(x)− Jθ(x)
∣∣→ 0 in probability.

(iii) For ρ ∈ (0, 1), let cθT,b(1− ρ) = inf{x : Lθ
T,b(x) ≥ 1− ρ}. Correspondingly, define cθ(1− ρ) =

inf{x : Jθ(x) ≥ 1− ρ}. If Jθ(·) is continuous at cθ(1− ρ), then

P
(√

ThT

(
θ̂T − θ

)
≤ cθT,b(1− ρ)

)
−→ 1− ρ, as T → ∞.

Proof. See Section 3.6.

Remark 3.1. From the proof of Theorem 3.7, one can conclude that for α ̸= 1, subsampling converges

more slowly than for α = 1. This is due to the fact that the number of overlapping blocks 2lT + 1,

given by (3.5), increases slower to infinity for α ̸= 1 than for α = 1.

Using Theorem 3.7, one can construct, for example, equal-tailed confidence intervals, which are

usually asymmetric. In our case, the limiting distribution of Jθ
T is symmetric. Therefore, a two-sided

symmetric confidence interval may be a more appropriate choice. To achieve this, our objective is to

estimate the two-sided distribution of
√
ThT |θ̂T−θ| denoted by Jθ

T,|·|. Its subsampling approximation

is given by

Lθ
T,b,|·|(x) =

1

2lT + 1

lT∑
j=−lT

1{√bhb|θ̂T,b,j∆−θ̂T |≤x}, x ∈ R,

see [72, p. 72–73]. By Jθ
|·| we denote the law such that Jθ

T,|·| → Jθ
|·| as T → ∞. Moreover, Jθ

|·|(·)
is a cumulative distribution function Jθ

|·|. The following theorem states the validity of two-sided

confidence intervals.

Corollary 3.2. Under the conditions of Theorem 3.7, the following are satisfied. Then:

(i) If x is a continuity point of Jθ
|·|(·), then Lθ

T,b,|·|(x) → Jθ
|·|(x) in probability.
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(ii) If Jθ(·) is continuous, then supx∈R
∣∣Lθ

T,b,|·|(x)− Jθ
|·|(x)

∣∣→ 0 in probability.

(iii) For ρ ∈ (0, 1), let cθT,b,|·|(1−ρ) = inf{x : Lθ
T,b,|·|(x) ≥ 1−ρ}. Correspondingly, define cθ|·|(1−ρ) =

inf{x : Jθ
|·|(x) ≥ 1− ρ}. If Jθ

|·|(·) is continuous at cθ|·|(1− ρ), then

P
(√

ThT

∣∣∣θ̂T − θ
∣∣∣ ≤ cθT,b,|·|(1− ρ)

)
−→ 1− ρ, as T → ∞.

Proof. See Section 3.6.

In the next section, we discuss the construction of confidence intervals based on our subsampling

procedure.

3.5 Subsampling-based confidence intervals

As noted, the asymptotic covariances of the rescaled estimators for the spectral density magni-

tude |fXY
α,β (ω)| and the spectral coherence magnitude |γXY

α,β (ω)| have complicated formulas and are

consequently difficult to estimate. Therefore, resampling methods can be employed to construct con-

fidence intervals. This approach is commonly used for various frequency domain and time domain

characteristics, for example, in the case of APC processes (see, e.g. [23, 27, 51]). Using Theorem 3.7

equal-tailed confidence interval at the 1 − ρ confidence level for the parameter θ based on our

subsampling procedure is given by(
θ̂T −

cθT,b
(
1− ρ

2

)
√
ThT

, θ̂T −
cθT,b

(ρ
2

)
√
ThT

)
, (3.6)

where cθT,b(·) is given in Theorem 3.7. Furthermore, applying Corollary 3.2, we can construct

a two-sided symmetric confidence interval at the 1 − ρ confidence level for the parameter θ based

on our subsampling procedure. Specifically, we have(
θ̂T −

cθT,b,|·| (1− ρ)
√
ThT

, θ̂T +
cθT,b,|·| (1− ρ)

√
ThT

)
, (3.7)

where cθT,b,|·|(·) is given in Corollary 3.2.

3.6 Proofs of results presented in Chapter 3

This section contains proofs of the original results presented in this chapter.

Proof of Proposition 3.1. By F{·} and F−1{·}, we denote the Fourier transform and the inverse

Fourier transform operators, respectively. Note that

W (ν) =

∫
R

w(t) e−i2πνt dt = F{w}(ν),

W (−αν) =
∫
R

w(t) ei2πανt dt =
1

α

∫
R

w

(
− t

α

)
e−i2πνt dt = F{wα}(ν),
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where wα(t) =
1
αw
(
− t

α

)
. By the convolution theorem, we get the following

Eϑ(α) =
∫
R

F{w}(ν) · F{wα}(ν) ei2π(α−1)νϑ dν =

∫
R

F {w ∗ wα} (ν) ei2π(α−1)νϑ dν

= F−1 {F{w ∗ wα}} ((α− 1)ϑ) =
1

α

∫
R

w(u)w

(
u− (α− 1)ϑ

α

)
du

=

∫
R

w(t)w(αt+ (α− 1)ϑ)) dt.

The last equality follows from the change of variables t = u−(α−1)ϑ
α . The supports of functions w(t)

and w(αt+(α−1)ϑ) are given by the following inequalities, respectively, |t| ≤ 1
2 and |αt+(α−1)ϑ| ≤

1
2 . Equivalently, for α > 0

−1

2
≤ t ≤ 1

2
, − 1

2α
+

1− α

α
ϑ ≤ t ≤ 1

2α
+

1− α

α
ϑ.

Therefore, the support of w(t)w(αt+ (α− 1)ϑ) has non-zero Lebesgue measure if∣∣∣∣1− α

α
ϑ

∣∣∣∣ ≤ 1

2
+

1

2α
,

and equivalently,

|ϑ| ≤ 1

2

α+ 1

|1− α|
. (3.8)

Thus, Eϑ(α) is non-zero provided that (3.8) holds.

Proof of Theorem 3.2. Using Lemma B.4 and similar steps as in the proof of Theorem 2.1, we have

E
[
f̃XY
α,β (ω)cT ,dT

]
=

1

dT

∫
R

∫
R

∫
R

E
[
X(t)Y (t)

]
w
(
t−cT
dT

)
w
(
s−cT
dT

)
× e−i2πµt ei2π(αµ+β)s 1

hdT
q
(
ω−µ
hdT

)
dtds dµ

=
1

dThdT

∑
(γ,δ)∈KXY

∫
R

∫
R

∫
R

∫
R

fXY
γ,δ (ν) ei2π(νt−(γν+δ)s)w

(
t−cT
dT

)
w
(
s−cT
dT

)
× e−i2πµt ei2π(αµ+β)s q

(
ω−µ
hdT

)
dt ds dµdν

=
1

dThdT

∑
(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ (ν) q

(
ω−µ
hdT

)∫
R

w
(
t−cT
dT

)
ei2π(ν−µ)t) dt

×
∫
R

w
(
s−cT
dT

)
e−i2π(γν−αµ+δ−β)s ds dµdν

=
dT
hdT

∑
(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ (ν) q

(
ω−µ
hdT

)
W (dT (µ− ν))W (dT (γν − αµ+ δ − β))

× e−i2π(µ−ν)cT e−i2π(γν+δ−αµ−β)cT dµdν.

We consider the following change the variables λ = ω−µ
hdT

and η = dT (µ− ν). Then

µ = ω − λhdT , ν = ω − λhdT − η
dT
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dT (γν − αµ+ δ − β) = −γη + dT (γ − α)(ω − λhdT ) + dT (δ − β)︸ ︷︷ ︸
=ηdT

.

Hence,

E
[
f̃XY
α,β (ω)cT ,dT

]
=

=
∑

(γ,δ)∈KXY

∫
R

∫
R

fXY
γ,δ

(
ω − λhdT − η

dT

)
q(λ)W (η)W (−γη + ηdT ) e

−i2πηcT /dT e−i2π(−γη+ηdT )cT /dT

=
∑

(γ,δ)∈KXY

E(γ, δ).

Consider the limit of each E(γ, δ) in two cases: (γ, δ) = (α, β) and (γ, δ) ̸= (α, β).

Let us start with the term corresponding to (γ, δ) = (α, β). In that case, we have ηT = 0. Using

twice the first-order Taylor approximations, we have

fXY
α,β

(
ω − λhdT − η

dT

)
= fXY

α,β (ω − η
dT

)− λhdT
(
fXY
α,β

)′(
ω − η

dT
− ϱ̃λhdT

)
= fXY

α,β (ω)− η
dT

(
fXY
α,β

)′(
ω − ϱ η

dT

)
− λhdT

(
fXY
α,β

)′(
ω − η

dT
− ϱ̃λhdT

)
,

for some ϱ, ϱ̃ ∈ [0, 1]. Thus G(α, β) = E1 − E2 − E3.

For E1, we have

E1 =

∫
R

∫
R

fXY
α,β (ω)q(λ)W (η)W (−αη)ei2π(α−1)ηcT /dT dλdµ = fXY

α,β (ω) EcT /dT (α).

By (ii) and (iii) from Assumption 2.1, (i) and (ii) from Assumption 2.3, and applying Hölder

inequality, we obtain

|E2| ≤
1

dT

∫
R

∣∣∣(fXY
α,β

)′(
ω − ϱ η

dT

)
ηW (η)W (−αη)

∣∣∣ dη ∫
R

q(λ) dλ

≤ KW

dT

∫
R

∣∣∣(fXY
α,β

)′(
ω − ϱ η

dT

)
W (−αη)

∣∣∣ dη
≤ KW

dT

∫
R

∣∣∣(fXY
α,β

)′(
ω − ϱ η

dT

)∣∣∣2 dη

∫
R

|W (−αη)|2 dη

1/2

KW√
ϱdT

∫
R

|
(
fXY
α,β

)′
(η)|2 dη

∫
R

|W (−αη)|2 dη

1/2

= C1 d
1
2
T ,

and

|E3| ≤ hdT

∫
R

∫
R

∣∣∣λ(fXY
α,β

)′(
ω − η

dT
− ϱ̃λhdT

)
q(λ)W (η)W (−αη)

∣∣∣ dη dλ
≤ hdT

∥∥∥(fXY
α,β

)′∥∥∥
∞

1/2∫
−1/2

|λq(λ)| dλ
∫
R

|W (η)W (−αη)| dη = C2 d
−κ
T ,

with some constants C1, C2 > 0.
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Now let us consider E(γ, δ), with (γ, δ) ̸= (α, β). Note that

|E(γ, δ)| ≤
∥∥fXY

γ,δ

∥∥
∞

∫
R

|q(λ)|
∫
R

|W (η)W (−γη + dT ((γ − α)(ω − hdT λ) + δ − β))|dη dµ.

Define WMT
(η) =W (η)1[−MT /2,MT /2](η) with MT = O

(
d

2
3
T

)
. Then by Lemma B.9, we have∫

R

|W (η)W (−γη + dT ((γ − α)(ω − hdTµ) + δ − β))| dη

=

∫
R

|W̃MT
(η)W̃MT

(−γη + ηT )|dη +O
(
d
− 1

3
T

)
,

where ηT = dT ((γ−α)(λ−hdTµ)+δ−β). Observe that the support of WMT
(η) and WMT

(−γη+ηT )
are given by the following inequalities, respectively,

−MT

2
≤ η ≤ MT

2
, −MT

2γ
+
ηT
γ

≤ η ≤ MT

2γ
+
ηT
γ
.

Therefore, the support of WMT
(η)WMT

(−γη+ηT ) has a zero Lebesgue measure if |ηT | ≥ MT
2 (1+γ),

which is satisfied for sufficiently large T . Hence, for enough large T∫
R

|W (η)W (−γη + dT ((γ − α)(ω − hdT λ) + δ − β))| dη = O
(
d
− 1

3
T

)
.

To summarize, we obtain

εcT ,dT (ω) =
√
dThT

∣∣∣E [f̂ cT ,dT
α,β (ω)

]
− fα,β(ω)

∣∣∣
≤
√
dThdT

∣∣∣∣ E(α, β)

EcT /dT (α)
− fα,β(ω)

∣∣∣∣+ ∑
(γ,δ) ̸=(α,β)

|E(γ, β)|
|EcT /dT (α)|


≤

√
dThdT

|EcT /dT (α)|

|E2|+ |E3|+
∑

(γ,δ) ̸=(α,β)

|E(γ, β)|


≤

d
1
2
(1−κ)

T

|EcT /dT (α)|

(
C1d

− 1
2

T + C2d
−κ
T + C3d

− 1
3

T

)

=

(
C1d

− 1
2
κ

T + C2d
1
2
(1−3κ)

T + C3d
1
6
(1−3κ)

T

)
|EcT /dT (α)|

,

for sufficiently large T . Moreover, by Lemma B.8, we get limT→∞ εcT ,dT (ω) = 0, provided that

κ > 1
3 .

Proof of Theorem 3.3. From the following properties of the cumulants

Cov
(
Y (t1)X(t2), Y (t3)X(t4)

)
= cum

(
Y (t1), X(t2), Y (t3), X(t4)

)
+ E

(
Y (t1)Y (t3)

)
E
(
X(t2)X(t4)

)
+ E

(
Y (t1)X(t4)

)
E
(
X(t2)Y (t3)

)
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we obtain

dThdT Cov
(
f̃XY
α1,β1

(ω1)cT ,dT , f̃
XY
α2,β2

(ω2)cT ,dT )
)
= D1 +D2 +D3.

The first term D1 (related to the 4th-order cumulant) has the form

D1 =
1

dThdT

∫
R

∫
R

∫
R

∫
R

∫
R

∫
R

cum
(
Y (t1), X(t2), Y (t3), X(t4)

)
× w

(
t1−cT
dT

)
w
(
t2−cT
dT

)
w
(
t3−cT
dT

)
w
(
t4−cT
dT

)
× e−i2πµ1t1ei2π(α1µ1+β1)t2ei2πµ2t3e−i2π(α2µ2+β2)t4

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dt1 dt2 dt3 dt4 dµ1 dµ2,

and tends to zero as T → ∞ (see the proof of Theorem 3.4, i.e. the convergence of the term Tv with

v = (v1)).

For the second term D2, we have

D2 =
1

dThdT

∫
R

∫
R

∫
R

∫
R

∫
R

∫
R

E
(
Y (t1)Y (t3)

)
E
(
X(t2)X(t4)

)
× w

(
t1−cT
dT

)
w
(
t2−cT
dT

)
w
(
t3−cT
dT

)
w
(
t4−cT
dT

)
× e−i2πµ1t1ei2π(α1µ1+β1)t2ei2πµ2t3e−i2π(α2µ2+β2)t4

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dt1 dt2 dt3 dt4 dµ1 dµ2,

=
1

dThdT

∫
R

∫
R

∑
(γ1,δ1)∈KY Y

∫
R

fY Y
γ1,δ1(ν1)

∑
(γ2,δ2)∈KXX

∫
R

fXX
γ2,δ2(ν2)

×
∫
R

w
(
t1−cT
dT

)
e−i2πµ1t1ei2πν1t1 dt1

×
∫
R

w
(
t2−cT
dT

)
ei2π(α1µ1+β1)t2ei2πν2t2 dt2

×
∫
R

w
(
t3−cT
dT

)
ei2πµ2t3e−i2π(γ1ν1+δ1)t3 dt3

×
∫
R

w
(
t4−cT
dT

)
e−i2π(α2µ2+β2)t4e−i2π(γ2ν2+δ2)t4 dt4

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dν1 dν2 dµ1 dµ2,

and by Lemma B.4 we get

D2 =
1

dThdT

∫
R

∫
R

∑
(γ1,δ1)∈KY Y

∫
R

fY Y
γ1,δ1(ν1)

∑
(γ2,δ2)∈KXX

∫
R

fXX
γ2,δ2(ν2)

× dTW (dT (µ1 − ν1))× dTW (−dT (ν2 + α1µ1 + β1))

× dTW (dT (γ1ν1 + δ1 − µ2))× dTW (dT (α2µ2 + β2 + γ2ν2 + δ2))

× e−i2π(µ1−ν1)cT ei2π(ν2+α1µ1+β1)cT

× e−i2π(γ1ν1+δ1−µ2)cT e−i2π(α2µ2+β2+γ2ν2+δ2)cT

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dν1 dν2 dµ1 dµ2.
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Let us consider the following change the variables

λ1 =
ω1−µ1

hdT
,

η1 = dT (µ1 − ν1),

η2 = −dT (ν2 + α1µ1 + β1),

η3 = dT (γ1ν1 + δ1 − µ2),

Then

µ1 = ω1 − λ1hdT ,

ν1 = µ1 − η1
dT

= ω1 − λ1hdT − η1
dT
,

µ2 = γ1ν1 + δ1 −
η3
dT

= γ1ω1 − γ1λ1hdT − γ1
η1
dT

+ δ1 − η3
dT
,

ν2 = −α1µ1 − β1 − η2
dT

= −α1ω1 + α1λ1hdT − β1 − η2
dT
,

and
ω2 − µ2
hdT

= γ1λ1 +
η3 + γ1η1
dThdT

+
ω2 − (γ1ω1 + δ1)

hdT
= γ1λ1 +

η3 + γ1η1
dThdT

+ ζT ,

dT (α2µ2 + β2 + γ2ν2 + δ2) = −α2γ1η1 − α2η3 − γ2η2 + dT (α2δ1 + β2 − γ2β1 + δ2)

+ (ω1 − λ1hdT )(α2γ1 − γ2α1)

= −α2γ1η1 − α2η3 − γ2η2 + ξT (λ1).

Hence,

D2 =

∫
R

∫
R

∑
(γ1,δ1)∈KY Y

∫
R

fY Y
γ1,δ1

(
ω1 − λ1hdT − η1

dT

)
×

∑
(γ2,δ2)∈KXX

∫
R

fXX
γ2,δ2

(
−α1ω1 − β1 + α1λ1hdT − η2

dT

)
×W (η1)W (η2)W (η3)W (−α2γ1η1 − γ2η2 − α2η3 + ξT (λ1))

× e−i2πη1cT /dT e−i2πη2cT /dT e−i2πη3cT /dT ei2π(α2γ1η1+γ2η2+α2η3+ξT (λ1))cT /dT

× q(λ1)q
(
γ1λ1 +

η3+γ1η1
dT hdT

+ ζT

)
dη1 dη2 dλ1 dη3

=
∑

(γ1,δ1)∈KY Y

∑
(γ2,δ2)∈KXX

G(γ1, δ1, γ2, δ2).

For α2γ1 = γ2α1 and α2δ1 − γ2β1 + δ2 + β2 = 0 and ω2 = γ1ω1 + δ1, we get ξT (λ1) = 0 and ζT = 0.

Consequnelty,

G(γ1, δ1, γ2, δ2) =

∫
R

∫
R

∫
R

∫
R

fY Y
γ1,δ1

(
ω1 − λ1hdT − η1

dT

)
fXX
γ2,δ2

(
−α1ω1 − β1 + α1λ1hdT − η2

dT

)
×W (η1)W (η2)W (η3)W (−α2γ1η1 − γ2η2 − α2η3)

× e−i2πη1cT /dT e−i2πη2cT /dT e−i2πη3cT /dT ei2π(α2γ1η1+γ2η2+α2η3)cT /dT

× q(λ1)q
(
γ1λ1 +

η3+γ1η1
dT hdT

)
dη1 dη2 dλ1 dη3

=

∫
R

∫
R

∫
R

∫
R

g(η1, η2, λ1, η3) dη1 dη2 dλ1 dη3,
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and the integrand function g(η1, η2, λ1, η3) is bounded by the integrable function which does not

depend on T . Namely,

|g(η1, η2, λ1, η3)| ≤
∥∥∥fY Y

γ1,δ1

∥∥∥
∞

∥∥∥fXX
γ2,δ2

∥∥∥
∞
∥q∥∞ q(λ1) |W (η1)W (η2)W (η3)W (−α2γ1η1 − γ2η2 − α2η3)|.

and by Lemma B.10 the right-hand side of the above inequality is integrable on R4. Thus, by

Lebesgue’s dominated convergence theorem

lim
T→∞

G(γ1, δ1, γ2, δ2) = fY Y
γ1,δ1 (ω1) f

XX
γ2,δ2 (−α1ω1 − β1)

∫
R

q(λ1)q (γ1λ1) dλ1

×
∫
R

∫
R

∫
R

W (η1)W (η2)W (η3)W (−α2γ1η1 − γ2η2 − α2η3)

× e−i2π(η1+η2+η3)ϑ ei2π(α2γ1η1+γ2η2+α2η3)ϑ dη1 dη2 dη3.

It remains ti show that G(γ1, δ1, γ2, δ2), for other parameters γ1, δ1, γ2, δ2, converges to zero as

T → ∞. Note that

|G(γ1, δ1, γ2, δ2)| ≤
∥∥∥fY Y

γ1,δ1

∥∥∥
∞

∥∥∥fXX
γ2,δ2

∥∥∥
∞
∥q∥∞

∫
R

FT (λ1)dλ1,

where

FT (λ1) = q(λ1)

∫
R

∫
R

∫
R

W (η1)W (η2)W (η3)W (−α2γ1η1 − γ2η2 − α2η3 + ξT )|dη1 dη2 dη3.

Similarly as for the factor E(γ, δ), with (γ, δ) ̸= (α, β) in the proof of Theorem 2.1, from Hölder

inequity we have that FT (λ1) is bounded by an integrable function and independent of T . Therefore,

we can interchange the order of the limit and the integral with respect to λ1. By Lemma B.6 we

obtain that the terms G(γ1, δ1, γ2, δ2) tends to zero as T → ∞.

For the third term D3, the proof of its convergence is similar to the case D2, and only a sketch

of the proof is presented. Note that the term D3 can be rewritten as
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D3 =
1

dThdT

∫
R

∫
R

∫
R

∫
R

∫
R

∫
R

E (Y (t1)X(t4)) E
(
X(t2)Y (t3)

)
× w

(
t1−cT
dT

)
w
(
t2−cT
dT

)
w
(
t3−cT
dT

)
w
(
t4−cT
dT

)
× e−i2πµ1t1ei2π(α1µ1+β1)t2ei2πµ2t3e−i2π(α2µ2+β2)t4

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dt1 dt2 dt3 dt4 dµ1 dµ2,

=
1

dThdT

∫
R

∫
R

∑
(γ1,δ1)∈KY X

∫
R

fY X
γ1,δ1(ν1)

∑
(γ2,δ2)∈KXY

∫
R

fXY
γ2,δ2(ν2)

×
∫
R

w
(
t1−cT
dT

)
e−i2πµ1t1ei2πν1t1 dt1

×
∫
R

w
(
t2−cT
dT

)
ei2π(α1µ1+β1)t2ei2πν2t2 dt2

×
∫
R

w
(
t3−cT
dT

)
ei2πµ2t3e−i2π(γ2ν2+δ2)t3 dt3

×
∫
R

w
(
t4−cT
dT

)
e−i2π(α2µ2+β2)t4e−i2π(γ1ν1+δ1)t4 dt4

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dν1 dν2 dµ1 dµ2

=
1

dThdT

∫
R

∫
R

∑
(γ1,δ1)∈KY X

∫
R

fY X
γ1,δ1(ν1)

∑
(γ2,δ2)∈KXY

∫
R

fXY
γ2,δ2(ν2)

× dTW (dT (µ1 − ν1))× dTW (−dT (ν2 + α1µ1 + β1))

× dTW (dT (γ2ν2 + δ2 − µ2))× dTW (dT (α2µ2 + β2 + γ1ν1 + δ1))

× e−i2π(µ1−ν1)cT ei2π(ν2+α1µ1+β1)cT

× e−i2π(γ2ν2+δ2−µ2)cT e−i2π(α2µ2+β2+γ1ν1+δ1)cT

× q
(
ω1−µ1

hdT

)
q
(
ω2−µ2

hdT

)
dν1 dν2 dµ1 dµ2.

Let us consider the following change the variables

λ1 =
ω1−µ1

hdT
,

η1 = dT (µ1 − ν1),

η2 = −dT (ν2 + α1µ1 + β1),

η3 = dT (γ2ν2 + δ2 − µ2),

Then

µ1 = ω1 − λ1hdT ,

ν1 = ω1 − λ1hdT − η1
dT
,

µ2 = −γ2α1ω1 + γ2α1λ1hdT − γ2β1 − γ2
η2
dT

+ δ2 − η3
dT
,

ν2 = −α1ω1 + α1λ1hdT − β1 − η2
dT
,
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and

ω2 − µ2
hdT

= −γ1α1λ1 +
η3 + γ2η2
dThdT

+
ω2 + γ2(α1ω1 + β1)− δ2

hdT

= −γ1α1λ1 +
η3 + γ2η2
dThdT

+ ζT ,

and

dT (α2µ2 + β2 + γ1ν1 + δ1) = −α2γ2η2 − α2η3 − γ1η1 + (γ1 − α2γ2α1)(ω1 − λ1hdT )

+ dT (α2δ2 + β2 + δ1 − α2γ2β1)

= −α2γ2η2 − α2η3 − γ1η1 + ξT (λ1).

Hence,

D3 =

∫
R

∫
R

∑
(γ1,δ1)∈KY X

∫
R

fY X
γ1,δ1(ω1 − λ1hdT − η1

dT
)

×
∑

(γ2,δ2)∈KXY

∫
R

fXY
γ2,δ2(−α1ω1 − β1 + α1λ1hdT − η2

dT
)

×W (η1)W (η2)W (η3)W (−α2γ2η2 − α2η3 − γ1η1 + ξT (λ1))

× e−i2πη1cT /dT ei2πη2cT /dT e−i2πµ2cT /dT e−i2π(−α2γ2η2−α2η3−γ1η1+ξT (λ1))cT /dT

× q (λ1) q
(
−γ1α1λ1 +

η3+γ2η2
dT hdT

+ ζT

)
dη1 dη2 dλ1 dη3.

To obtain the convergence of D3 one has to consider two cases: (i) γ1 = α2γ2α1 and α2δ2 + β2 +

δ1 − α2γ2β1 = 0 and ω2 + γ2(α1ω1 + β1)− δ2 = 0 (ii) otherwise. The remaining part of the proof is

the same as for the term D2.

Finally, we apply Lemma B.8 to end the proof.

Proof of Theorem 3.4. Let us consider the cumulants without complex conjugation, i.e.

cum
(
f̂XY
α1,β1

(ω1)cT ,dT , . . . , f̂
XY
αP ,βP

(ωP )cT ,dT

)
.

The proofs for the other cases proceed with minor obvious changes. Note that

cum
(
f̃XY
α1,β1

(ω1)cT ,dT , . . . , f̃
XY
αP ,βP

(ωP )cT ,dT

)
=

1

dPT h
P
dT

∫
· · ·
∫

RP

∫
· · ·
∫

R2P

cum
(
X(t1,1)Y (t1,2), . . . , X(tP,1)Y (tP,2)

)

×
P∏

j=1

w
(
tj,1−cT

dT

)
e−i2πµjtj,1

P∏
j=1

w
(
tj,2−cT

dT

)
ei2π(αjµj+βj)tj,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dt1,1 . . . dtP,2 dµ1 . . . dµP .

From Lemma B.1, we have

cum
(
X(t1,1)Y (t1,2), . . . , X(tP,1)Y (tP,2)

)
=

∑
v=(v1,...,vL)

Cv1 . . . CvL ,
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where the summation is over all indecomposable partitions v of the table

(1, 1) (1, 2)

(2, 1) (2, 2)
...

...

(P, 1) (P, 2)

and

Cvm = cum (Vr(tj,r), (j, r) ∈ vm) ,

with

Vr(tj,r) =

X(tj,1), r = 1,

Y (tj,2), r = 2.

Therefore,

cum
(
f̃XY
α1,β1

(ω1)cT ,dT , . . . , f̃
XY
αP ,βP

(ωP )cT ,dT

)
=

∑
v=(v1,...,vL)

Tv,

where

Tv =
1

dPT h
P
dT

∫
· · ·
∫

RP

∫
· · ·
∫

R2P

Cv1 . . . CvL
P∏

j=1

w
(
tj,1−cT

dT

)
e−i2πµjtj,1

P∏
j=1

w
(
tj,2−cT

dT

)
ei2π(αjµj+βj)tj,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dt1,1 . . . dtP,2 dµ1, . . . dµP .

We consider Tv for two cases:

(i) v = (v1),

(ii) v = (v1, . . . , vL) for L > 1.

First, let us show the convergence in the first case, i.e. for Tv with v = (v1). This case is

performed for P ≥ 2, also to obtain the convergence of D1 in the proof of Theorems 2.2 and 3.3.

Denote V2P = (X,Y , . . . ,X, Y︸ ︷︷ ︸
2P

). Then by (iii) of Assumption 2.3
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Tv =
1

dPT h
P
dT

∫
· · ·
∫

RP

∫
· · ·
∫

R2P

cum
(
X(t1,1), Y (t1,2), . . . , X(tP,1), Y (tP,2)

)

×
P∏

j=1

w
(
tj,1−cT

dT

)
e−i2πµjtj,1

P∏
j=1

w
(
tj,2−cT

dT

)
ei2π(αjµj+βj)tj,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dt1,1 . . . dtP,2 dµ1 . . . dµP

=
1

dPT h
P
dT

∫
· · ·
∫

RP

∫
· · ·
∫

R2P

∑
k∈KV2P

∫
· · ·
∫

R2P−1

fV2P
k (ν1,1, ν1,2, ν2,1, . . . , νP−1,2, νP,1)

× e
i2π

(
ν1,1t1,1+...+νP,1tP,1+Φ

V2P
k (ν1,1,ν1,2,ν2,1,...,νP−1,2,νP,1)tP,2

)
dν1,1 . . . dνP,1

×
P∏

j=1

w
(
tj,1−cT

dT

)
e−i2πµjtj,1

P∏
j=1

w
(
tj,2−cT

dT

)
ei2π(αjµj+βj)tj,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dt1,1 . . . dtP,2 dµ1 . . . dµP

=
1

dPT h
P
dT

∑
k∈KV2P

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−1

fV2P
k (ν1,1, ν1,2, ν2,1, . . . , νP−1,2, νP,1)

×
P∏

j=1

∫
R

w
(
tj,1−cT

dT

)
e−i2π(µj−νj,1)tj,1 dtj,1

×
P−1∏
j=1

∫
R

w
(
tj,2−cT

dT

)
ei2π(νj,2+αjµj+βj)tj,2 dtj,2

×
∫
R

w
(
tP,2−cT

dT

)
ei2π(αPµP+βP+Φ

V2P
k (ν1,1,ν1,2,ν2,1,...,νP−1,2,νP,1))tP,2 dtP,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dν1,1 dν1,2 dν2,1 . . . dνP−1,2 dνP,1 dµ1 . . . dµP .

Thus, by Lemma B.4

|Tv| ≤
1

dPT

∑
k∈KV2P

∥∥∥fV2P
k

∥∥∥
∞

∫
· · ·
∫

R2P−1

∫
· · ·
∫

RP

P∏
j=1

∣∣∣q (ωj−µj

hdT

)∣∣∣
×

P∏
j=1

dT |W (dT (µj − νj,1))| ×
P−1∏
j=1

dT |W (−dT (νj,2 + αjµj + βj)|

× dT

∣∣∣W (
dT

(
αPµP + βP +ΦV2P

k (ν1,1, ν1,2, ν2,1, . . . , νP−1,2, νP,1)
))∣∣∣

dν1,1 dν1,2 dν2,1 . . . dνP−1,2 dνP,1 dµ1 . . . dµP .

Our goal is to apply Lemma B.10. To do this, first, we consider the following change of variables

λj =
ωj−µj

hdT
, j = 1, 2, . . . , P,

η2j−1 = dT (µj − νj,1), j = 1, 2, . . . , P,

η2j = −dT (νj,2 + αjµj + βj), j = 1, 2, . . . , P − 1.
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Then
µj = ωj − λjhdT , j = 1, 2, . . . , P,

νj,1 = ωj − λjhdT − η2j−1

dT
, j = 1, 2, . . . , P,

ν2,j = −αjωj + αjλjhdT − βj − η2j
dT
, j = 1, 2, . . . , P − 1.

Hence,

|Tv| ≤
1

dP−1
T

∑
k=(γ1,...,γ2P−1,δ)∈KV2P

∥∥∥fV2P
k

∥∥∥
∞

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−1

P∏
j=1

|q(λj)|
2P−1∏
j=1

|W (ηj)|

× |W (Υ(λ1, . . . , λP , η1, . . . , η2P−1))| dλ1 . . . dλP dη1 . . . dη2P−1,

where Υ(λ1, . . . , λP , η1, . . . , η2P−1) is a linear combination of η1, . . . , η2P−1, i.e.,

Υ(λ1, . . . , λP , η1, . . . , η2P−1) = dTαP (ωj − λjhdT ) + dTβP + dT

P−1∑
j=1

γ2j−1

(
ωj − λjhdT − η2j−1

dT

)

+ dT

P∑
j=1

γ2j

(
−αjωj + αjλjhdT − βj − η2j

dT

)
+ dT δ

= −
2P−1∑
j=1

γjηj + ξT (λ1, . . . , λP ),

and ξT (λ1, . . . , λP ) does not depend on η1, . . . , η2P−1. Finally, by Lemma B.10, we obtain that

|Tv| = O(d−P+1
T ) and

(dThdT )
P/2 |Tv| = O

(
h
P/2
dT

d
−P/2+1
T

)
= O

(
d
−κP/2−P/2+1
T

)
.

Thus, for P ≥ 2 the above term tends to zero since −κP/2 − P/2 + 1 < 0, ant it is equivalent to

κ > 2−P
P , which is true for κ ∈ (0, 1).

Now, let us show the convergence for Tv with v = (v1, . . . , vL) and L > 1. Without loss of

generality, assume that vn and vn+1 hook for n = 1, 2, . . . , L − 1. That is, for n = 1, 2, . . . , L − 1,

there exist (Jn, rn) ∈ vn and (J ′
n+1, r

′
n+1) ∈ vn+1 such that Jn = J ′

n+1 and rn ̸= r′n+1. Moreover, we

can assume that (P, 2) ∈ vL and denote JL = P , rL = 2.

By (iii) of Assumption 2.3, we have

Cvm =
∑

km∈KV (vm)

∫
· · ·
∫

Rlm−1

f
V (vm)
km

(ν ′
vm) e

i2π
(∑

(j,r)∈v′m
νj,rtj,r+Φ

V (vm)
km

(ν′
vm

)tJm,rm

)
dν ′

vm ,

where V (vm) = (Vj , (j, r) ∈ vm), v′m = vm \ {(Jm, rm)}, η′
vm = (ηj,r, (j, r) ∈ v′m), and

Φ
V (vm)
km

(ν ′
vm) =

∑
(j,r)∈v′m

γj,rνj,r + δvm .

Moreover, by f
V (vm)
km

and KV (vm) we denote, respectively, spectral cumulant functions and set of

support lines corresponding to cumulant Cvm .
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Note that

Tv =
1

dPT h
P
dT

∫
· · ·
∫

RP

∫
· · ·
∫

R2P

L∏
m=1

∑
km∈KV (vm)

∫
· · ·
∫

R|vm|−1

f
V (vm)
km

(η′
vm)

×
L∏

m=1

e
i2π

(∑
(j,r)∈v′m

νj,rtj,r+Φ
V (vm)
km

(ν′
vm

)tJm,rm

)
dν ′

vm

×
P∏

j=1

w
(
tj,1−cT

dT

)
e−i2πµjtj,1

P∏
j=1

w
(
tj,2−cT

dT

)
ei2π(αjµj+βj)tj,2

×
P∏

j=1

q
(
ωj−µj

hdT

)
dt1,1 . . . dtP,2 dµ1, . . . dµP .

Denote

αj,r =

−1, r = 1,

αj , r = 2,
βj,r =

0, r = 1,

βj , r = 2,

and 1⊕ 1 = 2 and 2⊕ 1 = 1. Hence,

Tv =
1

dPT h
P
dT

∑
k1∈KV (v1)

. . .
∑

kL∈KV (vL)

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−L

L∏
m=1

f
V (vm)
km

(ν ′
vm)

P∏
j=1

q
(
ωj−µj

hdT

)

×
L∏

m=1

∫
R

w
(
tJm,rm−cT

dT

)
ei2π(αJm,rmµJm+βJm,rm+Φ

V (vm)
km

(ν′
vm

))tJm,rm dtJm,rm


×

L∏
m=1

∏
(j,r)∈v′m

∫
R

w
(
tj,r−cT

dT

)
ei2π(αj,rµj+βj,r+νj,r)tj,r dtj,r

 dν ′
v1 . . .ν

′
vL
dµ1 . . . dµP .

Applying Lemma B.4, we get

|Tv| ≤
1

dPT h
P
dT

∑
k1∈KV (v1)

. . .
∑

kL∈KV (vL)

L∏
m=1

∥∥∥fV (vL)
km

∥∥∥
∞

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−L

P∏
j=1

q
(
ωj−µj

hdT

)

×
L∏

m=1

dT

∣∣∣W (
−dT

(
αJm,rmµJm + βJm,rm +Φ

V (vm)
km

(ν ′
vm)
))∣∣∣

×
L∏

m=1

∏
(j,r)∈v′m

dT |W (−dT (αj,rµj + βj,r + νj,r))| dν ′
v1 . . . dν

′
vL

dµ1 . . . dµP .

By the following change the variables

ηj,r = −dT (αj,rµj + βj,r + νj,r), (j, r) ∈ v′m,m = 1, 2, . . . L,

we have

νj,r = −αj,rµj − βj,r +
ηj,r
dT
, (j, r) ∈ v′m,m = 1, 2, . . . L,
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and

|Tv| ≤
1

dPT h
P
dT

∑
k1∈KV (v1)

. . .
∑

kL∈KV (vL)

L∏
m=1

∥∥∥fV (vm)
km

∥∥∥
∞

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−L

P∏
j=1

q
(
ωj−µj

hdT

)

×
L∏

m=1

dT
∣∣W (

−dTαJm,rmµJm +Υm(η′
vm ,µ

′
vm

)∣∣
×

L∏
m=1

∏
(j,r)∈v′m

|W (ηj,r)| dη′
v1 . . . dη

′
vL

dµ1, . . . , dµP ,

where for m = 2, 3, . . . , L

Υm(η′
vm ,µ

′
vm) = −dTβJm,rm − dT

∑
(j,r)∈v′m

γj,rνj,r − dT δvm

= −dTβJm,rm − dT
∑

(j,r)∈v′m

γj,r

(
ηj,r
dT

− αj,rµj − βj,r

)
− dT δvm

= −dTβJm,rm −
∑

(j,r)∈v′m

γj,rηj,r + dT
∑

(j,r)∈v′m

γj,rαj,rµj + dT
∑

(j,r)∈v′m

γj,rβj,r − dT δm

= −
∑

(j,r)∈v′m

γj,rηj,r + dTαJm−1,rm−1⊕1µJm−1 + ξ
(m)
T (µ′

vm),

(3.9)

and ξ
(m)
T (µ′

vm) does not depend on η′
vm . The last equality in (3.9) follows from the fact that

(Jm−1, rm−1 ⊕ 1) = (J ′
m, r

′
m) belongs to v′m.

Now let us consider the following change the variables

λm = −dTαJm,rmµJm +Υm(η′
vm ,µ

′
vm), m = 1, 2, . . . , L− 1. (3.10)

Then

µJm =
Υm(η′

vm
,µ′

vm
)−λm

dTαJm,rm
, m = 1, 2, . . . , L− 1,

and

ΥL(η
′
vL
,µ′

vL
) =

∑
(j,r)∈v′L

γj,rηj,r + dTαJL−1,rL−1⊕1µJL−1
+ ξ

(L)
T (µ′

vL
)

=
∑

(j,r)∈v′L

γj,rηj,r +
αJL−1,rL−1⊕1

αJL−1,rL−1

(
ΥL−1(η

′
vL−1

,µ′
vL−1

)− λL−1

)
+ ξ

(L)
T (µ′

vL
).

By recursively combining (3.9) and (3.10), we get

dTαJL,rLµJL +ΥL(η
′
vL
,µ′

vL
) =

L∑
m=1

∑
(j,r)∈v′m

aj,rηj,r +

L−1∑
m=1

bmλJm + ξT (µ
′
v1 , . . . ,µ

′
vL
, µJL),
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with some constants aj,r, (j, r) ∈ v′m,m = 1, 2, . . . , L, and constants bm, m = 1, 2 . . . , L − 1, and

ξT (µ
′
v1 , . . . ,µ

′
vL
, µJL) does not depend on η′

v1 , . . . ,η
′
vL

. Therefore,

|Tv| ≤
1

dP−1
T hPdT

∑
k1∈KV (v1)

. . .
∑

kL∈KV (vL)

L∏
m=1

∥∥∥fV (vm)
km

∥∥∥
∞

∫
· · ·
∫

RP

∫
· · ·
∫

R2P−L

× ∥q∥L−1
∞ q

(
ωJL

−µJL
hdT

) L∏
m=1

∏
(j,r)∈v′m

q
(
ωj−µj

hdT

)

×

∣∣∣∣∣∣W
 L∑

m=1

∑
(j,r)∈v′m

aj,rηj,r +

L−1∑
m=1

bmλLm + ξT (µ
′
v1 , . . . ,µ

′
vL
, µJL)

∣∣∣∣∣∣
×

L∏
m=1

∏
(j,r)∈v′m

|W (ηj,r)|
L−1∏
m=1

|W (λLm)|

dη′
v1 . . . dη

′
vL

dµ′
v1 , . . . , dµ

′
vL

dµJL dλJ1 . . . dλJL−1
.

From Lemma B.10, we have

∫
· · ·
∫

RL−1

∫
· · ·
∫

R2P−L

∣∣∣∣∣∣W
 L∑

m=1

∑
(j,r)∈v′m

aj,rηj,r +

L−1∑
m=1

bmλLm + ξT (µ
′
v1 , . . . ,µ

′
vL
)

∣∣∣∣∣∣
L∏

m=1

∏
(j,r)∈v′m

|W (ηj,r)|

×
L−1∏
m=1

|W (λLm)| dη′
v1 . . . dη

′
vL

dλJ1 . . . dλJL−1
≤ C,

with some positive constant C > 0. By the above inequality and the following change the variables

λj =
ωj − µj
hdT

j ̸= J1, . . . , JL−1,

we obtain

|Tv| ≤
C ∥q∥L−1

∞
dP−1
T hL−1

dT

∑
k1∈KV (v1)

. . .
∑

kL∈KV (vL)

L∏
m=1

∥fkm∥∞
∫

· · ·
∫

RP−L+1

q(λJL)

L∏
m=1

∏
(j,r)∈v′m

q(λj).

Consequently,

(dThdT )
P/2|Tv| = O

(
d
−P/2+1
T h

P/2−L+1
dT

)
,

The above term converges to zero as T → ∞ provided that −P/2 + 1− κ(P/2− L+ 1) < 0 and it

is fulfilled for all κ ∈ (0, 1). Namely, the condition −P/2 + 1− κ(P/2− L+ 1) < 0

• for L = P/2 + 1 is equivalent to P > 2,

• for L < P/2 + 1 is equivalent to

1 > κ >
−P/2 + 1

P/2− L+ 1
,

and it is fulfilled for all κ ∈ (0, 1) since −P/2+1
P/2−L+1 < 0.
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• for P/2 + 1 < L ≤ P is equivalent to

0 < κ <
−P/2 + 1

P/2− L+ 1

and it is fulfilled for all κ ∈ (0, 1) since −P/2+1
P/2−L+1 ≥ 1.

The above and Lemma B.8 complete the proof.

Proof of Theorem 3.5. Observe that

√
dThdT

(
f̂XY
α,β (ω)cT ,dT − fXY

α,β (ω)
)
= εcT ,dT (ω) + UcT ,dT (ω),

where εcT ,dT (ω) is a bias term

εcT ,dT (ω) =
√
dThdTE

(
f̂XY
α,β (ω)cT ,dT − fXY

α,β (ω)
)
,

and

UcT ,dT (ω) =
√
dThdT

(
f̂XY
α,β (ω)cT ,dT − E

[
f̂XY
α,β (ω)cT ,dT

])
.

From Theorem 3.2, we know that εcT ,dT (ω) converges to zero as T → ∞. Therefore, it remains to

prove that [
Re (UcT ,dT (ω))

Im (UcT ,dT (ω))

]
d−→ N2(0,Σϑ(ω;α, β)).

Obviously, the first moment of UcT ,dT (ω) is zero. From Theorem 3.3, we get that its asymptotic

covariance is finite. Now we focus on the higher-order asymptotic cumulants. For any constants

c1, . . . , cP ∈ R and m1, . . . ,mP ∈ C, we have

cum(c1(Z1 −m1), . . . , cP (ZP −mP )) = c1 . . . cP cum(Z1, . . . , ZP ).

In addition, for P > 2, from Theorem 3.4, we get that the P -th order joint cumulant

cum
(
U

[∗]
cT ,dT

(ω), . . . , (U
[∗]
cT ,dT

(ω)
)

tends to zero. Following the discussion provided in Section A.3, we obtain the asymptotic normality

of UcT ,dT (ω).

Finally, let us consider elements ofCov(Re (UcT ,dT (ω)) ,Re (UcT ,dT (ω))
)

Cov
(
Re (UcT ,dT (ω)) , Im (UcT ,dT (ω))

)
Cov

(
Im (UcT ,dT (ω)) ,Re (UcT ,dT (ω))

)
Cov

(
Im (UcT ,dT (ω)) , Im (UcT ,dT (ω))

) .
For a complex number z ∈ C, we have

Re(z) =
z + z

2
, Im(z) =

z − z

2i
. (3.11)
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Thus, by (3.11), we obtain

Cov
(
Re (UcT ,dT (ω)) ,Re (UcT ,dT (ω))

)
=
dThdT

4
Cov

(
f̂XY
α,β (ω)cT ,dT + f̂XY

α,β (ω)cT ,dT , f̂
XY
α,β (ω)cT ,dT + f̂XY

α,β (ω)cT ,dT

)
,

Cov
(
Re (UcT ,dT (ω)) , Im (UcT ,dT (ω))

)
=
dThdT
4i

Cov
(
f̂XY
α,β (ω)cT ,dT + f̂XY

α,β (ω)cT ,dT , f̂
XY
α,β (ω)cT ,dT − f̂XY

α,β (ω)cT ,dT

)
,

Cov
(
Im (UcT ,dT (ω)) , Im (UcT ,dT (ω))

)
= −dThdT

4
Cov

(
f̂XY
α,β (ω)cT ,dT − f̂XY

α,β (ω)cT ,dT , f̂
XY
α,β (ω)cT ,dT − f̂XY

α,β (ω)cT ,dT

)
.

Next, using bilinearity of covariance, Theorems 3.3 and (3.11), we get

lim
T→∞

Cov
(
Re (UcT ,dT (ω)) ,Re (UcT ,dT (ω))

)
=

Re(σ2ϑ) + Re(σ2ϑ,c)

2
,

lim
T→∞

Cov
(
Re (UcT ,dT (ω)) , Im (UcT ,dT (ω))

)
=

Im(σ2ϑ)− Im(σ2ϑ,c)

2
,

lim
T→∞

Cov
(
Im (UcT ,dT (ω)) , Im (UcT ,dT (ω))

)
=

Re(σ2ϑ,c)− Re(σ2ϑ)

2
,

where

σ2ϑ = σ2ϑ(ω;α, β) = lim
T→∞

dThdT Cov
(
f̂XY
α,β (ω)cT ,dT , f̂

XY
α,β (ω)cT ,dT

)
,

σ2ϑ,c = σ2ϑ,c(ω;α, β) = lim
T→∞

dThdT Cov
(
f̂XY
α,β (ω)cT ,dT , f̂

XY
α,β (ω)cT ,dT

)
.

Observe that σ2ϑ is computed in Theorem 3.3 and σ2ϑ,c can be calculated analogously.

Proof of Corollary 2.2. We apply the reasoning presented in [51].

For the case where fXY
α,β (ω) = 0, the thesis follows from the continuous mapping theorem, i.e.,

√
dThdT

∣∣∣f̂XY
α,β (ω)cT ,dT

∣∣∣ d−→ L
(√

U2
1 + U2

2

)
,

where L
(
[U1, U2]

T
)
= N2(0,Σϑ(ω;α, β)).

For the case fXY
α,β (ω) ̸= 0, we apply the delta method for the convergence in Theorem 3.5 and

for the function g(x, y) =
√
x2 + y2 which is differentiable at(

Re
(
fX,Y
α,β (ω)

)
, Im

(
fXY
α,β (ω)

))
.

Note that A1Σϑ(ω;α, β)A
T
1 > 0 if det(Σϑ(ω;α, β)) ̸= 0.

Lemma 3.1. Let Assumption 2.1 and Assumption 2.3 hold. Let (α, β) ∈ KXY be fixed. Let ω ∈ R
be a point that does not lie at the intersection of the support lines of the spectral measures FXY ,

FXX and F Y Y . Moreover, there exist first derivatives fXX
1,0

′, fY Y
1,0

′ that belong to L2(R) ∩ L∞(R).
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Then

√
dThdT




Re(f̂XY

α,β (ω)cT ,dT )

f̂XX
0,1 (ω)cT ,dT

f̂Y Y
0,1 (ν)cT ,dT

Im(f̂XY
α,β (ω)cT ,dT )

−


Re(fXY

α,β (ω))

fXX
1,0 (ω)

fY Y
1,0 (ν)

Im(fXY
α,β (ω))



 d−→ N4(0,Dϑ(ω, ν;α, β)),

where elements of Dϑ(ω, ν;α, β) can be computed by Theorem 3.3.

Proof of Lemma 3.1. It is a natural generalization of Theorem 3.5 to the multidimensional case,

and the proof is analogous.

Proof of Theorem 3.6. We apply the reasoning presented in [51].

For the case where fXY
α,β (ω) = 0, the thesis follows from the continuous mapping theorem,

the consistency of the cross-periodogram frequency-smoothed along the line, and Slutsky’s lemma.

Namely,

√
dThdT

∣∣γ̂XY
α,β (ω)cT ,dT

∣∣ = √
dThdT

∣∣∣f̂XY
α,β (ω)cT ,dT

∣∣∣√
f̂XX
0,1 (ω)cT ,dT f̂

Y Y
0,1 (αω + β)cT ,dT

d−→ L

( √
U2
1 + U2

2

fXX
1,0 (ω)fY Y

1,0 (αω + β)

)
,

where L
(
[U1, U2]

T
)
= N2(0,Λϑ(ω, αω + β)).

For the case fXY
α,β (ω) ̸= 0, we apply the delta method to convergence in Lemma 3.1 and for the

function

g(x, y, z, t) =

√
x2 + y2√
zt

,

which is differentiable at(
Re
(
fXY
α,β (ω)

)
, fXX

1,0 (ω), fY Y
1,0 (αω + β), Im

(
fXY
α,β (ω)

))
.

Note that A2Λϑ(ω, αω + β)AT
2 > 0 if det(Λϑ(ω, αω + β)) ̸= 0.

Proof of Proposition 3.2. Observe that dependence of the asymptotic distributions on the parameter

lim
T→∞

s∆
b = ϑ appears only in the asymptotic covariance matrix, and precisely in the following factors

Eϑ(a) =
∫
R
W (η)W (−aη)ei2π(a−1)ηϑdη,

and

Wϑ(a1, a2, a3) =

∫
R

∫
R

∫
R

W (η1)W (η2)W (η2)W (a1η1 + a2η2 + a3η3)

× e−i2π(η1+η2+η3)ϑ ei2π(a1η1+a2η2+a3η3)ϑ dη1 dη2 dη3.

Thus, it is sufficient to show that Eϑ(a) and Wϑ(a, b, c) do not depend on ϑ. For a = 1, the proof is

straightforward. For a ̸= 1, we have |ϑ| ≤ 1
2 , since

∣∣ s∆
b

∣∣ ≤ 1
2 for s = −lT ,−lT + 1, . . . , lT .

From Proposition 3.1, the normalizing factor takes the form

Eϑ(a) =
∥∥∥[−1

2 ,
1
2

]
∩
[
− 1

2a + (1−a)ϑ
a , 1

2a + (1−a)ϑ
a

]∥∥∥ ,
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where ∥ · ∥ denotes the Lebsegue measure on R. Note that

Eϑ(a) = ∥[hlow(1), hup(1)] ∩ [hlow(a), hup(a)]∥ ,

where hlow(x) = − 1
2x+

ϑ(1−x)
x and hup(x) =

1
2x+

ϑ(1−x)
x . For x > 0 and |ϑ| ≤ 1

2 , the function hlow(x)

is increasing and hup(x) is decreasing. Then

Eϑ(a) = ∥[hlow(max(1, a)), hup(max(1, a))]∥ = |hup(max(1, a))− hlow(max(1, a))| = 1

max (1, a)
.

As for Eϑ(a), we can show

Wϑ(a1, a2, a3) =

∫
R

w(a1x+ ϑ(a1 − 1))w(a2x+ ϑ(a2 − 1))w(a3x+ ϑ(a3 − 1))w(x) dx,

and hence

Wϑ(a1, a2, a3) = ∥[hlow(max(1, a1, a2, a3)), hup(max(a1, a2, a3))]∥

= |hup(max(a1, a2, a3))− hlow(max(1, a1, a2, a3))|

=
1

max (1, a1, a2, a3)
.

Proof of Proposition 3.3. Note that

FXY (a, b) = σ ({X(t) : a ≤ t ≤ b} , {Y (t) : a ≤ t ≤ b})

⊂ σ

({
Z(t) : t ∈

K⋃
k=1

[ska, skb)] ∪
L⋃
l=1

[rla, rlb]

})
⊂ σ ({Z(t) : t ∈ [min{s1, . . . , sK , r1, . . . , rL}a,max{s1, . . . , sK , r1, . . . , rL}b]})

= FZ(qa, q̄b),

where

q = min{s1, . . . , sK , r1, . . . , rL}, q̄ = max{s1, . . . , sK , r1, . . . , rL}.

Finally, using Lemma B.2, we have for t, τ ∈ R

α (FXY (−∞, t),FXY (t+ τ,+∞)) ≤ α
(
FZ(−∞, q̄t),FZ(q(t+ τ),∞)

)
≤ 8

(
sup
u∈R

∥Z(u)∥2+δ

) 2
2+δ

α
δ

2+δ

Z ((q − q̄)t+ q̄τ) = h(t, τ),

and ∫
R

α
δ

2+δ

Z ((q − q̄)t+ q̄τ) dτ =
1

q̄

∫
R

α
δ

2+δ

Z (τ) dτ <∞.

Proof of Theorem 3.7. The proof is similar to the proof of Theorem 4.2.1 in [72]. However, it requires

some key changes. Proof of (i): Define

U θ
T,b(x) =

1

2lT + 1

lT∑
j=−lT

1{√bhb(θ̂T,b,∆j−θ)≤x}.
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Observe that

Lθ
T,b(x) =

1

2lT + 1

lT∑
j=−lT

1{√bhb(θ̂T,b,∆j−θ)+
√
bhb(θ−θ̂T )≤x}.

Then for every ε > 0, we have

U θ
T,b(x− ε)1ET,b

≤ Lθ
T,b(x)1ET,b

≤ U θ
T,b(x+ ε),

where

ET,b =
{√

bhb

(
θ − θ̂T

)
≤ x

}
.

The probability of the set ET,b tends to one, and hence

U θ
T,b(x− ε) ≤ Lθ

T,b(x) ≤ U θ
T,b(x+ ε)

with probability tending to one. If x± ε are continuity points of Jθ(x), then UT,b(x± ε) tending to

Jθ(x± ε) in probability implies that

Jθ(x− ε)− ε ≤ Lθ
T,b(x) ≤ Jθ(x+ ε) + ε

with probability tending to one. To obtain Lθ
T,b(x) → Jθ(x) in probability, we take ε→ 0 such that

x ± ε are continuity points of Jθ(x). Therefore, it is sufficient to show that U θ
T,b(x) converges in

probability to Jθ(x) for every continuity point x of Jθ(x).

Observe that

E
[
U θ
T,b(x)

]
=

1

2lT + 1

lT∑
j=−lT

Jθ
T,b,∆j(x),

where Jθ
T,b,∆j(x) is the cumulative distribution function of Jθ

T,b,∆j . We know that Jθ
T,b,∆j(x) converges

to Jθ(x) as T → ∞. Consequently, E
[
U θ
T,b(x)

]
converges to Jθ(x) and it remains to show that

Var
(
U θ
T (x)

)
tends to zero as T → ∞. Let

Ib,j = 1{√bhb(θ̂T,b,∆j−θ)≤x},

and

AlT ,τ =
1

2lT + 1

lT−τ∑
j=0

Cov (Ib,j , Ib,j+τ ) .

Thus,

Var
(
U θ
T,b(x)

)
=

1

(2lT + 1)2

lT∑
j=−lT

lT∑
k=−lT

Cov (Ib,j , Ib,k) =
1

(2lT + 1)2

lT∑
j=−lT

lT−j∑
τ=−lT−j

Cov (Ib,j , Ib,j+τ )

=
1

2lT + 1

2lT+1∑
τ=0

AlT ,τ =
1

2lT + 1

(
AlT ,0 +

b−1∑
τ=1

AlT ,τ +

2lT+1∑
τ=b

AlT ,τ

)
= V1 + V2,

where

V1 =
1

2lT + 1

(
AlT ,0 +

b−1∑
τ=1

AlT ,τ

)
, V2 =

1

2lT + 1

2lT+1∑
τ=b

AlT ,τ .
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One can easily notice that |V1| = O
(

b
lT

)
and it converges to zero as T → ∞. For V2, we use

Lemma B.3 and the condition (i) of Assumption 3.3. Then for τ ≥ b

|Cov (Ib,j , Ib,j+τ )| ≤ 4α
(
FXY
(−∞,j∆+b/2),F

XY
((j+τ)∆−b/2,+∞)

)
≤ 4h(j∆+ b/2, τ∆− b),

and hence

|V2| ≤
4

(2lT + 1)2

2lT+1∑
τ=b

lT−τ∑
j=0

h(j∆+ b/2, τ∆− b) =
4

(2lT + 1)2

lT−b∑
j=0

lT−j∑
τ=b

h(j∆+ b/2, τ∆− b)

≤ 4

(2lT + 1)2

lT−b∑
j=0

∞∑
τ=b

h(j∆+ b/2, τ∆− b)

≤ 4

(2lT + 1)2

lT−b∑
j=0

h(j∆+ b/2, b(∆− 1)) +

∞∫
b

h(j∆+ b/2, τ∆− b) dτ

 .

Finally, by the change of the variable u = ∆τ − b, we get

|V2| ≤
4

(2lT + 1)2

lT−b∑
j=0

h(j∆+ b,−b) + 1

∆

∞∫
b(∆−1)

h(j∆+ b, u) du

 ,

and hence

|V2| ≤
4(lT − b)

(2lT + 1)2

(
1

4
+
M

∆

)
,

and V2 converges to zero as T → ∞.

Proof of (ii): By the Heine definition of the limit of a function, supx∈R
∣∣Lθ

T,b(x) − Jθ(x)
∣∣ →

0 in probability if for every sequence {Tn}, such that Tn → ∞ as n → ∞, the sequence

supx∈R
∣∣Lθ

Tn,bn
(x) − Jθ(x)

∣∣ tends to zero in probability as n → ∞, where bn = O(T p
n). Finally,

similarly as in Theorem 3.2.1 in [72] one can prove that supx∈R
∣∣Lθ

Tn,bn
(x) − Jθ(x)

∣∣ → 0 in proba-

bility as n→ ∞.

The proof of (iii) follows from the Heine definition of the limit of a function and the same

reasoning as used in Theorem 3.2.1 in [72].

Proof of Corollary 3.2. It follows immediately from Theorem 3.7 and the continuous mapping the-

orem.
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CHAPTER 4

SIMULATION STUDY

In this chapter, we conduct simulation studies to illustrate our theoretical findings presented in

Chapters 2 and 3. In Section 4.1, we introduce the models used in simulation studies. In Sec-

tion 4.2, we present the simulation results examining the mean-square consistency of the normal-

ized frequency-smoothed periodogram along the line, addressing both the cases when the line is

known and when it is unknown. In Section 4.3, we analyze the performance of subsampling-based

confidence intervals for the spectral density and spectral coherence functions.

4.1 Models used in the simulation study

Let Z(t) be the Ornstein-Uhlenbeck processes defined by the following stochastic differential equa-

tion

dZ(t) = −Z(t) dt+ dW (t), t ∈ R, (4.1)

where {W (t), t ∈ R} denotes the Wiener process, see [40, Chapter 6]. It can be shown that Z(t) is

a stationary process. Its mean function is µZ(t) = 0 and its autocovariance function is γZ(τ) =
1
2e

−|τ |. Consequently, its spectral density function has the form ϕZ(ω) = 1
1+4π2ω2 . Furthermore,

in [4] it is shown that Z(t) is geometrically α-mixing.

We perform simulation studies using the following models.

M1 : A process X(t) given by X(t) = Z(t) + Z(st) cos(2πλt) with s = 1
2 and λ = 1

4 .

M2 : A process X(t) given by X(t) = Z(t) + Z(st) cos(2πλt) with s = 1
4 and λ = 1

4 .

M3 : Two processes X1(t) and X2(t) given by X1(t) = Y (s1t)e
i2πη1t and X2(t) = Y (s2t)e

i2πη2t,

where Y (t) = Z(t) cos(πψt), with s1 = 1
2 , s2 =

1
4 , η1 =

1
100 , η2 =

1
50 , ψ = 4

3 .

The models M1 and M2 differ in the parameter s, which affects the slope of the support lines.

For the spectral properties of models M1 and M2, we refer to Example 1.2. The model M3 is

discussed in Example 1.3, while the properties of Y (t) can be found in Example 1.1.
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To perform simulations for models M1–M3, first, we need to generate Z(t) and Z(st) with

s−1 ∈ N. Since Z(t) is a solution of the stochastic differential equation (4.1) we can use the Euler-

Maruyama scheme [57, Section 2.7] to generate it. Let N ∈ N be a number of samples and δ > 0 be

a discretization step. The observation interval is
[
−T

2 ,
T
2

]
with T = (N − 1)δ > 0. First, we approx-

imate Z̃(t) = Z(st) at points t = −T
2 + snδ using Z̃n given byZ̃n = (1− δ)Z̃n−1 +

√
δεn, n = 1, 2, . . . , s(N − 1),

Z̃0 ∼ N(0, 12),

where ε1, . . . , εs(N−1) are independent random variables with the standard normal distribution

N (0, 1). Then Z(t) is simulated as Z̃s−1n.

In Figure 4.1, we present a single trajectory of the processes considered in models M1 and M2.

Both trajectories are derived from the same underlying trajectory Z(t), which is also shown in the

graphs. Figure 4.2 illustrates a single trajectory of the real part of the processes X1(t) and X2(t)

considered in the model M3 along with the trajectory of Y (t).

4.2 Validation of mean-square consistency

In this section, we analyze the mean-square consistency of the frequency-smoothed periodogram

through a simulation study. We begin by examining the scenario in which the support lines are

known, considering models M1 and M2. Then, we investigate the case where the support lines are

estimated, considering model M3.

4.2.1 Known support line case

For both models M1 and M2, we set the discretization step δ = 1
32 , and the number of samples

N takes values in {1024, 2048, 4096, 8192, 16384}. The length of the observation interval is given by

T = (N − 1)δ. As the data-tapering window w we consider the rectangular window function, while

the frequency-smoothing window q is the Hann window (see Table 2.1). The frequency-smoothing

bandwidth is set to hT = 1
16T

−2/5. The frequencies at which the spectral density functions are

estimated are given by ωN
j = − 1

2δ + j
(N−1)δ for j = 0, 1, . . . , N − 1. Note that ωN

j ∈
[
− 1

2δ ,
1
2δ

]
for

j = 0, 1, . . . , N − 1.

We consider the estimation of the spectral density functions fXX
α,β (ω), where α and β denote the

slope and intercept of the support line, respectively. We focus on the following support lines:

L1 : {(ω, ν) ∈ R2 : ν = ω},

L2 : {(ω, ν) ∈ R2 : ν = sω + λ},

L3 : {(ω, ν) ∈ R2 : ν = s−1(ω + λ)},

L4 : {(ω, ν) ∈ R2 : ν = ω + 2λ},

B. Majewski Statistical inference for harmonizable processes



4. Simulation study 65

Figure 4.1: Blue line: single trajectory of the processes X(t), t ∈
[
0, T2

]
, with δ = 1

32 and N = 2048.

Orange line: single trajectory of the underlying trajectory Z(t), t ∈
[
0, T2

]
, with δ = 1

32 and N =

2048. The top panel corresponds to model M1, and the bottom panel corresponds to model M2.

Figure 4.2: Blue line: single trajectory of the real part of Xj(t) for t ∈
[
0, T2

]
, with δ = 1

32 and

N = 2048, considered in the model M3. Orange line: single trajectory of the underlying trajectory

Y (t), t ∈
[
0, T2

]
, with δ = 1

32 and N = 2048. The top panel corresponds to the case j = 1, and the

bottom panel corresponds to the case j = 2.

B. Majewski Statistical inference for harmonizable processes



4. Simulation study 66

where the values of λ and s are given in M1 and M2 (see Section 4.1).

To evaluate the performance of the frequency-smoothed periodogram f̂XX
α,β (ω) for a fixed ω ∈ R,

we examine its expected value and standard deviation, denoted by

E(T ;ω) = E
(
f̂XX
α,β (ω)

)
,

STD(T ;ω) =
(
Var

(
f̂XX
α,β (ω)

)) 1
2
.

Recall that T denotes the length of the observation interval of X(t). In other words, f̂XX
α,β (ω) is

calculated based on the sample observed over an interval of length T . Moreover, we investigate the

mean-squared error averaged over frequencies. Note that as T increases, the number of considered

frequencies ωN
j also increases. To ensure a consistent measure of accuracy for different values of T ,

we consider the same set of frequencies for each T . Specifically, we choose the frequencies ω1024
j for

j = 0, 1, . . . , 1023. We define

MSEmean(T ) =
1

1024

1023∑
j=0

E
∣∣∣f̂XX

α,β (ω1024
j )− fXX

α,β (ω1024
j )

∣∣∣2 .
By Monte Carlo simulation (using M = 500 Monte Carlo trials), we obtain estimates of E(T ;ω),

STD(T ;ω) and MSEmean(T ). Their estimates are denoted by Ê(T ;ω), ŜTD(T ;ω) and M̂SEmean(T ),

respectively.

Note that the considered spectral density functions are real-valued (see Example 1.2) and hence,

for simplicity of presentation, we decided to omit the estimation results for their imaginary parts.

In Figures 4.3 and 4.5 we present the results for models M1 and M2, respectively, focusing on the

estimated expectation Ê(T ;ω) and the estimated standard deviation ŜTD(T ;ω). Specifically, the

figures display Ê(T ;ω) as a blue dashed line, along with the range Ê(T ;ω)± ŜTD(T ;ω), represented

by a blue shaded area. Additionally, the theoretical values of the spectral density function are shown

as a green solid line. Each column in the figures corresponds to a different support line L1–L4, while

each row represents the results for a different value of N (consequently a different value of T ). For

clarity, we restrict the simulation results to frequencies within the range around the maximum values

of the spectral density functions, that is, to the interval [−0.5, 0.5]. It is evident that for any line, as T

increases, the estimated expected values Ê(T ;ω) progressively approach the true values. In addition,

the range covered by one standard deviation ŜTD(T ;ω) decreases. It indicates a reduction in the

mean-squared error of the estimator. To visualize this trend, Figures 4.4 and 4.6 (corresponding to

models M1 and M2, respectively) show the estimated averaged mean-squared error M̂SEmean(T ).

This analysis further illustrates the decrease in the mean-squared error of the frequency-smoothed

periodogram along the known support line as T increases, demonstrating consistency with the

theoretical results (see Corollary 2.1).
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Figure 4.3: Results for M1 (the case of a known line). Green solid line: the theoretical values of the

spectral density function. Blue dashed line: the estimated expectation Ê(T ;ωN
j ). Shaded blue area:

the region within one standard deviation ŜTD(T ;ωN
j ). Each row represents a specific value of N .

The subsequent columns (from the left) correspond respectively to lines L1–L4.

Figure 4.4: Results for M1 (the case of a known line). The estimated average mean-squared error

M̂SEmean(T ) as a function of T . The subsequent columns (from the left) correspond respectively to

lines L1–L4.
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Figure 4.5: Results for M2 (the case of a known line). Green solid line: the theoretical values of the

spectral density function. Blue dashed line: the estimated expectation Ê(T ;ωN
j ). Shaded blue area:

the region within one standard deviation ŜTD(T ;ωN
j ). Each row represents a specific value of N .

The subsequent columns (from the left) correspond respectively to lines L1–L4.

Figure 4.6: Results for M2 (the case of a known line). The estimated average mean-squared error

M̂SEmean(T ) as a function of T . The subsequent columns (from the left) correspond respectively to

lines L1–L4.
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4.2.2 Unknown support line case

For the model M3, we set the discretization step δ = 1
32 , and the number of samples N takes values

in {1024, 2048, 4096, 8192, 16384}. The length of the observation interval is given by T = (N − 1)δ.

As the data-tapering window w we consider the rectangular window function, while the frequency-

smoothing window q is the Hann window (see Table 2.1). The frequency-smoothing bandwidth is set

to hT = 1
80T

−1/3. The frequencies at which the spectral density functions are estimated are given

by ωN
j = − 1

2δ +
j

(N−1)δ for j = 0, 1, . . . , N − 1. Note that ωN
j ∈

[
− 1

2δ ,
1
2δ

]
for j = 0, 1, . . . , N − 1.

We consider the estimation of the spectral density functions fX1X2
α,β (ω), where α and β denote

the slope and intercept of the support line, respectively. We focus on the following support lines:

L1 :
{
(ω, ν) ∈ R2 : ν = s2

s1
(ω − η1) + η2

}
,

L2 :
{
(ω, ν) ∈ R2 : ν = s2

s1
(ω − η1) + η2 − s1λ

}
,

where λ = 2ψ. We assume that λ is known and s1, s2, η1, η2 are unknown.

Let us demonstrate the estimation of the support line using the procedure outlined in Sec-

tion 2.2.3. Specifically, we analyze the realization of X1(t) and X2(t) over an observation interval of

length T = 16383δ. The procedure assumes that the cycle autocovariance frequency and the cycle

conjugate autocovariance frequency of Y (t) are known. Both are equal to λ = 2ψ. The first step is to

find the cyclic autocovariance frequency λj = sjλ of Xj(t) and the cyclic conjugate autocovariance

frequency γj = sjγ+2ηj of Xj(t), for j = 1, 2. Note that the value of λ = 2.6 is chosen to make this

problem more difficult, because the frequencies λ1, λ2, γ1, γ2 do not belong to the set of frequencies

considered {ωN
j : j = 0, 1 . . . , N − 1} and cannot be exactly represented on a computer. The digit

with a horizontal line above represents an infinitely repeating digit in the repeating decimal.

Figure 4.7 presents the estimated magnitude of cyclic autocovariance functions and the estimated

magnitude of cyclic conjugate autocovariance functions ofX1(t) andX2(t) for a lag parameter τ = 0.

In addition, the identified frequencies λ1, λ2, γ1 and γ2 are marked with red ’x’. The shaded gray

area in the top panel represents the frequency range in which the cycle frequencies are searched,

that is, the range [λ−2, λ+2]. The bottom panel provides a zoomed-in view restricted to this range

[λ − 2, λ + 2]. Having estimates of λ1, λ2, γ1 and γ2 we compute the estimates of the parameters

s1, s2, η1 and η2, and consequently we can estimate the slopes and intercepts of L1 and L2. The

results are summarized in Table 4.1.

Now, we analyze the performance of the periodogram frequency-smoothed along the estimated

support line. Note that the considered spectral density functions are real-valued (see Example 1.2)

and hence, for simplicity of presentation, we decided to omit the estimation results for their imag-

inary parts. We follow the same approach as the Monte Carlo procedure described in the previous

section. We use M = 500 Monte Carlo trails. We consider E(T ;ω), STD(T ;ω) and MSEmean(T )

with f̂XY
α,β (ω) replaced by f̂XY

α̂,β̂
(ω). Here, α̂, β̂ denote estimators of α, β, respectively. For each Monte

Carlo trail, the estimation of line parameters follows the same method as applied above. Figure 4.8

displays the results in the same manner as Figures 4.3 and 4.5. For clarity, we restrict the simulation
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results to frequencies within the range around the maximum values of the spectral density func-

tions, that is, to the interval [−1.5, 1.5]. Note that the estimated expected values Ê(T ;ω) gradually

converge to the theoretical values and the estimated standard deviation ŜTD(T ;ω) decreases as T

increases. Furthermore, Figure 4.9 shows the estimated averaged mean-squared errors M̂SEmean(T )

in the same way as in Figures 4.4 and 4.6. This result illustrates that as T increases, the mean-

squared error of the frequency-smoothed periodogram along the estimated support line decreases.

It is consistent with Theorem 2.3.

Figure 4.7: Identification of cycle frequencies. Blue line: the estimated magnitude of cyclic (conju-

gate) autocovariance functions of X1(t). Green line: the estimated magnitude of cyclic (conjugate)

autocovariance functions of X2(t). Red dashed line: the frequency λ. Shaded gray area: the fre-

quency range in which the cycle frequencies are searched, that is, the range [λ − 2, λ + 2]. Red

markers ’x’ highlight the maximum values of the cyclic functions. The left panels corresponds to the

cyclic autocovariance, and and the right panels corresponds to the cyclic conjugate autocovariance

function.

Parameter Description Theoretical value Estimate

λ cycle (conjugate) frequency of Y (t) 2.6 –
λ1 cycle frequency of X1(t) 1.3 1.3330078125

γ1 cycle conjugate frequency of X1(t) 1.353 1.353515625

λ2 cycle frequency of X2(t) 0.6 0.6669921875

γ2 cycle conjugate frequency of X2(t) 0.706 0.70703125

s1 time-scale factor in X1(t) 0.5 0.4998779296875

s2 time-scale factor in X2(t) 0.25 0.2501220703125

η1 frequency shift in X1(t) 0.01 0.01025390625

η2 frequency shift in X2(t) 0.02 0.02001953125

– slope of lines L1 and L2 0.5 0.5003663003663004

– intercept of L1 0.015 0.014888822115384615

– intercept of L2 −0.6516 −0.6521033653846153

Table 4.1: The theoretical and estimated values of the parameters in the model M3. The digit with

a horizontal line above represents an infinitely repeating digit in the repeating decimal.
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Figure 4.8: Results for M3 (the case of an unknown line). Green solid line: the theoretical values of

the spectral density function. Blue dashed line: the estimated expectation Ê(T ;ωN
j ). Shaded blue

area: the region within one standard deviation ŜTD(T ;ωN
j ). Each row represents a specific value of

N . The subsequent columns (from the left) correspond respectively to lines L1 and L2.
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Figure 4.9: Results for M3 (the case of an unknown line). The estimated average mean-squared error

M̂SEmean(T ) as a function of T . The subsequent columns (from the left) correspond respectively to

lines L1 and L2.

4.3 Validation of confidence intervals

In this section, we evaluate the performance of the confidence intervals proposed in Section 3.5.

For both models M1 and M2, we set the discretization step δ = 1
32 and the number of samples

N = 16384. The length of the observation interval is given by T = (N − 1)δ. As the data-tapering

window w we consider the rectangular window function, while the frequency-smoothing window q is

the Hann window (see Table 2.1). The frequency-smoothing bandwidth is set to hT = 1
16T

−2/5. The

frequencies at which the spectral density functions are estimated are given by ωN
j = − 1

2δ +
j

(N−1)δ

for j = 0, 1, . . . , N − 1. Note that ωN
j ∈

[
− 1

2δ ,
1
2δ

]
for j = 0, 1, . . . , N − 1.

We consider three types of confidence intervals of the magnitude of spectral density functions∣∣∣fXX
α,β (ω)

∣∣∣, and the spectral coherence functions
∣∣∣γXX

α,β (ω)
∣∣∣, where α and β denote the slope and

intercept of the support line, respectively.

Let θ ∈ R be a parameter of interest, and let θ̂T be its estimator.

CI1 : Pointwise subsampling-based equal-tailed 95% confidence intervals given by (3.6).

CI2 : Pointwise symmetric subsampling-based 95% confidence intervals given by (3.7).

CI3 : Pointwise asymptotic equal-tailed 95% confidence interval, obtained using Corollary 2.2 and

the Monte Carlo approach. That is,(
θ̂T − z(0.975)

σ̂MC√
ThT

, θ̂T − z(0.025)
σ̂MC√
ThT

)
,

where z(ρ) is a ρ-quantile of the standard normal distribution. By σ̂2MC we denote the estimator

of E
∣∣θ̂T − θ

∣∣2 obtained through Monte Carlo simulations with M = 500 runs.

The subsampling-based confidence intervals are constructed using the following parameters. The

number of samples in each subsample is set to Nb = 2048. Then a block length is b = (Nb−1)δ. The

frequency-smoothing bandwidth for a subsample estimator is hb = 1
16b

−2/5. It is important to note

that the simulations are performed using parameters b, hT and hb that are not necessarily optimal.
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Selecting optimal parameters is a challenging problem that remains unsolved in the literature for

many classes of nonstationary processes, in particular, for processes under consideration.

Figures 4.10 and 4.11 display the confidence intervals for the spectral density functions of models

M1 and M2, respectively. The confidence intervals for the spectral coherence functions of models

M1 and M2 are shown in Figures 4.12 and 4.13, respectively. As in Section 4.2.1, we display results

for frequencies within the range around the maximum values of the spectral density functions. Note

that the coherence functions and its estimator corresponding to a line L1 are always equal to one.

Let us discuss the results for the magnitude of the spectral density functions
∣∣∣fXX

α,β (ω)
∣∣∣. The

confidence intervals CI2 and CI3 provide nearly the same coverage of theoretical values. The con-

fidence intervals CI1 are the narrowest for most of the frequencies considered. Observe that both

CI2 and CI3 are constructed to be symmetric and cover the theoretical values at more frequencies

than CI1. This may be because the confidence interval CI1 fails to capture the symmetry of the

asymptotic distribution. Another potential reason for this is the non-optimal choice of the parameter

b. However, selecting the optimal parameter b is a challenging task. In particular, very few results

regarding this problem are in the literature. To our knowledge, there are no such results for APC

processes and their generalizations. The first and only existing result for bootstrap in the case of

the overall mean and seasonal means for PC time series can be found in [3].

Finally, we examine the actual coverage probabilities (ACPs) for the confidence intervals

CI1–CI3. We focus on the case of the magnitude of the spectral density functions. We compute

ACPs by constructing confidence intervals CI1–CI3 for 500 different realizations of the processes

considered in models M1 and M2. For each case, we count the number of times that the constructed

confidence intervals cover the theoretical value for each frequency. Figures 4.14 and 4.15 present the

calculated ACPs for models M1 and M2, respectively. In addition, each graph includes the shape

of the spectral density, shown as a gray line. Note that the y-axis does not represent the actual

values of these spectral densities. This visualization is intended to illustrate the behavior of the

ACPs in relation to the spectral density, which is discussed in more detail later. The highest ACPs

are achieved by CI3, followed by slightly lower values for CI2, and significantly lower ACPs for CI1.

For most frequencies, the ACPs of CI2 and CI3 remain close to the dashed red line representing

95% level. Even in the worst cases for M1, the ACPs rarely drops below 80%. In contrast, CI1

shows its poorest performance in scenarios with slopes different than one (i.e., L2 and L3 for both

models M1 and M2), where ACPs fall below 60% for most frequencies. For the model M1, both

the subsampling confidence intervals CI1 and CI2 exhibit lower ACPs at frequencies corresponding

to local maxima in the spectral density. However, for M2 and lines L1, L3 and L4 it can be noted

also for CI3. For M2, the results are generally worse than for M1, but this may be attributed to

the previously mentioned issue, namely the potentially non-optimal choice of parameters.

In summary, the best performance is achieved by CI3. However, as discussed in Chapter 3,

constructing asymptotic confidence intervals can be challenging in practice. The subsampling con-

fidence interval CI2 performs reasonably well, while CI1 consistently exhibits poor performance in

all scenarios.
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Figure 4.10: Results for M1. Confidence intervals for the magnitude of spectral density functions for

lines L1–L4. Green solid line: theoretical values of the magnitude of the spectral density function.

Blue solid line: bounds of confidence intervals CI1. Blue dashed line: bounds of confidence intervals

CI2. Blue shaded area: bounds of confidence intervals CI3.

Figure 4.11: Results for M2. Confidence intervals for the magnitude of spectral density functions for

lines L1–L4. Green solid line: theoretical values of the magnitude of the spectral density function.

Blue solid line: bounds of confidence intervals CI1. Blue dashed line: bounds of confidence intervals

CI2. Blue shaded area: bounds of confidence intervals CI3.
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Figure 4.12: Results for M1. Confidence intervals for the magnitude of spectral coherence functions

for lines L1–L4. Green solid line: theoretical values of the magnitude of the spectral coherence

function. Blue solid line: bounds of confidence intervals CI1. Blue dashed line: bounds of confidence

intervals CI2. Blue shaded area: bounds of confidence intervals CI3.

Figure 4.13: Results for M2. Confidence intervals for the magnitude of spectral coherence functions

for lines L1–L4. Green solid line: theoretical values of the magnitude of the spectral coherence

function. Blue solid line: bounds of confidence intervals CI1. Blue dashed line: bounds of confidence

intervals CI2. Blue shaded area: bounds of confidence intervals CI3.

B. Majewski Statistical inference for harmonizable processes



4. Simulation study 76

Figure 4.14: Results for M1. ACPs for confidence intervals for the magnitude of spectral density

functions for lines L1–L4. Blue line: results for CI1. Green line: results for CI2. Violet line: results

for CI3. Red dashed line: 95% level.

Figure 4.15: Results for M2. ACPs for confidence intervals for the magnitude of spectral density

functions for lines L1–L4. Blue line: results for CI1. Green line: results for CI2. Violet line: results

for CI3. Red dashed line: 95% level.
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CHAPTER 5

ANALYSIS OF SIGNALS EXHIBITING IRREGULAR

CYCLICITIES

The analysis of cyclic data plays a fundamental role in the study of stochastic processes. Various

modeling approaches for such data have been proposed in the literature [2, 42, 43, 55, 62, 76],

including PC and APC processes discussed in Section 1.2. However, a key challenge in modeling

cyclic data is the natural irregularity observed in many real-world signals, particularly in biomedical

applications. As a result, the study of processes that exhibit irregular cyclicity has gained increasing

interest in recent years [15, 34, 48, 49, 63, 65].

In this chapter, we present some of our findings obtained in this field. However, since this topic

lies outside the main scope of this thesis, we focus only on the main results. In Section 5.1, we

discuss our results from [31], where we develop a statistical approach for ECG signals using an

amplitude-modulated time-warping periodically correlated (AM-TW PC) model [64]. We propose

two bootstrap procedures, based on the Circular Block Bootstrap [75], to perform statistical infer-

ence for ECG signals. In Section 5.2, we present our results from [26], where we introduce a new

semiparametric continuous-time model for signals with irregular cyclicities and propose estimators

for the first- and second-order characteristics.

5.1 Inference for signals exhibiting irregular statistical cyclicity

with applications to electrocardiograms

In the literature, PC processes have been used to model ECG signals and have found applications

in arrhythmia detection [38], heart and respiratory monitoring [45, 46], as well as in the separation

of heart and lung sounds [35]. However, PC models assume a constant heart rate. This assumption

is quite restrictive and generally only holds over very short time intervals, typically no longer than

10 seconds [64]. Consequently, the practical application of such models is limited, especially in

long-term monitoring scenarios in which patients with potential cardiac conditions are observed

over several hours. To address this limitation and capture irregular cyclicities in signals, Napolitano

77
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proposed an AM-TW PC model in [64]. This model has been applied to the ECG analysis and was

used to study a signal recorded over 800 seconds.

The statistical methods proposed in [34, 62, 64] for the AM-TW PC model provide only point

estimates of certain characteristics. All existing approaches first require estimating the underlying

PC process before estimating the specific characteristics of interest. However, these methods do not

provide statistical inference tools such as hypothesis testing and confidence interval estimation. To

overcome this limitation, we develop the bootstrap approach. In Section 5.1.1, we review the ECG

model proposed by Napolitano. In Section 5.1.2, we propose two bootstrap methods that can be

applied to the AM-TW PC model. In Section 5.1.3, we outline the application of our bootstrap

approaches to ECG signals. In Section 5.1.4, we present the analysis of the ECG signal based on

our bootstrap inference. Finally, Section 5.1.5 includes proofs of the theoretical results.

5.1.1 Amplitude-modulated time-warped periodically correlated processes

In our paper [30],we consider is the model of Napolitano [64]. In the sequel, we review this model

and discuss the existing results.

Let T0 be the average time to complete one ECG signal cycle and by λ0 we denote the average

heart rate. That is, λ0 = 1
T0

. In [64], the ECG signal {Y (t), t ∈ R} is proposed to be modeled using

Y (t) = A(t)X(t+ ε(t)), (5.1)

where A(t) ̸= 0 and ε(t) are deterministic functions. For a process {X(t), t ∈ R}, we assume that it

is an unobserved real-valued PC process with period T0. Moreover, it can be decomposed into two

components X(t) = µX(t) +Xr(t), where µX(t) is a periodic deterministic function with period T0
and Xr(t) is a zero-mean PC process with period T0. The component µX(t) represents the mean

function of X(t), and Xr(t) contains information about its periodic autocovariance function.

A process {Y (t), t ∈ R} given by (5.1) is called an amplitude-modulated time-warped periodi-

cally correlated (AM-TW PC) process. In [34, 62, 64], periodically correlated processes are referred

to as cyclostationary processes. Consequently, processes of the form (5.1) are alternatively referred

to as amplitude-modulated time-warped cyclostationary (AM-TW CS) processes.

Both functions ε(t) and A(t) represent fluctuations in the propagation of electrical waves

throughout the heart. The time-warping function ε(t) can specifically model the variability of heart

rate over time, which can arise from various factors, including sensor movement during signal mea-

surement, individual patient characteristics, arrhythmia, physical activity, or other irregular phe-

nomena. In [64], certain conditions are assumed for the derivative of the time-warping function ε(t),

as a consequence of which the time-warping function changes slowly over time.

As noted in Section 1.2, the analysis of the PC process X(t) can be performed using Fourier

analysis of the mean function µX(t) = EX(t) and the autocovariance function RXX(t, t + τ) =

Cov(X(t), X(t+ τ)). Therefore, assume that

µX(t) =

∞∑
k=−∞

b
(

k
T0

)
e

i2πkt
T0 , RXX(t, t+ τ) =

∞∑
k=−∞

a
(

k
T0
, τ
)
e

i2πkt
T0 ,
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where

b(γ) = lim
T→∞

1

T

T
2∫

−T
2

µX(t) e−i2πγt dt, a(λ, τ) = lim
T→∞

1

T

T
2∫

−T
2

RXX(t, t+ τ) e−i2πλt dt.

Consequnelty, the mean and autocovariance functions of Y (t) have the following representation

µY (t) =
∞∑

k=−∞
κ
(

k
T0
, t
)
e

i2πkt
T0 , RY Y (t, t+ τ) =

∞∑
k=−∞

ρ
(

k
T0
, t, τ

)
e

i2πkt
T0 ,

where κ(γ, t) = A(t) b(γ) ei2πγε(t) and ρ(λ, t, τ) = A(t)A(t+τ) a(λ, τ+ε(t+τ)−ε(t)) ei2πλε(t). Note

that the functions κ(λ, t) and ρ(λ, t, τ) depend on time t, which implies that Y (t) is not PC.

Now, let us present the idea of statistical procedures for the model (5.1) proposed in [34, 62, 64].

The analysis of the AM-TW PC model involves estimating the time-warping function ε(t) and the

amplitude modulation function A(t). Having estimates of ε(t) and A(t), we can reconstruct the

underlying PC process X(t). However, due to the complexity of these methods, we omit their de-

scription and refer the reader to [34, 62, 64], with additional details available in our paper [30].

Finally, Fourier analysis can be applied to the reconstructed process denoted by X̂(t). Conse-

quently, one can estimate the functions b(γ) and a(λ, τ), using standard estimators developed for

PC processes [42, 62]. However, in our model, the process X(t) is unobservable. To address this, we

substitute X(t) with X̂(t). Then, in our case the estimators of b(γ) and a(λ, τ), τ ≥ 0, are

b̂(γ) =
1

T

T∫
0

X̂(t) e−i2πγt dt,

â(λ, τ) =
1

T

T−τ∫
0

(
X̂(t)− µ̂X(t)

)(
X̂(t+ τ)− µ̂X(t+ τ)

)
e−i2πλt dt,

(5.2)

where µ̂X(t) is the estimator of µX(t). That is,

µ̂X(t) =
∑
γ∈Γ̃

b̂(γ) ei2πγt,

and Γ̃ is finite subset of the set Γ containing the frequencies at which the cyclic mean function is

significantly non-zero, for example, determined by a statistical test (see, e.g., Section 5.1.3).

The main interest of our paper [31] is to provide statistical inference based on cyclic functions b(γ)

and a(λ, τ). This allows us to understand the structure of the underlying PC process X(t) and how

ECG signals relate to heart rhythm abnormalities. These functions are also essential for estimating

related quantities like κ(γ, t) and ρ(λ, t, τ). Our goal is to develop a framework for hypothesis testing

and confidence interval construction for the underlying process X(t). A key challenge is that the

asymptotic covariance matrices of the rescaled estimators b̂(γ) and â(λ, τ) depend on infinitely

many unknown parameters, making statistical inference based on asymptotic distributions difficult

in practice (see, e.g., Theorem 2.6 in [85]). In the next subsection, we introduce bootstrap methods

to address this issue.
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In the sequel, we assume that the underlying PC process X(t) is directly observable. However,

in the real-data application, we substitute X̂(t) in place of X(t). Our condition is necessary because

there is strong evidence that the consistency of the estimators for the cyclic statistical functions b(γ)

and a(λ, τ), based on measurements from X̂(t) cannot be established. Specifically, the estimators

of Â(t) and ε̂(t) proposed in the literature are, to date, biased (even asymptotically). We therefore

treat our results as the upper bound of achievable performance. Since there is a lack of methods

in the literature that provide theoretical guarantees in this context, we consider our work a step

toward advancing the field. Our future research will focus on refining both the existing methods

and the model to facilitate the derivation of theoretical results. In [31], we include an extensive

simulation study to demonstrate the performance of our proposed bootstrap methods.

5.1.2 Bootstrap inference

Bootstrap is a very popular resampling approach used to approximate the sampling distribution of

statistics, for example, to construct confidence intervals. The main idea of bootstrap for independent

and identically distributed data is to construct bootstrap sample by drawing with replacement data

point from the original data set. For dependent data, such as in our case, it is crucial to construct

a bootstrap sample in a way to preserve the original dependence structure. For this propose, block

bootstrap methods are used (see, e.g, [47]). Such methods involve splitting the data into blocks and

then drawing them with replacement. The important and well-known block bootstrap method is

the Circular Block Bootstrap (CBB) method, introduced by Politis and Romano [75]. The CBB

method was designed for stationary data. However, it can be adapted for our nonstationay setting.

For the convenience of the reader, we first recall the algorithm of the CBB approach.

Fix n ∈ N. Let (X1, X2, . . . , Xn) be a sample from a time series {Xt, t ∈ Z}. For j = 1, 2, . . . , n

define the block of observations Bj of length b ∈ N (0 < b < n) starting at Xj and given by

Bj =

(Xj , Xj+1, . . . , Xj+b−1), j = 1 . . . , n− b+ 1,

(Xj , Xj+1, . . . , Xn, X1, . . . , Xb−n+j−1), j = n− b+ 2, . . . , n.

The name “circular” derives from the fact that the data are wrapped around a circle, allowing the

construction of additional blocks for j = n − b + 2, . . . , n. This approach was proposed to reduce

the edge effect. That is, if we consider only the blocks for j = 1 . . . , n− b+1, then the observations

near the beginning and the end of the sample appear in fewer blocks, introducing the bias of the

estimators. In the following, we present the usual CBB algorithm.

Algorithm.

1. Fix b ∈ N such that 0 < b < n.

2. From {1, 2, . . . , n} choose randomly with replacement l + 1 numbers k1, k2, . . . , kl+1 where l

is the smallest integer such that lb > n. The probability of choosing any number is 1
n . Then

for t = 1, 2, . . . , l + 1 the bootstrap blocks are given by

Bkt = (Xkt , Xkt+1, . . . , Xkt+b−1) = (X∗
t , X

∗
t+1, . . . , X

∗
t+b−1) = B∗

t .
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3. Join the selected l + 1, blocks B∗ = (B∗
1 , B

∗
2 , . . . , B

∗
l+1). The bootstrap sample is obtained by

taking the first n observations from B∗, i.e., (X∗
1 , X

∗
2 , . . . , X

∗
n).

The CBB method cannot be applied directly to our case, as it is designed for discrete-time

processes. Moreover, this approach does not preserve the periodic structure of the data. To overcome

these limitations, we develop two bootstrap procedures based on the above algorithm.

Circular Extension of the Moving Block Bootstrap for the sampled process. The CBB

method is primarily designed for stationary time series. For discrete-time PC time series, it provides

consistent results only for the overall mean, defined as

µ = lim
n→∞

1

n

n∑
k=1

EXk,

where {Xt, t ∈ Z} is a PC process [85]. In the nonstationary setting, in [23, 24] it is introduced

the Circular Extension of the Moving Block Bootstrap (CEMBB), which retains information about

the original time indices to construct consistent bootstrap estimators in the nonstationary case.

However, the CEMBB method was developed for discrete-time models. Therefore, we generalize

this approach to continuous-time processes X(t).

Fix T > 0. Let {X(t), t ∈ [0, T ]} be an observed PC process with period T0. By h = T
n−1 we

denote the discretization size. We consider the sampled data (X(0), X(h), . . . , X((n − 1)h)). Note

that if the ratio h
T0

is a rational number, then the resulting discrete-time process is also PC, with

period equal to the denominator of the ratio (assuming that the numerator and denominator are

relatively prime), see [62, Section 3.6.2]. If the ratio is irrational, the sampled process becomes an

APC process. Both PC and APC processes are nonstationary, and for such processes, the CEMBB

algorithm can be appropriately applied [23, 24].

Below, we present the CEMBB algorithm for a sampled process.

Algorithm.

1. Define Uj = (X(jh), j) for j = 0, 1, . . . , n− 1.

2. Do the CBB algorithm for the sample (U0, U1, . . . , Un−1) to obtain (U∗
0 , U

∗
1 , . . . , U

∗
n−1).

The major advantage of this method is its ability to keep the information about the original

time index of each observation. The bootstrap estimators for cyclic mean functions b(γ) and cyclic

autocovariance functions a(λ, τ), τ ≥ 0, have the following form

b̂∗(γ) =
1

n

n−1∑
k=0

X(k∗h) e−i2πλk∗ ,

â∗(λ, τ) =
1

n

n−1−kτ∑
k=0

(X(k∗h)− µ̂(k∗h)) (X(h(k∗ + kτ ))− µ̂(k∗ + kτ )) e
−i2πλk∗ ,

where kτ is the nearest integer to τ
h and U∗

k = (X(k∗h), k∗) are the elements of the bootstrap

sample. There is an implicit mapping from k to k∗, given by the CEMBB algorithm. Then we can

write a summation of µ̂(k∗h) and µ̂(k∗ + kτ ) over k = 0, . . . , n− 1− kτ .
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Let us formulate the bootstrap consistency theorem for a(λ, τ). Let r ∈ N, τ = (τ1, . . . , τr)
T ∈ Rr

be a vector of lag parameters and λ = (λ1, . . . , λ1)
T ∈ Rr be a vector of frequencies. We consider

a(λ, τ ) = [Re a(λ1, τ1), Im a(λ1, τ1), . . . ,Re a(λr, τr), Im a(λr, τr)]
T ∈ R2r,

and analogously we define â(λ, τ ) ∈ R2r and â∗(λ, τ ) ∈ R2r. For x = (x1, . . . , x2r) ∈ R2r and

y = (y1, . . . , y2r) ∈ R2r we write x ≤ y, when xi ≤ yj for j = 1, 2, . . . , 2r.

Theorem 5.1. Assume that {X(t), t ∈ R} is a α-mixing PC process such that

(i) functions E[X(t)X(t+ τ1)X(t+ τ2)X(t+ τ3)] and E[X(t)X(t+ τ1)X(t+ τ2)] are periodic in

t ∈ R for any τ1, τ2, τ3 ∈ R;

(ii) the sets Γ = {γ ∈ R : b(γ) ̸= 0} and Λ =
⋃

τ∈R{λ ∈ R : a(λ, τ) ̸= 0} are finite;

(iii) sup
t∈R

E|X(t)|8+2δ <∞ and
∫
R
τα

δ
4+δ

X (τ) dτ <∞ for some δ > 0;

(iv) X(t) is strictly band-limited with bandwidth B satisfying 1 > 2Bh;

(v) we have
√
nh(â(λ, τ )− a(λ, τ ))

d→ N2r(0,Σ(λ, τ )),

where det(Σ(λ, τ ) ̸= 0.

Then for x ∈ R2r

sup
x∈R

∣∣∣P∗
(√

nh(â(λ, τ )− a(λ, τ ))
)
≤ x

)
− P

(√
nh(â∗(λ, τ )− E∗â∗(λ, τ ))

)
≤ x

)∣∣∣ P−→ 0,

as b → ∞, n → ∞ with b/n → 0, where P∗ and E∗, respectively, denote the conditional probability

and conditional expectation, given (U∗
0 , U

∗
1 , . . . , U

∗
n−1).

Proof. See Section 5.1.5.

Recall that the concept of α-mixing is introduced in Section 3.1. The condition (iv) means that

the spectral density functions are supported within specific frequency ranges. This requirement is

necessary to avoid aliasing. For further details, we refer the reader to [62, Section 3.6].

Analogously, we obtain results for cyclic mean functions b(γ). In this case, the condition (i) is

no longer required, and in the condition (ii), the exponent 8 + 2δ can be replaced with 4 + δ.

Moreover, to construct the bootstrap simultaneous confidence intervals, we require the consis-

tency of our bootstrap procedure for smooth functions of the estimator. This consistency can be

achieved by following the same steps as in the proof of Theorem 4 in [23].

Circular Block Bootstrap for the averaged process. Selecting an appropriate block length

is crucial to perform the block bootstrap method. This problem has been extensively studied for

stationary processes [47, Chapter 7]. However, for nonstationary processes, there is a significant lack

of results in this area. Recently, Bertail and Dudek [3] provided the first known result for PC time
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series, focusing on the first-order characteristics in the time domain of a discrete-time PC process

with a known integer-valued period. However, their result does not directly apply to our setting,

which involves a continuous-time PC process whose period may not be an integer multiple of the

discretization step. To overcome this limitation, we propose a bootstrap methodology suited for

PC processes in continuous time. In addition, we are able to apply results of Berial and Dudek to

determine the optimal block length, defined as the length that minimizes the mean-squared error

of the bootstrap variance estimator, for characteristics in the frequency domain.

The core idea of our approach is to average the process over disjoint intervals equal to one period

in length. This transformation produces a time series such that its mean function remains periodic

and the autocovariance depends only on the lag, i.e., does not depend on time.

Fix T > 0. Let {X(t), t ∈ [0, T ]} be an observed PC process with period T0. For simplicity,

we introduce the bootstrap algorithm for the cyclic autocovariance function a(λ, τ) assuming that

EX(t) = 0. Fix τ ≥ 0 and λ = p
qT0

, where p, q ∈ Z. Define n = ⌊T−τ
T0

⌋.

Algorithm.

1. For each s = 1, 2, . . . , n compute

Zs(λ, τ) =
1

T0

sT0∫
(s−1)T0

X(t)X(t+ τ) e−i2πλt dt. (5.3)

2. Do the CBB for the sample (Z1(λ, τ), Z2(λ, τ), . . . , Zn(λ, τ)) to obtain the bootstrap sample

(Z∗
1 (λ, τ), Z

∗
2 (λ, τ), . . . , Z

∗
n(λ, τ)).

Observe that a(λ, τ) represents the overall mean of Zs(λ, τ), while â(λ, τ) denotes its estimator.

That is,

a(λ, τ) = lim
n→∞

1

k

n∑
s=1

EZs(λ, τ) = µZ(λ,τ), â(λ, τ) =
1

n

n∑
s=1

Zs(λ, τ) = µ̂Z(λ,τ).

Consequnelty, a bootstrap estimator of a(λ, τ) is given by

â∗(λ, τ) =
1

n

n∑
s=1

Ẑ∗
s (λ, τ) = µ̂∗Z(λ,τ).

Let us discuss the statistical properties of the resulting time series {Zs(λ, τ), s ∈ N}.

Proposition 5.1. Let λ = p
qT0

, where p, q ∈ Z are relatively prime. Assume that the process X(t)

is PC with period T0 and its fourth moments are periodic with period T0. Then the complex-valued

process {Zs(λ, τ), s ∈ N} given by equation (5.3) has a periodic mean function with integer period

q and its autocovariance function does not depend on time. For q = 1 the time series Zs(λ, τ) is

stationary.

Proof. See Section 5.1.5.

By properly averaging the process X(t) as shown in (5.3), we obtain stationary or PC processes.

This allows us to apply the bootstrap consistency results from [85], which we adapt to our settings.
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Theorem 5.2. Assume that {X(t), t ∈ R} is a zero-mean α-mixing PC process such that

(i) functions E[X(t)X(t+ τ1)X(t+ τ2)X(t+ τ3)] are periodic in t ∈ R for any τ1, τ2, τ3 ∈ R;

(ii) the set Λ =
⋃

τ∈R{λ ∈ R : a(λ, τ) ̸= 0} is finite;

(iii) supt∈R E|X(t)|8+2δ <∞ and
∫
R
τα

δ
4+δ

X (τ) d <∞ for some δ > 0;

(iv)
√
n(â(λ, τ)− a(λ, τ))

d→ N2(0,Σ), where det(Σ) ̸= 0.

Then

sup
x∈R

∣∣∣P∗
(√

nRe
(
µ̂∗Z(λ,τ) − E∗µ̂∗Z(λ,τ)

)
≤ x

)
− P

(√
nRe

(
µ̂Z(λ,τ) − µZ(λ,τ)

)
≤ x

)∣∣∣ P−→ 0,

and

sup
x∈R

∣∣∣P∗
(√

n Im
(
µ̂∗Z(λ,τ) − E∗µ̂∗Z(λ,τ)

)
≤ x

)
− P

(√
n Im

(
µ̂Z(λ,τ) − µZ(λ,τ)

)
≤ x

)∣∣∣ P−→ 0,

as b → ∞, n → ∞ with b/n → 0, where P∗ and E∗, respectively, denote the conditional probability

and conditional expectation, given (Z1(λ, τ), Z2(λ, τ), . . . , Zn(λ, τ)).

Proof. See Section 5.1.5.

Now, let us derive the formula for the optimal block length. For clarity, we focus on the real

part of µZ(λ,τ), since the results for the imaginary part are analogous. Fix λ = p
qT0

, where p, q ∈ Z
are relatively prime, and τ ≥ 0. Since Zs(λ, τ) is a PC time series with a known integer period q,

we can apply the result from [3]. Consequently, the optimal block length takes the form b = lq + 1,

with l ∈ Z, and is given by

bopt,Re = bopt,Re(λ, τ) =
3

√
2G2

D
3
√
n, (5.4)

where

G = q

∞∑
h=−∞

∣∣⌊h
q

⌋∣∣ γRe(Z)(h), D = 4
3(2πq)

2|fRe(Z)(0)|2.

Moreover, γRe(Z)(h) = Cov(Re(Zs(λ, τ)),Re(Zs+h(λ, τ))) and

fRe(Z)(ω) =
1

2π

∞∑
h=−∞

γRe(Z)(h) e
−iωh.

Detailed assumptions for the above results can be found in [3]. The derivation of (5.4) is provided

in Section 5.1.5.

Remark 5.1. Note that for the cycle frequency λ = l
T0

, where l ∈ Z, of the PC process X(t) yields

a mean function for Zs(λ, τ) with period q = 1. Consequently, Zs(λ, τ) is a stationary time series,

and the formula for the optimal block length simplifies to the well-known expression used in the

stationary case for the CBB method (see [47, Chapter 7]).
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Remark 5.2. The bootstrap approach above can also be applied to the estimation of the cyclic mean

function b(γ). Specifically, we define the process Zs(γ) as

Zs(γ) =
1

T0

sT0∫
(s−1)T0

X(t) e−i2πγt dt, s = 1, 2, . . . , n,

where n = ⌊ T
T0
⌋. In this case, to obtain results analogous to those in Proposition 5.1, it is not

necessary to assume the periodicity of the fourth moments of X(t). The arguments for consistency

and the selection of the optimal block length follow in the same manner as those for the cyclic

autocovariance function.

The above results are established when the mean function is zero. However, they can be extended

to cases where the mean function is periodic, provided that the third moments of X(t) are also

periodic with period T0. This extension follows by applying reasoning analogous to the discussion

following Corollary 3.5 in [85].

In contrast to the CEMMB for the sampled process, the focus here is not on constructing

simultaneous confidence intervals. Instead, the primary objective is to determine the optimal block

length for each frequency.

5.1.3 Application of the bootstrap inference

In this section, we discuss the applications of bootstrap methods in the model (5.1).

As noted previously, the Fourier analysis of the underlying PC process X(t) is crucial for the

analysis of the original ECG process Y (t). Specifically, the estimators of κ(γ, t, τ) and ρ(λ, t, τ) can

be determined by the estimators b̂(γ) and â(λ, τ). In addition, the functions b(γ) and a(λ, τ) char-

acterize the cyclical properties of the signal under consideration. Therefore, one may be interested

in constructing confidence intervals for them.

The consistency of the bootstrap procedure allows for replacement of the quantiles of the asymp-

totic distribution with the quantiles of the bootstrap distribution to construct pointwise confidence

intervals for the real or imaginary part of cyclic statistical functions b(γ) and a(λ, τ). In many

practical scenarios, confidence intervals are required for a range of frequencies. To address this,

simultaneous confidence intervals can be constructed. The pointwise and simultaneous bootstrap

confidence intervals for discrete-time PC processes are discussed in detail, for example, in [28].

Another important application of the bootstrap method is performing hypothesis testing, partic-

ularly to identify significant frequencies. Specifically, we can verify at which frequencies the functions

b(γ) and a(λ, τ) are significantly different from zero. Detecting significant frequencies of b(γ) allows

us to construct the estimator for the mean function. Identifying significant frequencies of a(λ, τ)

provides a deeper analysis of the underlying process. For example, in machine diagnostics, the ap-

pearance of a new frequency component can signal mechanical failure [1]. A similar approach can

be applied for the ECG signal, where the detection of new frequencies may indicate abnormalities

in heart anatomy or function.
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Let us formulate the problem of identifying a significant frequency of a(λ, τ). For fixed τ ∈ R
and λ ∈ R

H0 : a(λ, τ) = 0,

H1 : a(λ, τ) ̸= 0.

Define two test statistics

ReUT (τ) = νT Re â(λ, τ) and ImUT (τ) = νT Im â(λ, τ),

where νT denotes the appropriate rate of convergence, which depends on the specific bootstrap

approach employed. For the CEMBB for the sampled process, we have νT =
√
T , while for the CBB

for the average process, we have νT =
√
⌊T−τ

T0
⌋.

Both test statistics are asymptotically normal with unknown covariance matrices [18]. Under

the null hypothesis, we have

Re â(λ, τ)
P−→ 0 and Im â(λ, τ)

P−→ 0 as T → ∞,

whereas under the alternative hypothesis,

Re â(λ, τ)
P−→ Re a(λ, τ) and Im â(λ, τ)

P−→ Im a(λ, τ) as T → ∞.

If the observed test statistic ReUT (τ) or ImUT (τ) deviates far from zero relative to the reference

distribution, this suggests that the alternative hypothesis holds. The critical values for the tests are

determined using the quantiles of the bootstrap distribution. Under the null hypothesis, we have

P
(
ûα

2
< ReUT (τ) < û1−α

2

)
−→ 1− α as T → ∞,

whereas under H1

P
(
ûα

2
< ReUT (τ) < û1−α

2

)
−→ 0 as T → ∞,

with ûα
2

and û1−α
2

denoting the α
2 and 1 − α

2 quantiles, respectively, of the bootstrap distribution

corresponding to νT (Re â(λ, τ) − Re a(λ, τ)). The procedure for the imaginary part Im a(λ, τ) is

analogous.

For PC processes, cyclic functions have non-zero values only at frequencies that are integer

multiples of the inverse of the period. However, if the considered process is actually an AM-TW

PC, but we assume that it is a PC and estimate the cyclic functions accordingly, the resulting

values tend to spread around the cycle frequencies [64]. In such cases, the bootstrap tests described

above can be used to verify the significance of frequencies in the neighborhood of cycle frequencies.

This approach serves as a useful tool for determining whether the cyclic structure is concentrated at

integer multiples of the inverse of the period, which indicates a PC model, or spread across infinitely

many frequencies, which would suggest that an AM-TW PC model may be more appropriate.

Additionally, the bootstrap test can be used to evaluate the quality of the underlying PC signal

reconstruction. This step is particularly important because the reconstruction is sensitive to the

choice of certain parameters. If after reconstruction, the cyclic functions remain spread around

the cycle frequency, it may indicate that the parameters need to be adjusted. Alternatively, such

dispersion could be due to a time-warping function ε(t) that varies too rapidly.
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5.1.4 Real data example

In this section, the proposed methodology is applied to ECG data. Specifically, we analyze the

ECG signal Ỹ (t) recorded from a 30-year-old Caucasian male who is a non-smoker, leads a seden-

tary lifestyle, had consumed coffee prior to recording, and was listening to classical music during

the session. More details on the data set can be found at https://physionet.org/physiobank/

database/cebsdb/ and [32].

For our analysis, we consider a recording duration of T = 200 seconds with a sampling rate of

200Hz, which corresponds to a discratization step of h = 0.005 s and yields a total of n = 40000

time points. First, we subtract the overall mean from the ECG signal. From now, we consider the

signal Y (t) = Ỹ (t)− 1
T

∫ T
0 Ỹ (s) ds. The first 15 seconds of the signal Y (t) are shown in Figure 5.1.

Figure 5.1: A 15-second recording of the signal Y (t).

We assume that Y (t) can be modeled by (5.1). We start with reconstructing the underlying

PC signal X(t) from the observed signal Y (t). To achieve this, we apply the amplitude-modulation

compensation and de-warping method proposed in [64]. Further implementation details are provided

in our paper [31]. A comparison between the observed signal Y (t) and the reconstructed signal X̂(t)

is shown in Figure 5.2. Furthermore, we present the estimated cyclic mean functions of both X̂(t)

and Y (t), assuming that each is a PC process. Note that the cyclic functions of X̂(t) are more

concentrated around the cycle frequency α0 = 0.0055244655h−1 compared to those of Y (t).

Next, we estimate the mean function of the underlying PC process using its Fourier series

representation. The estimated mean function is given by

µ̂X(t) =

K∑
k=−K

b̂(kα0) e
i2πkα0t,

where K = 90. This procedure cannot be applied directly to Y (t), as a finite set of significant

frequencies cannot be clearly identified for this signal.

We now perform bootstrap inference. First, we test the null hypothesis that b(γ) = 0 for each

γ ∈ Λα0 , where

Λα0 = {α0 + khα0 : k = −14,−13, . . . , 14} .
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Figure 5.2: Comparison of results for the signal Y (t) and the estimated underlying PC signal X̂(t).

Top panel: signals Y (t) and X̂(t). Bottom panel: magnitude of the cyclic mean functions b(γ) of

Y (t) and X̂(t) for γ ∈ [−0.02, 0.02]. Orange line: results for Y (t). Blue line: results for X̂(t).

The significance level we set to α = 0.05. Second, we compute 95% bootstrap confidence intervals

for a(λ, 0), for each λ ∈ Λα0 . For both hypothesis testing and confidence interval construction, we

apply the two proposed bootstrap approaches. The results for each method are reported below.

CEMBB for the sampled process. We fix the block size as b = 10⌊α−1
0 ⌋+1 = 906. We generate

B = 999 bootstrap samples and perform hypothesis tests. The results, presented in Figure 5.3, show

that the null hypothesis is rejected only at the frequency α0. Next, we construct 95% bootstrap

simultaneous equal-tailed percentile confidence intervals for a(λ, 0). These intervals are displayed in

Figure 5.4.

CBB for the averaged process. We first compute the optimal block lengths for b(γ) separately

for each frequency γ ∈ Λα0 . Based on these, we generate B = 999 bootstrap samples and perform

hypothesis tests. The results, presented in Figure 5.5, show that the null hypothesis is rejected

only at the frequency α0. Next, we compute the optimal block lengths for a(λ, 0) for each λ ∈ Λα0

individually. We generate B = 999 bootstrap samples with new block lengths and construct 95%

bootstrap pointwise equal-tailed percentile confidence intervals for a(λ, 0), for λ ∈ Λα0 . These

intervals are displayed in Figure 5.6.
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Figure 5.3: Results for the hypothesis tests based on the CEMBB for the sampled process. Green

points: real part of the cyclic mean function at frequencies where the null hypothesis is not rejected.

Violet points: imaginary part of the cyclic mean function at frequencies where the null hypothesis is

not rejected. Red points ’x’: real or imaginary part of the cyclic mean function at cycle frequencies

where the null hypothesis (that the cyclic statistical function is zero) is rejected.

Figure 5.4: Results for the CEMBB for the sampled process. 95% bootstrap simultaneous equal-

tailed percentile confidence intervals for the real part (top panel) and the imaginary part (bottom

panel) of cyclic function a(λ, 0). Blue dots: estimated values of a(λ, 0). Vertical blue lines: confidence

intervals for a(λ, 0).
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Figure 5.5: Results for the hypothesis tests based on the CBB for the averaged process. Green

points: real part of the cyclic mean function at frequencies where the null hypothesis is not rejected.

Violet points: imaginary part of the cyclic mean function at frequencies where the null hypothesis is

not rejected. Red points ’x’: real or imaginary part of the cyclic mean function at cycle frequencies

where the null hypothesis (that the cyclic statistical function is zero) is rejected.

Figure 5.6: Results for the CBB for the averaged process. 95% bootstrap pointwise equal-tailed

percentile confidence intervals for the real part (top panel) and the imaginary part (bottom panel)

of cyclic function a(λ, 0). Blue dots: estimated values of a(λ, 0). Vertical blue lines: confidence

intervals for a(λ, 0).
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5.1.5 Proofs of results presented in Section 5.1

This subsection contains proofs of the original results presented in Section 5.1.

Proof of Proposition 5.1. For simplicity, instead of Zs(λ, τ) we write Zs. The mean function of Zs

is as follows

EZs =
1

T0

sT0∫
(s−1)T0

E
[
X(t)X(t+ τ)

]
e−i2πλt dt

=
1

T0

T0∫
0

E
[
X(t+ (s− 1)T0)X(t+ (s− 1)T0 + τ)

]
e−i2πλ(t+(s−1)T0) dt

= e−i2πλ(s−1)T0
1

T0

T0∫
0

E
[
X(t)X(t+ τ)

]
e−i2πλt dt

= E(Z1) e
−i2πλ(s−1)T0 .

If λ = p
qT0

with p, q ∈ Z, then the function e−i2πλ(s−1)T0 , viewed as a function of s ∈ Z, is periodic

with period q. As a result, the mean function of the time series Zs is also periodic with period q.

Applying the same logic to the autocovariance, we show that it is independent of s. Specifically,

for each h ∈ Z, we have

Cov
(
Zs, Zs+h

)
=

1

T 2
0

sT0∫
(s−1)T0

(s+h)T0∫
(s+h−1)T0

Cov
(
X(t)X(t+ τ), X(u)X(u+ τ)

)
e−i2πλt ei2πλu dt du

=
1

T 2
0

T0∫
0

(h+1)T0∫
hT0

Cov
(
X(t+ (s− 1)T0)X(t+ (s− 1)T0 + τ),

X(u+ (s− 1)T0)X(u+ (s− 1)T0 + τ)
)

× e−i2πλ(t+(s−1)T0) ei2πλ(u+(s−1)T0) dt du

=
1

T 2
0

T0∫
0

(h+1)T0∫
hT0

Cov
(
X(t)X(t+ τ), X(u)X(u+ τ)

)
e−i2πλt ei2πλu dtdu.

Proof of Theorem 5.1. The proof follows the same reasoning as the proof of Theorem 3 in [23].

Proof of Theorem 5.2. It is enough to show that the assumptions of Corollary 3.2 in [84] are satisfied

for a PC time series Zs = Zs(λ, τ).

Assumption (i) of Corollary 3.2 in [84] is satisfied since the autocovariance function of Zs does

not depend on time.

Assumption (ii) of Corollary 3.2 in [84] follows from Minkowski integral inequality and Hölder

inequality(
E|Zs|4+δ

) 1
4+δ ≤ 1

T0

∫ sT0

(s−1)T0

(
E|X(t)X(t+ τ)|4+δ

) 1
4+δ

dt ≤
(
sup
t∈R

E|X(t)|2(4+δ)

) 1
2(4+δ)

.
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To show that assumption (iii) of Corollary 3.2 in [84] holds, note that

σ(Zs) ⊂ σ({X(t) : (s− 1)T0 ≤ t ≤ τ + sT0}).

Then we get

σ({Zs : s ≤ p}) ⊂ σ({X(t) : t ≤ τ + pT0}),

and

σ({Zs : s ≥ p+ q}) ⊂ σ({X(t) : t ≥ (p+ q − 1)T0}).

Therefore, the mixing coefficient αZ(·) of Zs satisfies

αZ(q) ≤ αX(qT0 − T0 − τ)

for qT0 − T0 − τ ≥ 0. This shows that (iii) of Corollary 3.2 in [84] is satisfied.

Proof of the optimal block length eq. (5.4). For simplicity, instead of Zs(λ, τ) we will write Zs. The

optimal block length for a sample (ReZ1, . . . ,ReZn) from the PC time series with period q is given

by the following formula

bopt,Re =
3

√
2G2

D
n,

where

G =

q∑
s=1

∞∑
h=−∞

∣∣⌊h
q

⌋∣∣Cov(Re(Zs),Re(Zs+h)), D = 4
3(2πq)

2
q−1∑
s=0

|fsRe(Z)(0)|
2,

and fsRe(Z)(ω), s = 0, 1, . . . , q − 1 are spectral densities of PC time series Re(Zt), see [3].

In our settings, a time series Re(Zt) has a periodic mean function with period q ∈ N and the

autocovariance function depends only on a lag parameter, i.e. γRe(Z)(h) = Cov(Re(Zs),Re(Zs+h)),

then

G =

q∑
t=1

∞∑
h=−∞

∣∣⌊h
q

⌋∣∣Cov(Re(Zt),Re(Zt+h)) =

q∑
t=1

∞∑
h=−∞

∣∣⌊h
q

⌋∣∣ γRe(Z)(h) = q
∞∑

h=−∞

∣∣⌊h
q

⌋∣∣ γRe(Z)(h).

Since the autocovariance γRe(Z)(h) is constant in time, there is only one non-zero spectral density

function, corresponding to the main diagonal, denoted by fRe(Z)(ω). Moreover, using the properties

of discrete-time PC processes, we have

fRe(Z)(ω) =
1

2π

∞∑
τ=−∞

γRe(Z)(τ) e
−iτω,

and hence

D = 4
3(2πq)

2|fRe(Z)(0)|2.

B. Majewski Statistical inference for harmonizable processes



5. Analysis of signals exhibiting irregular cyclicities 93

5.2 Statistical properties of oscillatory processes with stochastic

modulation in amplitude and time

Continuous-time stochastic processes with irregular cyclicities can be modeled using the approach

discussed in Section 5.1. Related methods have also been explored in [16] and in [54]. However, the

key limitation of these methods is the lack of asymptotic results for statistical methods. In this

section, we introduce the novel semiparametric continuous-time model for signals with irregular

cyclicities, which is related to parametric discrete-time models proposed by Lenart in [49, 48].

Unlike Lenart’s models, we depart from the assumption of a Gaussian distribution for the phase-shift

process. In Section 5.2.1, we introduce our model. In Section 5.2.2, we derive the first- and second-

order properties of the model. In Section 5.2.3, we propose estimation methods for a mean and an

autocovariance function. In Section 5.2.4, we examine the convergence rate of the autocovariance

estimator using Monte Carlo simulations. Finally, Section 5.2.5 includes proofs of the results.

All theorems in this section are original contributions. These results can be found in [26].

5.2.1 Model construction

In [26], we propose a new continuous-time semiparametric model given by

X(t) = A(t)
J∑

j=1

cj cos
(
λj(t+ ψj + ϕ(t) + z(t))

)
+ µ, t ≥ 0, (5.5)

where µ ∈ R is an overall mean, 0 < λ1 < λ2 < . . . < λJ < ∞ are frequencies, ψj ∈ R are phase-

shifts, cj ∈ R with c1 = 1 are amplitudes, and J ∈ N is any fixed number of frequencies. Moreover,

A(t), ϕ(t) and z(t) are stochastic processes.

Assumption 5.1. We impose the following conditions on the processes A(t), ϕ(t) and z(t).

(i) {A(t), t ≥ 0} is any second-order stationary stochastic process with EA(t) = a ̸= 0 and

autocovariance function γA(τ) = Cov(A(t), A(t+ τ)), for t, t+ τ ≥ 0.

(ii) {ϕ(t), t ≥ 0} is a fractional Brownian motion (fBm) with Hurst index h ∈ (0, 1) and variance

parameter σ2ϕ > 0. That is, ϕ(t) is zero-mean Gaussian process that ϕ(0) = 0 a.s., and it has

the following autocovariance function

Cov(ϕ(t), ϕ(t+ τ)) =
σ2ϕ
2

(
|t|2h + |t+ τ |2h − |τ |2h

)
.

(iii) {z(t), t ≥ 0} is any zero-mean stochastic process with stationary increments. That is, the

distribution of z(t)− z(s) depends only on t− s for all 0 ≤ s < t.

(iv) A(t), ϕ(t) and z(t) are mutually independent.

The process A(t) is an amplitude modulation process and ϕ(t) + z(t) is the phase shift process

of superposition of cosines
J∑

j=1

cj cos(λj(t+ ψj)) + µ. (5.6)
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Note that (5.6) is an almost periodic function (see Definition 1.4). To model irregular cycles that

cannot be captured using almost periodic functions, we introduced a random phase shift ϕ(t)+ z(t)

into our model. The choice of a nonstationary phase shift process ϕ(t)+z(t) is motivated by its ability

to represent scenarios in which the exact position within the cycle at a given time is unknown. In

contrast, if the random phase is stationary, the cycles remain closely synchronized with the reference

almost periodic function (5.6), deviating only slightly.

Recall that the Hurst index h of the fBm process measures its long-range dependence. If h > 0.5,

then increments on non-overlapping time intervals of fBm are positively correlated, while if h < 0.5

they are negatively correlated, resulting in more erratic process paths. In the special case h =

0.5, fBm reduces to a Brownian motion (also known as the Wiener process) and has independent

increments. By changing the value of h, one can control the behavior of the phase shift process in

our model. For further details on the fBm process, we refer the reader to [56, 66].

5.2.2 Statistical properties of the model

In this section, we present the first- and second-order properties of the model (5.5). Note that the

existence of moments of X(t) is ensured by the existence of moments of A(t).

Below, we present the form of the mean function of a process X(t).

Theorem 5.3. Let Assumption 5.1 holds. Then for t ≥ 0, we have

EX(t) = µ+ a
J∑

j=1

cjE cos (λj(t+ ψj + z(t))) e−
1
2
λ2
jσ

2
ϕ|t|

2h

.

Proof. See Section 5.2.5.

Observe that the mean function of X(t) is less related to the frequencies λ1, λ2, . . . , λJ over

time. Its almost periodic nature weakens more rapidly as the Hurst index h increases.

Now, we consider the second-order moment of a process X(t).

Theorem 5.4. Let Assumption 5.1 holds. Then for t, t+ τ ≥ 0, we have

E((X(t)− µ)(X(t+ τ)− µ)) = γX(τ) +W (t, τ),

with

γX(τ) =
1

2
(γA(τ) + a2)

J∑
j=1

c2je
− 1

2
λ2
jσ

2
ϕ|τ |

2h

E cos(λj(|τ |+ z(|τ |)))

and

|W (t, τ)| ≤ C0e
−c0(|t|2h+|t+τ |2h), (5.7)

for some positive constants c0, C0, which do not depend on t and τ .

Proof. See Section 5.2.5.
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The second-order moment of X(t) can be decomposed into two components. The first component

depends on the lag parameter τ and does not depend on time t. In contrast, the second component

depends on both τ and t, and vanishes as t increases. For the formula of W (t, τ), see (5.10).

As a conclusion, we get that as time tends to infinity, the autocovariance gradually loses its

nonstationary (cyclic) properties at a rate determined by the Hurst index h.

Corollary 5.1. Let Assumption 5.1 holds. Then

(i) lim
t→∞

EX(t) = µ;

(ii) lim
t→∞

E((X(t)− µ)(X(t+ τ)− µ)) = γX(τ) for τ ∈ R;

(iii) lim
t→∞

Cov(X(t), X(t+ τ)) = γX(τ) for τ ∈ R.

Proof. See Section 5.2.5.

In the next subsection, we propose estimators of the mean µ and the autocovariance function

γX(τ).

5.2.3 Mean-square consistent estimators of mean and autocovariance functions

From the previous subsection, we know that the process X(t) given by (5.1) is nonstationary,

however over time its nonstationary properties vanishes in time. Therefore, we propose standard

estimators of the mean and autocovariance functions for stationary processes to estimate µ and

γX(τ), respectively. Fix T > 0. Let {X(t), t ∈ [0, T ]} be an observed sample of the process X(t).

Then to estimate µ and γX(τ), τ ≥ 0, we use the following estimators

µ̂T =
1

T

T∫
0

X(t) dt, γ̂X,T (τ) =
1

T

T−τ∫
0

(X(t)− µ̂T )(X(t+ τ)− µ̂T ) dt.

Below we establish mean-square consistency of these estimator.

Theorem 5.5. Under Assumption 5.1, the estimator µ̂T is a mean-square consistent estimator of

µ. Moreover,

E |µ̂T − µ|2 = O
(
T−1

)
, as T → ∞.

Proof. See Section 5.2.5.

To obtain the mean-square consistency of γ̂X,T (τ) we impose additional moment and α-mixing

conditions. Recall that the concept of α-mixing is introduced in Section 3.1.

Assumption 5.2. Assume that {X(t), t ≥ 0} is α-mixing with an α-mixing coefficient αX(·). More-

over, there exists some δ > 0 such that supt≥0 E|A(t)|4+2δ <∞.

Theorem 5.6. Under Assumption 5.1 and 5.2, the estimator γ̂X,T (τ) of γX(τ) is mean-square

consistent for any τ ≥ 0. That is,

lim
T→∞

E |γ̂X,T (τ)− γX(τ)|2 = 0.
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Proof. See Section 5.2.5.

Compared to the mean estimator µ̂T , we did not derive the theoretical convergence rate of the

autocovariance estimator γ̂X,T (τ). Therefore, in the sequel, we examine this rate of convergence

using Monte Carlo simulations.

5.2.4 Investigate the rate of convergence of the autocovariance estimator

In this section, based on simulation study, we investigate the convergence rate of E|γ̂X,T (τ)−γX(τ)|2.
Below, we outline the approach used to conduct this investigation.

For each τ ≥ 0, we assume for sufficiently large T , we have

E |γ̂X,T (τ)− γX(τ)|2 = C1(τ)T
−κ(τ)(1 + vT (τ)),

with some positive constants κ(τ) and C1(τ) and with vT (τ) = o(1), as T → ∞. In other words,

the theoretical convergence rate of E|γ̂X,T (τ) − γX(τ)|2 is of the order T−κ(τ). Then for sufficient

large T , we get

log
(
E |γ̂X,T (τ)− γX(τ)|2

)
= −κ(τ) log(T ) + log (C1(τ)(1 + vT (τ))) .

Therefore, based on a linear regression model, we can compute the least squares estimates of −κ(τ).
That is, we obtain an estimator of the rate of convergence of E |γ̂X,T (τ)− γX(τ)|2.

For simulation, we consider the process X(t) given by (5.5) that consists of two cosine waves,

that is, J = 2. We set λ1 = 0.05, λ2 = 0.2, c1 = 1, c2 = 5, µ = 25, and a = 10. For the amplitude

process A(t), we consider A(t) = µ+ Ã(t), where Ã(t) is an Ornstein-Uhlenbeck process defined by

the following stochastic differential equation

dÃ(t) = −ρAÃ(t) dt+ σA dW (t), t ≥ 0,

where ρA, σA > 0 and W (t) is the Wiener process. For the process z(t), we consider a fractional

Gaussian noise with drift equal to zero, volatility σz > 0, and Hurst index g ∈ (0, 1). Thus,

Cov(z(t), z(t+ τ)) =
σ2z
2

(
|τ + 1|2g − 2|τ |2g + |τ − 1|2g

)
.

We consider four different scenarios M1, M2, M3, and M4 with different parameter values for

σA, ρA, ρz, g, σϕ, h. These parameter values are summarized in Table 5.1.

σA ρA ρz g σϕ h

M1 1
20

1
2

1
5

3
5

4
5

3
10

M2 1
100

1
20 1 7

10
3
5

1
2

M3 1
4

1
100 5 4

5
2
5

7
10

M4 1
5

3
200

1
2

9
10

1
5

9
10

Table 5.1: Parameters σA, ρA, ρz, g, σϕ, h in scenarios M1–M4.
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We generate realizations from scenarios M1–M4 for T = 1000, 2000, . . . , 250000. For each T

we generated B = 1500 independent samples and estimate the value E|γ̂X,T (τ) − γX(τ)|2, for τ =

0.5, 1, . . . , 120, using a Monte Carlo procedure. The estimates obtained are denoted by M̂SEB(τ, T ).

We apply the linear regression model for point(
log(T ), log

(
M̂SEB(τ, T )

))
, T = 1000, 2000, . . . , 250000,

and calculate the least squares estimates −κ̂T (τ) of −κ(τ).
In Figure 5.7, we show the estimation results of κ(τ). The left panel presents the estimates as

functions of τ . It is evident that the convergence rate depends on the model parameters for a fixed

τ . In particular, we observe the following patterns.

• In model M1, where h < 0.5 (ϕ(t) exhibits short-range dependence), the convergence rate

appears to be faster than T−1.

• In model M2, where h = 0.5 (ϕ(t) reduces to the Wiener process), the convergence rate is

very close to T−1.

• In models M3 and M4, where h > 0.5 (ϕ(t) exhibits long-range dependence), the convergence

rate appears to be slower than T−1.

Furthermore, for each model, the convergence rate clearly depends on τ and exhibits a cyclic pattern.

The right panel of Figure 5.7 presents values of the coefficient R2, which remain close to 1 in all

cases. Furthermore, the values of R2 also show a cyclical pattern with respect to τ . In [26], we

presented further simulation studies of the proposed model.

Figure 5.7: Results of convergence rate estimation. Left panel: estimates κ̂(τ) of κ(τ) for τ =

0.5, 1, . . . , 120. Right panel: corresponding R2 for τ = 0.5, 1, . . . , 120.

5.2.5 Proofs of results presented in Section 5.2

This subsection contains proofs of the original results presented in Section 5.2.
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Lemma 5.1. Let X and Y be independent random variables. Assume that X has a normal distri-

bution with mean µ ∈ R and variance σ2 > 0. Then

E sin(X + Y ) = e−
1
2
σ2
E sin(µ+ Y ), E cos(X + Y ) = e−

1
2
σ2
E cos(µ+ Y ).

Proof of Lemma 5.1. The proof follows from the property of the characteristic function of the sum

of independent random variables.

Proof of Theorem 5.3. The proof follows directly from Lemma 5.1.

Lemma 5.2. Let h ∈ (0, 1) and α, β > 0, α ̸= β. Then there exists a positive constant c0 (which

depends only on α, β, h, σϕ) such that

Var(αϕ(t)− βϕ(s)) ≥ c0(|t|2h + |s|2h),

for t, s ≥ 0.

Proof. Without loss of generality we take s = t+ τ with some τ ≥ 0. We have

Var(αϕ(t)− βϕ(t+ τ)) = α2Var(ϕ(t))− 2αβ Cov(ϕ(t), ϕ(t+ τ)) + β2Var(ϕ(t+ τ))

= σ2ϕ

(
αβτ2h + α(α− β)t2h + β(β − α)(t+ τ)2h

)
.

It is sufficient to prove that there exist constants c1 > 0 and c2 > 0 such that

αβτ2h + α(α− β)t2h + β(β − α)(t+ τ)2h > c1|t|2h, (5.8)

and

αβτ2h + α(α− β)t2h + β(β − α)(t+ τ)2h > c2|t+ τ |2h (5.9)

for t, τ ≥ 0. Note that for t = 0 and any τ ≥ 0, as well as for τ = 0 and any t ≥ 0, the statement

holds trivially. Hence, in the sequel, we focus on the case where t, τ > 0. We split the proof into two

steps. In the first step, we establish the existence of constant c1 in the inequality (5.8), and next,

we establish the existence of the constant c2 in the inequality (5.9).

Step 1. In (5.8), we substitute y = τ
t . Then the existence of a constant c1 > 0 satisfying

αβτ2h + α(α− β)t2h + β(β − α)(t+ τ)2h > c1|t|2h

is equivalent to the existence of a constant c1 > 0 such that

f(y) = αβy2h + α(α− β) + β(β − α)(1 + y)2h > c1 > 0,

for y > 0. The first derivative of f(y) is given by

f ′(y) = 2βh
(
αy2h−1 + (β − α)(1 + y)2h−1

)
= 2β(α− β)hy2h−1

(
α

α− β
−
(
1

y
+ 1

)2h−1
)
.

If β > α, then f ′(y) > 0, which means that f(y) ≥ f(0) = (α − β)2 > 0 for y > 0. If α > β, then

we consider two cases: h ∈ (0, 12 ] and h ∈ (12 , 1).
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For h ∈ (0, 12 ], we have (
1 +

1

y

)1−2h

≥ 1 > 1− β

α
=
α− β

α
,

which implies
α

α− β
>

(
1 +

1

y

)2h−1

.

Consequnelty, f ′(y) > 0, and hence f(y) > f(0) = (α− β)2 for y > 0.

For h ∈ (12 , 1), the function f(y) has one local minimum at

y0 =
1(

α
α−β

) 1
2h−1 − 1

> 0,

since f ′(y) < 0 for y ∈ (0, y0) and f ′(y) > 0 for y ∈ (y0,∞). We consider the following substitution

α =
βx2h−1

x2h−1 − 1
,

with x > 1 and h ∈ (12 , 1). Then

f(y0) =
β2
(

x
x−1

)2h
xF (x, h)

(x− x2h)
2 ,

with

F (x, h) = x2h−1 − x2h + (x− 1)2h − 1 + x = (x− 1)(1− x2h−1 + (x− 1)2h−1).

Therefore, it is enough to show that (x − 1)2h−1 > x2h−1 − 1 for any x > 1 and h ∈ (12 , 1). We

substitute z = x − 1 > 0, we obtain z2h−1 + 1 > (z + 1)2h−1 which is true for any z > 0 and

h ∈ (12 , 1). This finishes this step.

Step 2. The proof is similar to that of Step 1. In (5.9), we substitute y = τ
t . Then it is enough to

show that there exists a constant c2 > 0 such that

g(y) = β(β − α) + α(y + 1)−2h
(
α+ β

(
y2h − 1

))
> c2 > 0,

for y > 0. The first derivative of g(y) is

g′(y) = 2αβh(y + 1)−2h−1

(
y2h−1 − (α− β)

β

)
.

For β > α we have g′(y) > 0, which means that g(y) ≥ g(0) = (α−β)2 > 0. For α > β the function

g(y) has one local minimum at

y0 =

(
α− β

β

) 1
2h−1

> 0,

since g′(y) < 0 for y ∈ (0, y0) and g′(y) > 0 for y ∈ (y0,∞). By substitution α = β
(
x2h−1 + 1

)
,

with x > 0 we get

g(y0) = β2x2h−2(x+ 1)−2h
(
(x+ 1)

(
x2h + x

)
− x(x+ 1)2h

)
.
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Observe that

(x+ 1)
(
x2h + x

)
− x(x+ 1)2h = x(x+ 1)

(
(x2h−1 + 1)− (x+ 1)2h−1

)
,

and x2h−1 + 1 > (x+ 1)2h−1 for any x > 0 and h ∈ (0, 1). This finishes the proof.

Proof of Theorem 5.4. Denote ξj(t) = λj(t+ψj + z(t)). Using the following trigonometric product-

to-sum identity

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y)) , x, y ∈ R,

we have

E((X(t)− µ)(X(t+ τ)− µ))

= E(A(t)A(t+ τ))

J∑
j1=1

J∑
j2=1

cj1cj2E
(
cos
(
λj1ϕ(t) + ξj1(t)

)
cos
(
λj1ϕ(t+ τ) + ξj2(t+ τ)

))
=

1

2

(
γA(τ) + a2

) J∑
j1=1

J∑
j2=1

cj1cj2

(
E
(
cos
(
λj1ϕ(t)− λj2ϕ(t+ τ) + ξj1(t)− ξj2(t+ τ)

))
+ E

(
cos
(
λj1ϕ(t) + λj2ϕ(t+ τ) + ξj1(t) + ξj2(t+ τ)

)) )
.

By Lemma 5.1, we get

E
(
cos
(
λj1ϕ(t)± λj2ϕ(t+ τ) + ξj1(t)± ξj2(t+ τ)

))
= e

−η
(±)
j1,j2

(t,τ)E cos
(
ξj1(t)± ξj2(t+ τ)

)
,

where

η
(±)
j1,j2

(t, τ) =
1

2
Var(λj1ϕ(t)± λj2ϕ(t+ τ))

=
1

2

(
λ2j1Var(ϕ(t))± 2λj1λj2Cor(ϕ(t), ϕ(t+ τ)) + λ2j2Var(ϕ(t+ τ))

)
=

1

2
σ2ϕ

(
λ2j1 |t|

2h ± λj1λj2(|t|2h + |t+ τ |2h − |τ |2h) + λ2j2 |t+ τ |2h
)

=
1

2
σ2ϕ

(
λj1 |t|2h(λj1 ± λj2) + λj2 |t+ τ |2h(λj2 ± λj1)∓ λj1λj2 |τ |2h

)
=

1

2
σ2ϕ

(
(λj1 ± λj2)(λj1 |t|2h − λj2 |t+ τ |2h)∓ λj1λj2 |τ |2h

)
.

Note that for j1 = j2 = j, by stationary increments of z(t), we obtain

e−η
(−)
j,j (t,τ)E cos

(
ξj(t)− ξj(t+ τ)

)
= e−

1
2
σ2
ϕλ

2
j |τ |2hE cos(λj(|τ |+ z(|τ |))).

Consequently,

E((X(t)− µ)(X(t+ τ)− µ)) = γX(τ) +W (t, τ),

with

W (t, τ) =
1

2

(
γA(τ) + a2

)( J∑
j=1

c2je
−η

(+)
j,j (t,τ)E cos

(
ξj(t) + ξj(t+ τ)

)
+
∑
j1 ̸=j2

cj1cj2

(
e
−η

(−)
j1,j2

(t,τ)E cos
(
ξj1(t)− ξj2(t+ τ)

)
+ e

−η
(+)
j1,j2

(t,τ)E cos
(
ξj1(t) + ξj2(t+ τ)

)))
.

(5.10)
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Moreover,

|W (t, τ)| ≤ 1

2
|γA(τ) + a2|

 J∑
j1=1

J∑
j2=1

|cj1cj2 |e
−η

(+)
j1,j2

(t,τ)
+
∑
j1 ̸=j2

|cj1cj2 |e
−η

(−)
j1,j2

(t,τ)


≤ C

 J∑
j1=1

J∑
j2=1

e
−η

(+)
j1,j2

(t,τ)
+
∑
j1 ̸=j2

e
−η

(−)
j1,j2

(t,τ)

 ,

with

C =
1

2

∣∣∣∣sup
τ∈R

γA(τ) + a2
∣∣∣∣ max
1≤j≤J

c2j .

Finally, by Lemma 5.2 and

η
(+)
j1,j2

(t, τ) =
1

2

(
λ2j1Var(ϕ(t)) + 2λj1λj2Cor(ϕ(t), ϕ(t+ τ)) + λ2j2Var(ϕ(t+ τ))

)
≥ 1

2

(
λ2j1Var(ϕ(t)) + λ2j2Var(ϕ(t+ τ))

)
=

1

2
σ2ϕ

(
λj1 |t|2h + λ2j2 |t+ τ |2h

)
,

we end the proof.

Proof of Corollary 5.1. The proof of (i) follows from Theorem 5.3. By Theorem 5.4 we obtain (ii)

since lim
t→∞

W (t, τ) = 0 for any τ ≥ 0. From (i), (ii) and

Cov(X(t), X(t+ τ)) = E((X(t)− µ)(X(t+ τ)− µ))− E(X(t)− µ)E(X(t+ τ)− µ),

we immediately get (iii).

Lemma 5.3. Under Assumption 5.1, we have

∞∫
0

|W (t, τ)|dt ≤ CW <∞,

where CW is some positive constant that does not depend on τ .

Proof. Using (5.7) we get

∞∫
0

|W (t, τ)|dt ≤ C0

∞∫
0

e−c0(|t|2h+|t+τ |2h) dt ≤ C0

∞∫
0

e−c0|t|2h dt,

with some positive constants c0, C0 > 0 that does not depend on τ and t. Finally, by the change of

variables u = c0t
2h, we obtain

∞∫
0

e−c0t2h dt =
1

2hc
1
2h
0

∞∫
0

u
1
2h

−1e−u du =
1

2hc
1
2h
0

Γ

(
1

2h

)
<∞, (5.11)

where Γ(x) =
∫∞
0 ux−1e−x dx, x > 0, is the Gamma function.
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Proof of Theorem 5.5. Applying Theorem 5.4, we get

E|µ̂T − µ|2 = 1

T 2

T∫
0

T∫
0

E((X(t)− µ)(X(s)− µ)) ds dt

=
1

T 2

T∫
0

T−t∫
−t

E((X(t)− µ)(X(t+ u)− µ)) dudt

=
1

T 2

T∫
0

T−t∫
−t

γX(u) dudt+
1

T 2

T∫
0

T−t∫
−t

W (t, u) du dt.

(5.12)

Let us consider the first term on the right-hand side. Using (5.11), we have

1

T 2

T∫
0

T−t∫
−t

γX(u) dudt ≤ supu∈R E|A(u)|2

2T

J∑
j=1

c2j

∫
R

e−
1
2
λ2
jσ

2
ϕ|u|

2h

du = O
(
T−1

)
.

Applying Lemma 5.3, for the second term on the right-hand side of (5.12), we obtain

1

T 2

T∫
0

T−t∫
−t

|W (t, u)| dudt ≤ 1

T 2

T∫
−T

∞∫
0

|W (t, u)|dt du ≤ 2CW

T
,

where CW > 0 is some positive constant.

Lemma 5.4. Under Assumption 5.1 and 5.2, for any τ ≥ 0 we have

lim
T→∞

E |γ̂X,T (τ)− γ̃X,T (τ)|2 = 0,

where

γ̃X,T (τ) =
1

T

T−τ∫
0

(X(t)− µ)(X(t+ τ)− µ) dt.

Proof. Note that

γ̂X,T (τ)− γ̃X,T (τ) =
1

T

T−τ∫
0

(
µ̂2T − µ2 + (µ− µ̂T )(X(t) +X(t+ τ))

)
dt

=
T − τ

T
(µ̂2T − µ2)− (µ̂T − µ) · 1

T

T−τ∫
0

(X(t) +X(t+ τ)) dt

=
T − τ

T
(µ̂T − µ)(µ̂T + µ)− (µ̂T − µ)RT ,

where

RT =
1

T

T−τ∫
0

(X(t) +X(t+ τ)) dt.

By Minkowski inequality and Hölder inequality, we obtain(
E |γ̂X,T (τ)− γ̃X,T (τ)|2

) 1
2 ≤ T − τ

T

(
E |µ̂T − µ|4 · E |µ̂T + µ|4

) 1
4
+
(
E |µ̂T − µ|4 · E|RT |4

) 1
4
.
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Using Minkowski integral inequality, we get

(
E |µ̂T + µ|4

) 1
4 ≤

(
E |µ̂T |4

) 1
4
+ |µ| =

E

∣∣∣∣∣∣ 1T
T∫
0

X(t) dt

∣∣∣∣∣∣
4


1
4

+ |µ|

≤ 1

T

T∫
0

(
E |X(t)|4

) 1
4
dt+ |µ| ≤

(
sup
t≥0

E |A(t)|4
) 1

4

+ |µ| <∞.

Similarly, we have

(
E|RT |4

) 1
4 ≤ 1

T

T−τ∫
0

(
E|X(t) +X(t+ τ)|4

) 1
4 dt ≤ 1

T

T−τ∫
0

(
E|A(t)|4

) 1
4 +

(
E|A(t+ τ)|4

) 1
4 dt

≤ 2
T − τ

T

(
sup
t≥0

E |A(t)|4
) 1

4

= O(1),

as T → ∞. Therefore, it remains to show that lim
T→∞

E |µ̂T − µ|4 = 0. We have

E |µ̂T − µ|4 = E2 |µ̂T − µ|2 +Var
(
|µ̂T − µ|2

)
.

From Theorem 5.5, we have lim
T→∞

E |µ̂T − µ|2 = 0. Moreover, by the property of α-mixing measure

(see Lemma B.2), we obtain

Var
(
|µ̂T − µ|2

)
= Var

 1

T 2

T∫
0

T∫
0

(X(t)− µ)(X(s)− µ) dtds


=

1

T 4

T∫
0

T∫
0

T∫
0

T∫
0

Cov((X(t)− µ)(X(s)− µ), (X(u)− µ)(X(v)− µ)) dt dsdudv

≤ C

T 4

T∫
0

T∫
0

T∫
0

T∫
0

α
δ

2+δ

X (min{|t− u|, |t− v|, |s− u|, |s− v|}) dt dsdudv,

where

C = 8

(
sup
t≥0

E|A(t)|2(δ+2)

) 2
2+δ

.

Let us consider the change of variables x = t− u, y = t− v, z = s− u and w = s− v. The Jacobian

of this transformation equals 1
2 . Moreover, (x, y, z, w) ∈ [−T, T ]4. Then

Var
(
|µ̂T − µ|2

)
≤ C

2T 4

T∫
−T

T∫
−T

T∫
−T

T∫
−T

α
δ

2+δ

X (min{|x|, |y|, |z|, |w|}) dx dy dz dw

=
4!C

2T 4

T∫
−T

w∫
−T

z∫
−T

y∫
−T

α
δ

2+δ

X (|x|) dx dy dz dw

≤ 96C

T

T∫
−T

α
δ

2+δ

X (|x|) dx.
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Fix ε > 0. Then one can choose T0 > 0 such that
∣∣∣α δ

2+δ (τ)
∣∣∣ < ε for all τ > T0. Moreover, αX(τ) ≤ 1

4

for τ ∈ R, see [21]. Consequently, for T > T0
4ε , we have

1

T

T∫
0

α
δ

2+δ (τ) dτ ≤ 1

T

T0∫
0

α
δ

2+δ (τ) dtau+
1

T

T∫
T0

α
δ

2+δ (τ) dtau ≤ T0
4T

+
T − T0
T

ε < 2ε, (5.13)

which ends the proof.

Proof of Theorem 5.6. By Minkowski inequity and Lemma 5.4, it is sufficient to show that

lim
T→∞

E |γ̃X,T (τ)− γX(τ)|2 = 0.

First, we discuss the convergence of Eγ̃X,T (τ). Applying Theorem 5.4, we get

Eγ̃X,T (τ) =
1

T

T−τ∫
0

E((X(t)− µ)(X(t+ τ)− µ)) dt

=
T − τ

T
γX(τ) +

1

T

T−τ∫
0

W (t, τ) dt.

Consequnelty, by Lemma 5.3

1

T

T−τ∫
0

|W (t, τ)| dt ≤ 1

T

∞∫
0

|W (t, τ)|dt ≤ CW

T
,

where CW > 0 is some positive constant. Therefore, lim
T→∞

Eγ̃X,T (τ) = γX(τ).

Next, we demonstrate that the variance converges to zero. By inequality for α-mixing processes

(Lemma B.2) and the change of variables u = t− s

Var(γ̃X,T (τ)) =
1

T 2

T−τ∫
0

T−τ∫
0

Cov((X(t)− µ)(X(t+ τ)− µ), (X(s)− µ)(X(s+ τ)− µ)) dtds

≤ C

T 2

T−τ∫
0

T−τ∫
0

α
δ

2+δ

X (min{|t− s|, |s+ τ − t|, |t+ τ − s|}) dt ds

=
C

T 2

T−τ∫
0

T−s−τ∫
−s

α
δ

2+δ

X (min{|u|, |τ − u|, |u+ τ |}) duds,

where

C = 8

(
sup
t≥0

E|A(t)|2(2+δ)

) 2
2+δ

.
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Hence,

Var(γ̃X,T (τ)) ≤
C

T 2

T−τ∫
0

T−2τ∫
−T−τ

α
δ

2+δ

X (min{|u|, |τ − u|, |u+ τ |}) duds

=
C(T − τ)

T 2

T−2τ∫
−T−τ

α
δ

2+δ

X (min{|u|, |τ − u|, |u+ τ |}) du

=
C(T − τ)

T 2

−τ/2∫
−T−τ

α
δ

2+δ

X (|u+ τ |) du+
C(T − τ)

T 2

τ/2∫
−τ/2

α
δ

2+δ

X (|u|) du

+
C(T − τ)

T 2

T−2τ∫
τ/2

α
δ

2+δ

X (|u− τ |) du.

Similarly to (5.13), we obtain that the first and last terms of the above sum tend to zero as T → ∞.

Additionally, the second term also converges to zero since αX(τ) is bounded by 1
4 .
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we presented new results on the statistical inference for nonstationary processes.

Mainly, we focused on the spectral analysis of harmonizable whose spectral measure is concen-

trated on the union of lines. We introduced the periodogram frequency-smoothed along the line as

an estimator on the spectral density function. We established its mean-square consistency in the

cases where the support line is known and where it must be estimated. Furthermore, we derived

its asymptotic distribution. Based on this estimator, we proposed an estimator for the spectral co-

herence function. Additionally, we introduced a subsampling procedure and proved its consistency

for spectral analysis in harmonizable processes with spectral measures concentrated on a union

of lines. Finally, we discussed two models for signals that exhibit irregular cyclicity, both consist-

ing of modulation of time and amplitude. The first model is a nonparametric approach proposed

by Napolitano [63], where both modulations are deterministic. For this model, we proposed two

bootstrap procedures for Fourier analysis. The second model is a newly introduced semiparametric

approach in which both modulations are stochastic. We established its statistical properties and

discussed the estimation of the mean and autocovariance.

In the following, we outline the problems that will be addressed in the future.

1. Statistical inference for harmonizable processes whose spectral measure is con-

centrated on the union of curves. This thesis examines spectral density estimation for

harmonizable processes whose spectral mass is concentrated on lines. However, a more general

class of harmonizable processes, known as spectrally correlated (SC) processes, has been stud-

ied in the literature [61, Chapter 4]. SC processes are harmonizable processes whose spectral

measure is concentrated on a union of curves. Such processes result from frequency wrapping

of APC processes [62, Section 13.6.6]. So far, research on SC processes has focused only on

point estimation of spectral density functions. We plan to extend the results from Chapters 2

and 3. Specifically, we will investigate a periodogram frequency-smoothed along the estimated

support curve and develop statistical inference methods based on subsampling.
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2. Spectral density estimation for discretized harmonizable processes. In this thesis,

we examine continuous-time stochastic processes, which are common in telecommunications,

where many physical phenomena are described only in continuous time. In practice, how-

ever, we observe discretized data, making spectral estimation challenging due to the aliasing

problem (the spectral density function of the sampled process is the superposition of the spec-

tral density functions of the continuous-time process [52]). While significant results exist for

stationary processes, research on nonstationary processes, such as APC, remains relatively

limited. For stationary processes, the spectral analysis is performed on a line R, while in the

case of nonstationary processes, on a two-dimensional plane R2, making the aliasing effects

more complex. Our goal will be to study the estimation of the spectral density of discretized

processes whose spectral measure is concentrated on the union of lines.

3. Further work on models for oscillatory processes with stochastic modulation in

amplitude and time. In Section 5.2, we present the semiparametric continuous-time model

for signals exhibiting irregular cyclicity. Our future research will focus on exploring additional

theoretical properties of this model, including the asymptotic distributions of estimators for

the mean and autocovariance functions, and on aspects of spectral analysis. We also aim

to extend the model proposed in [26] since currently we assume that the amplitude and

phase-shift processes are independent. In many real-world applications, these processes are

interdependent. In ECG signals, amplitude variations occur throughout the cycle, reaching

their maxima near the so-called ’R-peak’. Finally, we plan to develop a nonparametric model

with stochastic modulation in both amplitude and time. Compared to the semiparametric

approach, a nonparametric model would offer greater flexibility.
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APPENDIX A

COMPLEX-VALUED RANDOM VARIABLES AND VECTORS

In this chapter, we discuss the characterization of complex-valued random variables and vectors.

This is essential to our study, as we consider complex-valued stochastic processes. In addition,

spectral density estimators have complex values. The notation in this chapter mostly follows the

conventions established in [62, Appendix E].

A.1 Second-order characterization of complex-valued random vari-

ables and vectors

A complex random variable Z defined on a probability space (Ω,F ,P) is a function Z : Ω 7→ C such

that Re(Z) and Im(Z) are both real-valued random variables on (Ω,F ,P). If E|Re(Z)| < ∞ and

E| Im(Z)| <∞, then the expectation of Z exists and it is defined as

EZ = ERe(Z) + iE Im(Z).

Since

max{|Re(Z)|, | Im(Z)|} ≤ |Z| ≤ |X|+ |Y |,

it follows that E|Z| <∞ if and only if both E|Re(Z)| <∞ and E| Im(Z)| <∞, see [6, Chapter 3].

Now, let us introduce second-order characterization. Let Z and W be two complex-valued ran-

dom variables such that E|Z|2 <∞ and E|W |2 <∞.

• The variance of Z exists and is defined as

Var(Z) = E
[
|Z − EZ|2

]
;

• The covariance of Z and W exists and is defined as

Cov(Z,W ) = E
[
(Z − EZ)(W − EW )

]
= E

[
ZW

]
− EZ EW ;
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• The conjugate covariance (or pseudo-covariance) of Z and W exists and is defined as

Cov(Z,W ) = E
[
(Z − EZ)(W − EW )

]
= E

[
ZW

]
− EZ EW ;

To fully characterize the second-order properties of complex-valued random variables, one should

consider the covariance and conjugate covariance.

A complex random vector Z = [Z1, . . . , ZM ]T defined on a probability space (Ω,F ,P) is

a function Z : Ω 7→ CM such that

[Re(Z1), . . . ,Re(ZM ), Im(Z1), . . . , Im(ZM )]T

is 2M -dimensional real-valued random vector on (Ω,F ,P). Below we present two approaches to

fully describe second-order characteristics of complex-valued random vectors.

• A M -dimensional complex-valued vector Z = X + iY with two M -dimensional real-valued

vectors X and Y can be viewed as 2M -dimensional real-valued random vector

V = [V1, . . . , V2M ]T = [XT,Y T]T = [Re(Z1), . . . ,Re(ZM ), Im(Z1), . . . , Im(ZM )]T

with a mean vector

µV = EV = [µT
X ,µ

T
Y ]T = [ERe(Z1), . . . ,ERe(ZM ),E Im(Z1), . . . ,E Im(ZM )]T,

and covariance matrix

ΣV V = E
[
(V − EV )(V − EV )T

]
=

[
ΣXX ΣXY

ΣY X ΣY Y

]
,

where

ΣXX = E
[
(X − EX)(X − EX)T

]
,

ΣY Y = E
[
(Y − EY )(Y − EY )T

]
,

ΣXY = E
[
(X − EX)(Y − EY )T

]
= ΣT

Y X .

• A M -dimensional complex-valued vector Z can be viewed as 2M -dimensional complex-valued

random vector

ζ = [Z,Z]T = [Z1, . . . , ZM , Z1, . . . , ZM ]T

with a complex-valued mean vector

µζ = [EZ,EZ]T = [EZ1, . . . ,EZM ,EZ1, . . . ,EZM ]T

and complex-valued covariance matrix

Σζζ = E
[
(ζ − µζ)(ζ − µζ)

H
]
=

[
ΣZZ ΣZZ

ΣZZ ΣZZ

]
where

ΣZZ = Cov
(
Z,Z

)
= E

[
(Z − EZ)(Z − EZ)T

]
,

ΣZZ = Cov
(
Z,Z

)
= E

[
(Z − EZ)(Z − EZ)T

]
.
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Moreover using the Euler formula, i.e., Re(z) = z+z
2 and Im(z) = z−z

2i for z ∈ C, we get

µV =
[
Z+Z

2 , Z−Z
2i

]
, µζ =

[
µT
X + iµT

Y ,µ
T
X − iµT

Y

]
,

and

ΣZZ = ΣXX − iΣXY − iΣY X +ΣY Y ,

ΣZZ = ΣXX + iΣXY + iΣY X − ΣY Y ,

and

ΣXX =
1

2
Re
(
ΣZZ +ΣZZ

)
,

ΣY X =
1

2
Im
(
ΣZZ +ΣZZ

)
,

ΣXY = −1

2
Im
(
ΣZZ − ΣZZ

)
,

ΣY Y =
1

2
Re
(
ΣZZ − ΣZZ

)
.

A.2 Cumulant of complex-valued random vectors

Cumulants of random variables are tools to characterize the statistical properties of random vari-

ables. In this section, we introduce the cumulants of complex-valued random variables.

Before doing so, we recall the notation of cumulants for real-valued random variables. Let

X1, . . . , XM be a real-valued random variables. Assume that, for fixed M ∈ N, we have E|Xj |M <∞
for all j = 1, 2, . . . ,M . The joint cumulant of X1, . . . , XM is defined as

cum(X1, . . . , XM ) = (−i)M ∂M

∂t1 . . . ∂tM
log
(
E
(
eit

TX
)) ∣∣∣

t1=...=tM=0
, (A.1)

where t = [t1, . . . , tM ]T and X = [X1, . . . , XM ]T. We have the following relationship between

moments and cumulants

cum(X1, . . . , XM ) =
∑
P

(−1)p−1(p− 1)!

p∏
i=1

E

∏
l∈πj

Xl

 , (A.2)

where P is the set of distinct partitions of {1, . . . ,M} each constituted by the subset {µj , j =

1, . . . , p}. For instance, for a zero-mean random vector, we have

cum(X1) = EX1 = 0,

cum(X1, X2) = E(X1, X2) = Cov(X1, X2),

cum(X1, X2, X3) = E(X1X2X3)

cum(X1, X2, X3, X4) = E(X1, X2, X3, X4)− E(X1, X2)E(X3, X4),

− E(X1, X3)E(X2, X4)− E(X1, X4)E(X2, X3).

For more details on cumulants and their properties, we refer to [10, 22, 68]

Using (A.2) we can define the comulants for complex-valued random variables [62, Appendix E].

Let Z1, . . . , ZM be complex-valued random variables. Assume that, for fixed n ∈ N, we have

E|Zj |M <∞ for all j = 1, 2, . . . , k. The joint cumulant of Z1, . . . , ZM is defined as

cum(Z1, . . . , ZM ) =
∑
P

(−1)p−1(p− 1)!

p∏
i=1

E

∏
l∈πj

Zl

 ,
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where P is the set of distinct partitions of {1, . . . ,M} each constituted by the subset {µj , j =

1, . . . , p}. Note that (A.1) may not exist if we replace the real-valued vector X by the complex-

valued vector Z = [Z1, . . . , ZM ]. For this reason, we use the equation (A.2). Moreover, this definition

ensures that all the algebraic properties of the cumulants for real-valued random variables also hold

for complex-valued random variables. In contrast to the cumulants of real-valued variables, the

second-order cumulant cum(Z1, Z2) is not equal to the covariance Cov(Z1, Z2). Specifically,

cum(Z1, Z2) = E(Z1Z2)− EZ1EZ2 = Cov(Z1, Z2).

In the following, we present a property of cumulants that plays a key role in the proof of

Theorem 3.5. To the best of our knowledge, it has not been presented in the literature before.

Let k ∈ Z such that 0 ≤ k ≤M . Note that

cum (Re(Z1), . . . ,Re(Zk), Im(Zk+1), . . . , Im(ZM ))

= cum
(
Z1+Z1

2 , . . . , Zk+Zk
2 ,

Zk+1−Zk+1

2i , . . . , ZM−ZM
2i

)
By z[∗] we denote the optional complex conjugation of z, i.e., z[∗] ∈ {z, z}. Applying multilinearity

of joint cumulants, the joint cumulants

cum (Re(Z1), . . . ,Re(Zk), Im(Zk+1), . . . , Im(ZM ))

can be rewritten using linear combination of

cum
(
Z

[∗]
1 , . . . , Z

[∗]
M

)
.

Consequnelty, if

cum
(
Z

[∗]
1 , . . . , Z

[∗]
M

)
= 0

for all possible choices of Z [∗]
j , then

cum (Re(Z1), . . . ,Re(Zk), Im(Zk+1), . . . , Im(ZM )) = 0.

A.3 Complex normal vectors

Let Z = [Z1, . . . , ZM ]T be a random vector. We say Z has a M -dimensional complex normal

distribution if and only if

[Re(Z)T, Im(Z)T]T = [Re(Z1), . . . ,Re(ZM ), Im(Z1), . . . , Im(ZM )]T

has a 2M -dimensional normal distribution. A complex normal random vector Z can be parameter-

ized in two ways

Z ∼ N (µV ,ΣV V ),

Z ∼ N (µζ ,Σζζ).
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using the notation from Section A.1. Based on the first parametrization, the characteristic function

of Z is given by

ϕV (t) = eitµV −1
2 t

TΣV V t, t ∈ R2M .

As noted in [58], the normal distribution is the only distribution in which the logarithm of the

characteristic function is a polynomial. Moreover, it is a quadratic polynomial

log ϕV = itµV − 1
2t

TΣV V t.

As a result, to prove that a complex-valued random vector Z has a complex normal distribution

vector, it is sufficient to show that

cum(Vt1 , . . . , Vtk) = 0,

for any {t1, . . . , tk} ⊂ {1, . . . , 2M} and k ≥ 3. From the observation stated in Section A.2, it is

enough to show that

cum
(
Z

[∗]
1 , . . . , Z

[∗]
M

)
= 0,

for all possible choices of Z [∗]
j , to obtain that Z has a complex normal distribution vector.
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APPENDIX B

LEMMAS

In this chapter, we provide the tools and the auxiliary lemmas used in this thesis.

Let us start with a formula for the joint cumulants of products of random variables. For this

purpose, we introduce a notations from Section 2.3 in [10]. Consider a table

(1, 1) · · · (1, R)
...

. . .
...

(P, 1) · · · (P,R)

(B.1)

and a partition v1∪v2∪· · ·∪vM of its entries. We say that sets v, u of the partition hook if there exist

(i1, j1) ∈ v and (i2, j2) ∈ u such that i1 = i2. We say that sets v and u communicate if there exists

a sequence of sets v = vm1 , vm2 , . . . , vmN = u such that vmn and vmn+1 hook for n = 1, 2, . . . , N −1.

A partition is called to be indecomposable if all sets communicate.

Lemma B.1 (Theorem 2.3.1 in [10]). Consider random variables Xi,j, with i = 1, . . . , P and

j = 1, . . . , R. Define

Yi =
R∏

j=1

Xi,j , i = 1, . . . , P.

Then

cum(Y1, . . . , YP ) =
∑

v=(v1,...,vL)

cum(Xi,j , (i, j) ∈ ν1) . . . cum(Xi,j , (i, j) ∈ νL),

where the summation is over all indecomposable partitions v = (v1, . . . , vL) of a table (B.1).

In Chapter 3 we often use some inequalities for covariance. To present them, we first define the

α-mixing measure for two σ-fields A and B:

α(A,B) = sup
A∈A, B∈B

|P(A ∩B)− P(A)P(B)|. (B.2)

The measure α(A,B) is used to measure the dependence between A and B, see [21]. Below, we

present two inequities related to the α-mixing measure.
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Lemma B.2 ([21]). Let X and Y be random variables. Assume that E|X|p < ∞ and E|Y |q < ∞,

with p, q > 1 such that 1
p + 1

q < 1. Then

|Cov(X,Y )| ≤ 8 (E|X|p)
1
p (E|X|q)

1
q α

1− 1
p
− 1

q (σ(X), σ(Y )).

Lemma B.3 ([21]). Let X and Y be random variables. Assume that there exists MX ,MY > 0 such

that |X| ≤MX and |Y | ≤MY a.s. Then

|Cov(X,Y )| ≤ 4MX MY α(σ(X), σ(Y )).

In proofs of the asymptotic properties of the periodogram frequency-smoothed along the line, we

require auxiliary lemmas concerning the properties of the Fourier transform W of the data-tapering

window w (see Chapter 2). These lemmas are provided below.

Lemma B.4. Assume that w is a continuous function on the interval
(
−1

2 ,
1
2

)
with compact support[

−1
2 ,

1
2

]
. Then ∫

R

w
(
t−cT
dT

)
e−i2πνt dt = dTW (dT ν)e

−i2πνcT .

Proof. By changing the variables u = t−cT
dT

, we have∫
R

w
(
t−cT
dT

)
e−i2πνt dt = dT e

−i2πνcT

∫
R

w (u) e−i2πνdTu du = dTW (dT ν)e
−i2πνcT .

Lemma B.5. Assume that W ∈ L2(R). Then for a ̸= 0

lim
b→∞

∫
R

|W (x)W (ax+ b)| dx = 0.

Proof. Let Mb = o(b) as b→ ∞. For sake of simplicity, we write M instead of Mb. Define WM (x) =

W (x)1[−M,M ](x). Then we have ∥W −WM∥2 → 0 as b → ∞. Note that WM (x)WM (ax + b) = 0

for b > 1
2M(a+ 1). Consequently, there exists b0 such that for b > b0∫

R

|WM (x)WM (ax+ b)| dx = 0.

Now, we consider ∫
R

W (x)W (ax+ b) dx−
∫
R

WM (x)WM (ax+ b) dx

=

∫
R

W (x)W (ax+ b) dx−
∫
R

WM (x)W (ax+ b) dx

+

∫
R

WM (x)W (ax+ b) dx−
∫
R

WM (x)WM (ax+ b) dx.
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Moreover, by Hölder inequality∣∣∣∣∣
∫
R

(W (x)W (ax+ b)−WM (x)W (ax+ b)) dx

∣∣∣∣∣
2

≤
∫
R

|W (ax+ b)|2 dx
∫
R

|W (x)−WM (x)|2 dx

≤ |a|−1∥W∥22 ∥W −WM∥22,

and similarly∣∣∣∣∣
∫
R

(W (ax+ b)WM (x)−WM (ax+ b)WM (x)) dx

∣∣∣∣∣
2

≤ |a|−1∥W∥22 ∥W −WM∥22,

which ends the proof since ∥W −WM∥2 → 0 as b→ ∞.

Lemma B.6. Assume that W ∈ L
4
3 (R). Then for a1, a2, a3 ̸= 0

lim
b→∞

∫
R3

|W (x1)W (x2)W (x3)W (a1x1 + a2x2 + a3x3 + b)| dx1 dx2 dx3 = 0.

Proof. Let Mb = o(b) as b → ∞. For simplicity, we write M instead of Mb. Define WM (x) =

W (x)1[−M,M ](x). Then we have ∥W − WM∥ 4
3

→ 0 as b → ∞. Also there exists b0 such that

WM (x1)WM (x2)WM (x3)WM (a1x1 + a2x2 + a3x3 + b) = 0 for b > b0. Consequently, for b > b0∫
R3

|WM (x1)WM (x2)WM (x3)WM (a1x1 + a2x2 + a3x3 + b)|dx1 dx2 dx3 = 0.

Let us consider the following change of variables

y1 = a1x1,

y2 = a1x1 + a2x2,

y3 = a1x1 + a2x2 + a3x3.

We have

R =

∫
R3

W (x1)W (x2)W (x3)W (a1x1 + a2x2 + a3x3 + b) dx1 dx2 dx3

−
∫
R3

WM (x1)WM (x2)WM (x3)WM (a1x1 + a2x2 + a3x3 + b) dx1 dx2 dx3

= (a1a2a3)
−1

∫
R3

W
(
y1
a1

)
W
(
y2−y1
a2

)
W
(
y3−y2
a3

)
W (y3 + b) dy1 dy2 dy3

− (a1a2a3)
−1

∫
R3

WM

(
y1
a1

)
WM

(
y2−y1
a2

)
WM

(
y3−y2
a3

)
WM (y3 + b) dy1 dy2 dy3.

Therefore, using convolution operator, we can write

R = (W1 ∗W2 ∗W3 ∗W4)(−b)− (W1,M ∗W2,M ∗W3,M ∗W4,M )(−b)

= ((W1 −W1,M ) ∗W2 ∗W3 ∗W4)(−b)

+ (W1,M ∗ (W2 −W2,M ) ∗W3 ∗W4)(−b)

+ (W1,M ∗W2,M ∗ (W3 −W3,M ) ∗W4)(−b)

+ (W1,M ∗W2,M ∗W3,M ∗ (W4 −W4,M )(−b),
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where Wj(y) = |W ( y
aj
)| and Wj,M (y) = |WM ( y

aj
)| for j = 1, 2, 3, while W4(y) = |W (−y)| and

W4,M (y) = |WM (−y)|. Applying Young’s inequality, we obtain

((W1 −W1,M ) ∗W2 ∗W3 ∗W4)(−b) ≤ ∥(W1 −W1,M ) ∗W2 ∗W3 ∗W4)∥∞

≤ ∥(W1 −W1,M ) ∗W2∥2 · ∥W3 ∗W4∥2

≤ ∥W1 −W1,M∥ 4
3
· ∥W2∥ 4

3
· ∥W3∥ 4

3
· ∥W4∥ 4

3
,

(B.3)

since 1
2 + 1

2 = 1 and 3
4 + 3

4 = 1 + 1
2 . Hence, the left hand-side of the inequality (B.3) converges to

zero since ∥W1 −W1,M∥ 4
2
→ 0 as b→ ∞.

Using the the same reasoning applies to the remaining terms and the fact that ∥Wj,M∥p ≤ ∥Wj∥p

for j = 1, 2, 3, 4 and any p > 1, we conclude that all terms converge to zero, completing the proof.

Lemma B.7. Assume that W ∈ L∞(R) and there exists a positive constant K such that

supx∈R |xW (x)| = K. Then W ∈ Lp(R) for all p > 1.

Proof. For any c > 0, we have

∫
R

|W (x)|p dx =

c∫
−c

|W (x)|p dx+

∫
R\(−c,c)

|W (x)|p dx ≤ 2c∥W∥∞ + 2K

∞∫
c

1

xp
dx <∞,

since p > 1.

Lemma B.8. Assume that W ∈ L2(R). Moreover, cT /dT → ϑ ∈ R. Then

lim
T→∞

EcT /dT (α) = Eϑ(α).

Proof. It follows immediately from the dominated convergence theorem since the magnitude of the

integrand function is |W (η)W (−αη)| which is integrable on R. The integrability of |W (η)W (−αη)|
follows from Hölder inequality. Namely,∣∣∣∣∣∣

∫
R

|W (η)W (−αη)|dν

∣∣∣∣∣∣
2

≤
∫
R

|W (η)|2 dν
∫
R

|W (−αη)|2 dν = |α|−1∥W∥42.

Lemma B.9. Assume that W ∈ L∞(R) and there exists a positive constant K such that

supx∈R |xW (x)| = K. Define WM (x) = W (x)1[−M,M ](x) with M > 0. Then for constants a ̸= 0

and b ∈ R ∫
R

|W (x)W (ax+ b)| dx =

∫
R

|WM (x)WM (ax+ b)| dx+O
(
M− 1

2
)
,

as M → ∞.

Proof. Note that∫
R

|W (x)−WM (x)|2 dx =

∫
|x|>M

|W (x)|2 dx ≤ K

∫
|x|>M

|x|−2 dx = 2KM−1.

B. Majewski Statistical inference for harmonizable processes



B. Lemmas 119

Moreover,∫
R

|W (x)W (ax+ b)| dx ≤
∫
R

|W (x)−WM (x)| |WM (ax+ b)| dx

+

∫
R

|W (x)−WM (x)| |W (ax+ b)−WM (ax+ b)| dx

+

∫
R

|WM (x)| |W (ax+ b)−WM (ax+ b)| dx

+

∫
R

|WM (x)WM (ax+ b)| dx.

For the first term on the right-hand side, using Hölder inequality we have∫
R

|W (x)−WM (x)| |WM (ax+ b)| dx ≤

∫
R

|W (x)−WM (x)|2 dx · 1
a

∫
R

|WM (x)|2 dx

 1
2

≤

 2K

Ma

∫
R

|W (x)|2 dx

 1
2

= O
(
M− 1

2
)
.

The function W ∈ L2(R) by Lemma B.7. By Hölder inequality, the second term is bounded as

follows∫
R

|W (x)−WM (x)| |W (ax+ b)−WM (ax+ b)| dx ≤ 1√
a

∫
R

|W (x)−WM (x)|2 dx = O
(
M−1

)
,

For the third term, we have analogously to the first term, i.e.∫
R

|WM (x)| |W (ax+ b)−WM (ax+ b)| dx = O
(
M− 1

2
)
.

Note that the boundedness of the above three terms depends on M , K, a, and not on b.

Lemma B.10. Assume that W ∈ L∞(R) and there exists a positive constant K such that

supx∈R |xW (x)| = K. Then for k ≥ 2 and aj ̸= 0, j = 1, 2, . . . , k and b ∈ R∫
Rk

|W (x1) . . .W (xk)W (a1x1 + . . .+ akxk + b)| dx1 . . . dxk ≤ C(a1, . . . , ak) <∞,

where C(a1, . . . , ak) > 0 and does not depend on b.

Proof. Let us consider the following change of variables

y1 = a1x1,

yj = a1x1 + . . .+ ajxj , j = 2, 3, . . . , k.

Thus, ∫
Rk

|W (x1) . . .W (xk)W (a1x1 + . . .+ akxk + b)| dx1 . . . dxk

=
k−1∏
j=1

|aj |−1

∫
Rk

∣∣∣W (
y1
a1

)
W
(
y2−y1
a2

)
. . .W

(
yk−yk−1

ak

)
W (yk + b)

∣∣∣ dy1 . . . dyk
=

k−1∏
j=1

|aj |−1(W1 ∗W2 ∗ . . . ∗Wk)(−b),
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where Wj(y) = |W ( y
aj
)|, with j = 1, 2, . . . , k − 1, and Wk(y) = |W (−y)|. By the Young inequality,

we get

∥W1 ∗W2 ∗ . . . ∗Wk∥∞ ≤ ∥W1∥p1∥W2 ∗ . . . ∗Wk∥p1
≤ ∥W1∥p1∥W2∥p2∥W3 ∗ . . . ∗Wk∥p2
≤ ∥W1∥p1∥W2∥p2 . . . ∥Wk∥pk <∞,

with p1 = 2 and

1 +
1

pn
=

1

pn+1
+

1

pn+1
, n = 2, 3, . . . , k.

Moreover, it can be shown that

pn =
2n

2n − 1
> 1, n = 1, 2, . . . , k.

By Lemma B.7 functions Wj ∈ Lp(R), for all p > 1.
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