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Automatic recognition of actions can be addressed by employing data from mul-
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tiple sensors, such as RGB cameras, depth sensors or inertial measurement units.
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Recent studies show that multimodal representations of actions are effective in
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providing rich information about motion patterns. In this work, we propose
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a novel action descriptor, called Joint Motion History Context, which is based
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on depth and skeleton data. It improves action representation when used with
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previously introduced descriptors that are based on depth, skeleton and inertial
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data. A feature selection method is proposed as well, which ranks features on
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the basis of their inter-class discriminative power, while minimizing redundancy
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in the selected feature subset. Decision-level fusion, based on Support Vector
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Machines and Multilayer Perceptron is employed to effectively combine motion
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pattern information from multiple feature sets. Experimental results on two

publicly available datasets, FFD and UTD-MHAD, demonstrated that the pro-
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posed methods outperform state-of-the-art algorithms.
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1. Introduction

In recent years much effort has been put into development of methods ded-
icated to automatic action recognition [1]. Providing machines with the ability
to understand human motion yields many possibilities. Video games industry
has already adapted action recognition for creating immersive experience for
players, mainly with the use of the Kinect sensor [2]. This device has been also
employed in health related scenarios, such as exercise assistance for elderly peo-
ple [3] or rehabilitation monitoring [4]. Automatic surveillance and abnormal
activity detection is another possible application area[5, 6]. Human-machine
interfaces employ action recognition in smart homes [7] and in robots dedicated
to assist humans in various tasks [8]. Another interesting field for applying
automatic human motion analysis is sport [9]. Valuable feedback for players
and coaches can be provided with action recognition [10], as well as qualitative
analysis [11, 12].

Initial approaches to action recognition employed solely RGB cameras [13].
However, effectiveness of such methods is limited due to vulnerability to chang-
ing lighting conditions, as well as difficulties related to obtaining reliable 3D
motion information. With launch of the Kinect sensor, the use of depth maps
and skeletal representation of the human motion became popular [14]. Depth
maps provide 3D information that is obtained with an active infra-red sensor,
and therefore are robust to changing light. On the other hand, their range and
resolution are more limited than RGB cameras. They are also prone to errors
related to external infra-red sources, including sunlight [15]. Another approach
to action recognition is to employ inertial measurement units (IMU) [16]. While
extracting exact position is not easy, mainly due to the accumulation of error
during integration, IMUs provide precise acceleration and rotation data, both
of which can be successfully applied for action recognition [17]. Moreover, IMUs
usually deliver data at higher sampling frequency than visual sensors. On the
other hand, they need to be mounted on the subject, which might be a consid-

erable limitation in some scenarios.
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Information provided by each of the aforementioned modalities - RGB, depth,
skeleton and inertial, is very diverse. Therefore, it is often beneficial to combine
those data in order to increase effectiveness of action recognition process [18].
Methods operating on multimodal data have been shown to be efficient in many
scenarios [19, 20]. Another effective manner of addressing action recognition is
combining multiple different features extracted from the same modality. Such
an approach to action recognition has been proposed for the RGB data [21, 22].

In this work we employ fusion of multiple different features in a multimodal
scenario. We first propose Joint Motion Context History descriptor (JMHC),
which is computed on the basis of depth maps and skeleton data. JMHC com-
plements other, previously proposed descriptors, namely Joint Dynamics (JD)
and Local Trace Images (LTI), both of which are based on skeleton data, as well
as Acc, which is based on accelerometric data [20]. RGB data is not considered,
as it might not be reliable enough in challenging scenarios, for instance in sports,
where poor lighting and cluttered background considerably hinder person ex-
traction [20]. Our novel descriptor generates high-dimensional feature vector,
therefore effective feature selection method is proposed as well. Decision-level
fusion is applied, by using a separate Support Vector Machine (SVM) for each
feature set and then employing Multilayer Perceptron (MLP) for final classifica-
tion. Figure 1 depicts the framework of our approach. The proposed methods
are evaluated on two publicly available datasets, FFD [20] and UTD-MHAD
[23]. Experimental results show that our methods outperform the state-of-the-

art algorithms.

2. Related work

Considering depth-based feature extraction and action representation, the
action recognition approaches can be divided into two major categories: skeleton-
based and depth map-based approaches [24]. The skeleton-based approaches use
high-level skeleton representation, that is extracted from depth map sequences.

Although skeleton-based representations are robust for scenarios in which lit-
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Figure 1: Framework of the proposed approach.

tle occlusion occurs, they can produce inaccurate results or even they may fail
when self-occlusions or occlusions occur. What is more, skeletal joint data are
not always available, particularly in scenarios, where a ceiling-mounted or a
pan-tilt depth sensor is utilized to observe larger areas [25]. Thus, a lot of ef-
forts have been undertaken to develop features for robust action recognition in
depth maps.

In [26] a Sequence of Most Informative Joints (SMIJ) representation is calcu-
lated on the basis of joint angle time series. Joints with the most discriminatory
power are found in temporal windows by using measures like mean or variance
of joint angles, or angular velocity of joints. Based on that, the joints are rank-
ordered with regard to temporal segments and every action sequence is encoded
as the set of N most informative joints in each window. In [27] authors attempt
to minimize the number of frames required to recognize actions. Current and
previous frames, as well as a general pose representing a person at rest, are
employed in order to compute feature vector consisting of Euclidean distances
between joint pairs. Each feature is then clustered into one of five groups via
the k-means algorithm. Finally, logistic regression is used to automatically de-
termine distinctive canonical poses for each action. Authors of [28] also utilize
3D position differences of the joint pairs: in the current frame, between the
current frame and the former frame, between the current frame and the initial

one. Afterwards, the Principal Component Analysis (PCA) is applied to the
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concatenated feature vector in order to extract EigenJoints, which encode the
human pose information for recognition of actions. In [29] key joints are selected
based on their information gain, then weighted position and velocity histograms
are composed with trajectory features and the final descriptor is encoded with
Fisher Vectors (FV). Deep learning techniques are employed for action recogni-
tion using skeleton-based features as well. The authors of [30] capture spatial
structure of the body by computing cosine distance and normalized magnitude
for vectors describing joint positions with respect to base joints in five body
parts, and then employ a Convolutional Neural Network (CNN) for classifica-
tion. In [31] a skeleton-based clip representation of actions is proposed, which
captures both spatial and temporal information. Based on that representa-
tion, classification is performed with a Multitask Convolutional Neural Network
(MTCNN). The authors of [32] evaluate several neural networks for the task
of action prediction and propose a novel windows scale selection scheme, which
allows the network to focus on the performed part of the ongoing action.
Depth map-based space-time features are extracted by considering each ac-
tion sequence as a 4D volume along spatial (z,y, z) and temporal ¢ coordinates.
The depth map sequence can be represented either as a whole or as a set of
local feature descriptors. Such methods showed promising results, neverthe-
less, subtle motions might not achieve satisfactory recognition performance. In
[33], depth video sequences are described by a histogram that captures the dis-
tribution of the surface normal orientation in the 4D space with time, depth
and spatial coordinates. In order to build the histogram of oriented 4D surface
normals (HON4D), 4D projectors are created, which quantize the 4D space and
represent the possible directions for the 4D normal. In [34], Depth Motion Maps
(DMM) were proposed to capture the aggregated temporal motion energies. The
3D silhouettes are projected onto three pre-defined orthogonal planes and then
normalized. The DMM-HOG descriptors are constructed by concatenating the
Histogram of Oriented Gradients (HOG) features from summed binary maps
on each plane. In [35], a representation for 3D action recognition, called Space-

b

Time Occupancy Patterns (STOP) has been proposed. It describes the 4D
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space-time patterns of human actions by partitioning the 4D video volume into
4D space-time cells and then aggregating the occupancy information in each
cell. A deep CNN is employed in [36] to directly learn spatio-temporal features
from raw depth sequences. The depth videos are preprocessed by normalization
to cuboids of fixed size. For final classification, SVM and late fusion of skeleton
features are used.

Employing inertial and magnetic data from body-worn sensors is another
viable approach to action recognition. In [37], 9-axis IMU sensor is evaluated for
the purpose of gait recognition, by comparison with results obtained on the basis
of stereophotogrammetry. Experiments show, that such sensor is a valid tool
for gait analysis. A popular approach to action recognition from inertial data
includes division to time windows and extraction of features in time or frequency
domain [38]. Time domain features include statistical measures, such as mean,
variance, etc. [39]. Transformation to frequency domain is usually performed by
applying Discrete Cosine Transform (DCT) or Fast Fourier Transform (FFT)
[40]. Wavelets can be employed as well [41]. IMU sensors are particularly useful
in automatic sport analysis, and have been employed for instance for recognition
of swimming strokes [42] or fencing footwork [43].

Fusion of depth and inertial data have been explored by researchers in order
to improve action recognition accuracy [44]. In [19] DMM features for three
orthogonal planes are extracted from depth map sequences, whereas statisti-
cal measures are computed in time windows from accelerometric data. Both
feature-level and decision-level fusion strategies with multiple classifiers were
investigated. Better recognition accuracy is achieved when employing both
modalities in comparison to using each one separately. Indoor activity recog-
nition is addressed in [45]. Authors employ five three-axis accelerometers as
well as joint positions provided by the Kinect. Acquired data is divided into
temporal windows and then classified by an ensemble of binary one-vs-all neural
network classifiers. An approach proposed in [46] employs both depth and iner-
tial data for reliable fall detection. Data from body-worn accelerometer are used

to detect abnormal situations and depth data is used to verify such detections
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in order to minimize the number of false alarms.

In this work we consider fusion of depth, skeleton and inertial-based modali-
ties, by employing decision-level fusion not only for combining features obtained
from different modalities, but also for combining different types of features ob-
tained from the same modality. We employ action descriptors that were intro-
duced in our previous work [20] and propose a novel, depth map and skeleton-
based descriptor, which complements the previous ones and improves recogni-
tion accuracy. The proposed methods are evaluated on two publicly available
multimodal datasets, FFD [20] and UTD-MHAD (23], both of which include
depth, skeletal and inertial data.

3. Proposed descriptors

In this section we describe the proposed Joint Motion Context descriptor de-
signed to model human poses on a single frame and then we extend it to Joint
Motion History Context descriptor, which incorporates more temporal informa-
tion. Final feature vector describing an entire action sequence is computed by

using time window-based approach.

3.1. Joint Motion Context

We propose a novel descriptor, that is called Joint Motion Context (JMC)
and which employs both depth map and skeleton data simultaneously. The
proposed descriptor is responsible for describing local changes in motion around
the selected joints. It involves calculating a histogram-based motion descriptor
spatially at every frame in box regions around joints, that are given by the
skeleton tracker. Such descriptor should be more sensitive to motion differences
in nearby locations to joint and therefore we employ log-polar histograms. The
log-polar histograms were used, among others, in the well known Shape Context
to describe static features of image edges [47].

In our approach we employ the depth data provided by the Kinect sensor.
We utilize silhouette of a person, extracted automatically by the Kinect SDK,
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as well as the skeleton data. The silhouettes, represented as binary images, are
used to compute motion difference between two consecutive frames, see Fig. 2.
As demonstrated in [48], the difference between the intensity images can be
very useful for action representation as it does not require detection/location of
bounding boxes. In this work the inter-frame motions are determined on the

basis of consecutive depth maps.

t-1

Figure 2: JMC descriptor. Motion histograms for each joint are computed on the basis of

differences of silhouettes from consecutive frames, as well as skeleton data.

Given N points pi1,pe,...,pn representing silhouette changes between two
consecutive depth maps, the motion context at joint g; is defined as a log-polar
histogram h; of the relative points, that indicate the silhouette motion. Given

[ - log coordinate and ¢ - polar coordinate of the histogram:

hi(l,0) = #{p;|i # 3, (log(p; — @), angle(p;, ¢;)) € bing, }. (1)

This means that relative coordinates of each motion point with regard to the
joint location are binned into a log-polar histogram, see Fig. 2. The histograms
are then normalized. Given N, - total number of points in histogram h;, Ny -

number of bins in a single histogram, b, - bins, normalization is performed as



QO J oy U WD

AN UGG OTOTOTE DD DD DD DDA DWWWWWWWWWWRNNNNNNONNNNNNNNRRRRRRRR P
D WNHFOWO-JOAUdWNHFOWWWTAOAU R WNRPOWW-JOAUBWNRPOWW-TOUDWNRE OWW--1o U WwNRF O W

180

185

follows:

Vkel,..., Ny, by :bk/Ni (2)

Therefore each histogram forms a probability distribution:

Ny
> b =1 3)
k=1

Histograms computed for each joint are then concatenated to form a single
descriptor.

As demonstrated in [34] the orthogonal projections of depth data can provide
useful information. On the basis of depth data it is relatively easy to create two
additional, orthogonal projections of silhouettes (side-view and top-view, see
Fig. 3) and hence to extend our method to include 3D motion information. We
consider each of the three planes (front, side, top) separately, by computing the
log-polar histograms for each joint in each plane. Therefore, the final descriptor

includes complete 3D motion information.

Figure 3: Silhouette and skeleton data projected onto 3 orthogonal planes. From left: front

view, side view and top view.

The number of divisions is 12 in the polar coordinate, and 5 in the log
coordinate. This results in total of 60 bins per descriptor of a single joint motion.
The Kinect provides 20 joints, which results in the descriptor size equal to 1200

features for each of the 3 separate planes, per frame.
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8.2. Joint Motion History Context

The proposed Joint Motion Context descriptor utilizes motion difference be-
tween two consecutive depth maps. Although it provides relevant information
to represent joint movement in action, we found that it is useful to consider
also motion arising between the current and earlier frames. Experimental re-
sults demonstrated, that the use of the silhouette differences between current
and several preceding frames yields better recognition accuracy. Therefore, we
combine multiple JMC descriptors, which are determined for multiple preceding
frames. The proposed Joint Motion History Context (JMHC) descriptor is cal-
culated as a weighted sum of the histograms corresponding to motion in several
preceding frames, see Fig. 4. Based on the experimental results, we use 3 pre-
ceding frames, with weights w;_1 = 0.25, w;_s = 0.5 and w;_3 = 0.25. The final
JMHC descriptor has the same number of features as the JMC descriptor, but
each histogram bin expresses the sum of points from difference images between

current frame ¢ and preceding frames ¢ - 1, ¢ - 2 and ¢ - 3.

t-3 t-2 t-1 t

W* IMC )+ W IMC L, + w* UMC, ., —> | IMHC

Figure 4: JMHC descriptor is constructed as a weighted sum of JMC descriptors computed

using the current and 3 preceding frames.

10
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3.3. Action Descriptor

In order to calculate informative feature descriptor for an entire action we
first compute JMHC descriptor in each frame and then extract higher level fea-
tures for the entire sequence. The number of frames in the considered actions
may vary, therefore we first interpolate the sequence of per-frame features to a
common length. Since the datasets that were employed in the experiments were
recorded with the Kinect operating at 30 Hz and most actions last about 2 sec-
onds, we interpolate every action to the length of 64 frames. The interpolation
is performed on JMHC feature vectors computed for each frame. In the next
step we divide the interpolated feature vector to equal-size time intervals with
50% overlap between adjacent segments, see Fig. 5. This technique has been
previously used in [40], with and without overlapping. Splitting feature vectors
into time windows gives the possibility to model the actions with relationship
to time. In the discussed approach, segments of size 16 are used, with 50%
overlapping, which results in 7 windows per data sequence. The length of the

employed segments was selected experimentally.

1 JMHC descriptors

n

S T [OITTTTTTT]
¢ Interpolation

1 Window 2 Window 4 Window 6 64

Window 1 | Window 3 | Window 5 | Window 7

Figure 5: Action descriptor computed for a sequence consisting of n frames. Each square
in the top row represents a JMHC descriptor of a single frame. The total feature vector is
interpolated to a common length and then divided to equal-size overlapping windows, in which

statistical descriptors are computed.

For each frame, in each window, we compute statistical measurements, namely
mean and root mean square (RMS) values. Therefore, in each window the num-
ber of features equals twice the number of features for a single frame. Using
JMHC descriptor the total length of feature vector describing a single action is

equal to 16800 features for each plane. It is worth noting, that many of these

11
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features are expected to be irrelevant, as many bins of the log-polar histograms
cover areas where no motion difference is present. Therefore, a feature selec-
tion has been employed to determine the most relevant and informative feature

subset.

4. Classification

The proposed action descriptor produces a large set of features, which should
be reduced before classification in order to simplify the learned models, avoid
the curse of dimensionality and particularly to obtain better generalization by
reducing overfitting [49]. After evaluating popular approaches for feature se-
lection (AdaBoost [50, 51], Lasso [52, 51]) and dimensionality reduction (PCA
[53]), that gave unsatisfactory results, we decided to propose a novel feature
selection method, based on feature correlation. The proposed algorithm is de-
scribed in Section 4.1. Action classification is performed by training separate
SVM models for each employed feature set, and then applying decision-level

fusion by using MLP. Details are presented in Section 4.2.

4.1. Feature selection

In pattern recognition a feature selection is frequently used to identify and
remove unneeded, irrelevant and redundant attributes from data that do not
contribute to the classification performance of the predictive model. Wrapper
feature selection methods train and evaluate a model for a large number of
subsets, which is computationally expensive [49]. Filter methods, on the other
hand, rank features based on a selected metric, which is much faster. Our
algorithm is based on the idea of scoring class-dependent features [54]. The
proposed method ranks features on the basis of a distance between histograms
computed for each feature per each class. It also reduces redundancy in the
selected subset, by considering, in each iteration, correlation to the already se-

lected features. The main steps of the algorithm are as follows:

12
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Step 1:
Create matrix H of normalized histograms per each feature and class. Each

histogram is a probability distribution of a given feature in a given class.

C' - set of all classes
F' - set of all features

h; ; - histogram for ¢ — th feature and j — th class

H:
1 2 size(C)
1 hi1 hi2 P size(C)
2 ha ha.2
5i2e(F) | Rgize(r)n  Psize(r)2 - Nsize(F),size(C)
where

size(H) = size(F) * size(C)

Step 2:
Compute matrix A of weights a describing how well each feature is able to dis-

tinguish each pair of classes.

P - set of all distinctive pairs of classes

P ={(ciscj) |i<j,i=1..size(C),j = 1...s1ze(C)}

a; - weight for ¢ — th feature and k — th pair of classes

d - distance metric between two histograms h; and ho, with N, bins each

d(hy, ha) = 3212 abs(hy (i) — ha(i))

for i = 1:size(F)
for k = 1:size(P)
c1 = first class of k-th pair
co = second class of k-th pair

Qg ) = d(hi,cl , hi,cz)

13
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where:

SZZG(P) = Size(c)*(SQize(C)_l)

size(A) = size(F') = size(P)

Step 3:
Initialize vector B of weights b describing how much each feature is correlated
to the already selected features. Initially no features are selected, therefore all

weights are set to zero.

for i = 1:size(F)
b =0

where:

size(B) = size(F)

Step 4:

Tteratively select m features, by going in loop over all pairs of classes and choos-
ing most discriminative features based on sum of weights A and B. In each
step weights B are updated by adding sums of distances between each remain-
ing features and the last selected feature. Moreover, weights B are normalized

according to the current time step.

Fg - set of already selected features
Fr - set of remaining features, from which the selection is performed
t - time step

f - feature selected in the current time step

14
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while size(Fs) <m
for k = 1:size(P)
f =argmax(a; + b;)

i€FR
Fs=FsUf
FR:FR\f

for i = 1:size(Fr)
size(C
bi = by b+ iy o+ 0D d(hi e, by o)

t=1t+1

4.2. Fusion

In order to improve the action classification accuracy, decision-level fusion is
applied, based on the method described in [20]. In the first step, multiple feature
sets are computed, using different descriptors and modalities. For each feature
set the selection is performed and a separate SVM model is learned and then
used for classification. A multi-class SVM is employed to provide probabilities
for each class. These are fed to MLP, which performs decision-level fusion.
Fusion process is illustrated in Fig. 6.

Apart from the proposed JMHC descriptor, we employ a number of other
feature extraction methods, described in our previous work [20]. Those include:
Local Trace Images (LTI), Joint Dynamics (JD) and accelerometric features
(Acc). LTI features describe motion of each considered joint in the estimated
skeleton by creating probabilistic images of motion patterns. Positions of joints
are modelled by two-dimensional normal distribution. Superposition of such
Gaussians forms the image with motion pattern. JD features are computed using

acceleration and velocity of the joints in the skeleton data. Short Time Fourier

15
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Feature set 1 —> Selection —p» SVM —
model 1
Feature set 2 —» Selection — SVM —T—> §
model 2 o
Feature set n —> Selection —p SVM —
model n

Figure 6: Fusion of n feature sets. For each feature set selection is applied and then a separate

SVM model is created. MLP is trained on SVMs outputs.

Transform (STFT) is employed in overlapping temporal windows, on 3 different
levels, each with different length of windows. First 3 STFT coefficients from each
time segment are included in the final feature vector. Accelerometric data is
preprocessed by applying high-pass filter and computing derivative of the signal.
Acc features are extracted in overlapping time windows, similarly to JD features,
but instead of employing frequency domain, statistical measurements in time
domain are calculated - mean and RMS values for each axis and magnitude.
Original LTI and JD features were computed in 2D, due to the specifics of
dataset for which they were designed. However, in this work, for experiments
on the UTD-MHAD dataset we extend them to 3D by computing separate

feature vectors for three orthogonal planes.

5. Experimental results

Experiments were performed on two publicly available datasets, namely
Fencing Footwork Dataset (FFD) [20] and UTD-MHAD [23]. Since our goal
was to improve action recognition by feature fusion, we focused on datasets con-
taining multimodal data. Both FFD and UTD-MHAD include depth, skeleton
and inertial data, and the latter also RGB data. Experiments were conducted
accordingly to the evaluation schemes recommended by the authors of each
dataset. Weka implementation of the SVM and MLP classifiers was employed

[55] in all evaluations presented below.

16



QO J oy U WD

OO OO OO U U OO OO OO OO DR DR DRSS DS D WWWWWWWWWWLWDNDDNDDNDNDNDNdDNdDNdNNNRERERrRPRPRPRPRR R
G WN P OWOWOJdJOUd WNEFPR OWOOJoOU P WNDEFOWOLOJoUd WNEF OWOW-JOUd WNE OWOWwWJoyUld WD EPE O

350

355

5.1. Datasets

FFD contains basic actions from footwork training routine in fencing, namely
steps and lunges, see Fig. 7. There are six actions in the dataset: rapid lunge
(R), incremental speed lunge (IS), lunge with waiting(W/W), jumping-sliding
lunge (JS), step forward (SF), step backward (SB). Four types of lunge action
(R, IS, W/W, JS) are very similar to each other and need to be distinguished
by dynamics rather than trajectories, hence making this dataset challenging.
Recordings were made with 10 persons performing 10-11 repetitions of each
action. Depth, skeleton and inertial data were acquired by the Kinect and 9-
axis x-IMU sensor respectively (RGB data is not available). In previous work we
presented results for both person dependent and person independent scenarios,
whereas in this work we focus only on the person independent scenario, as it
is more useful in practice and challenging. The proposed algorithm has been
evaluated using 10-fold leave-one-out cross-validation, where in each fold one

person is used for testing and the other nine persons are used for training.

Figure 7: Sample actions from FFD - depth and skeleton view. From left: fencing stance

(starting pose in all actions), lunge (pose common for all lunge types), step forward.

UTD-MHAD includes 27 general actions, with one-hand, two-hand or leg
motion. Those are: swipe left, swipe right, wave, clap, throw, arm cross, bas-
ketball shoot, draw X, draw circle clockwise, draw circle counter clockwise, draw
triangle, bowling, boxing, baseball swing, tennis swing, arm curl, tennis serve,

push, knock, catch, pickup throw, jog, walk, sit to stand, stand to sit, lunge,

17
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squat, see Fig. 8. The actions were performed by 8 persons, with 4 repetitions.
The dataset includes RGB, depth and skeleton data acquired by the Kinect, as
well as inertial data acquired with a low-cost inertial sensor. The evaluation
protocol recommends using subjects number 1, 3, 5, 7 for training and subjects

number 2, 4, 6, 8 for testing.

Figure 8: Sample actions from UTD-MHAD - depth and skeleton view. From left: wave,
swipe left, basketball shoot, baseball swing, sit to stand.

5.2. FFD results

Features for the FFD dataset were computed in 2D and only for the lower
body (feet, ankles, knees, hips), as proposed in the original paper introducing
the dataset [20]. This is due to the specifics of the fencing footwork actions,
for which motion in the other planes is not relevant and motion of the upper
body may vary for the same footwork action. Person independent scenario is
evaluated, as the more challenging one. All considered feature sets (LTI, JD,
Acc, JMHC) are used in data fusion.

At first, the proposed feature selection algorithm was evaluated for individual
feature sets using linear SVM classifier, see Table 1. For the SVM, the parameter
C = 1 was employed, as the result obtained in grid search for the best parameter.
PCA, AdaBoost and Lasso algorithms were used to evaluate and compare the
performances of dimensionality reduction and feature selection. For comparison,
results without feature selection are also included. The presented results contain
recognition accuracy, as well as the number of features selected by each method.
The proposed method outperformed the other ones on JD and JMHC feature

sets. In the case of Acc features, none of the methods was able to improve the
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accuracy, most likely for the reason that these features were compact to start
with (initial size 168). For the LTI feature set, the Lasso algorithm achieved
the best results.

Table 1: Recognition accuracy (%) for the FFD dataset using linear SVM (C = 1) and different

feature selection methods on different feature sets.

w/osel. PCA AdaBoost Lasso Proposed

LTI #feat 1536 100 600 500 800
acc. 77.24 74.16 76.9 79.03 77.36
JD #feat 792 200 400 600 120

acc. 80.42 78.12 79.18 80.24 82.52

Acc #feat 168 60 150 160 140
acc. 70.71 68.24 70.06 70.36 70.67

JMHC  #feat 6720 100 750 650 720
acc. 74.16 75.99 73.1 76.44 79.03

The proposed feature selection method has then been evaluated in the pro-
posed fusion scenario, see Section 4.2. Feature selection was performed for each
feature set separately, before training individual SVM models. The obtained
results are presented in Table 2 and include comparison with other feature se-
lection algorithms. Two scenarios were evaluated, where the first one includes
only features obtained from the Kinect sensor, and the second on comprises
additional inertial-based Acc features. The proposed feature selection method
outperforms all other methods in both scenarios. We can see that including the
Acc features did not introduce new, relevant information to the classifier, and
therefore did not improve the recognition accuracy. Both scenarios were also
evaluated using SVM with non-linear kernel (Radial Basis Function (RBF)),
although linear SVM proved to be better, see Table 3. The parameters for the
classifiers were determined by a grid search: C = 1 for the linear SVM, and

C =10 and gamma = 0.024 for the SVM-RBF.
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Table 2: Recognition accuracy (%) for the FFD dataset using fusion of multiple feature sets

with respect to different feature selection methods. Selections are made for each feature set

separately.
w/osel. PCA AdaBoost Lasso Proposed
LTI 4+ JD + JMHC 83.28 80.16 82.46 83.61 86.31
LTI + JD + JMHC + Acc 83.44 79.67 82.13 84.1 85.66

Table 3: Recognition accuracy (%) for the FFD dataset using the proposed feature selection
method and fusion of multiple feature sets for linear SVM (C = 1) and SMV-RBF (C = 10
and gamma = 0.024).

SVM LIN SVM RBF

LTI + JD + JMHC 86.31 85.74

LTI 4+ JD 4+ JMHC + Acc 85.66 84.92

The obtained results are compared to state-of-the-art methods in Table 4,
based on the comparison performed in [20]. The proposed method significantly
improves previous results. Confusion matrix is presented in Table 5.

CNN-based approaches are not included in the comparison, because the FFD

w0 dataset does not contain RGB data. As explained in [20] RGB data are not well
suited for sports action recognition, due to person extraction difficulties related

to poor lighting and possible presence of multiple persons.
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Table 4: Recognition accuracy for the FFD dataset - the proposed method compared to the

state-of-the-art methods.

Method Recognition accuracy (%)
EigenJoints [28] 29.89
MHI [56] 61.25
SkeletonNet [30] 64.36
C3D [57] 67.63
HON4D [33] 75.87
LOP/FTP [58] 76.14
LTI + JD [20] 81.49
LTI + JD + Acc [20] 83.59
LTI + JD + JMHC (ours) 86.31
LTI + JD + JMHC + Acc (ours) 85.66

Table 5: Confusion matrix for the proposed method (LTI + JD 4+ JMHC) on the FFD dataset.

R IS W/ W JS SF SB
R 85.27 12 1.82 0.91 - -
IS 1099 71.64 555  11.82 - -
W/W 455 1818 77.27 - - -
JS - 13.64 - 86.36 - -
SF - - - - 100 -
SB , - - - 2.68 97.32

5.8. UTD-MHAD results

Depth map and skeleton-based features for the UTD-MHAD dataset were
computed for all available joints, separately in 3 orthogonal planes. Acc features
include 3D data in a single feature vector. Experimental results demonstrated,
that LTI features were not effective for this dataset, therefore only JD, JMHC
and Acc features are considered.

Evaluation of the proposed feature selection algorithm was performed by

comparison with reference methods (without selection, PCA, AdaBoost, Lasso).
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The obtained results, which include the recognition accuracy and the number
of selected features, are presented in Table 6. Linear SVM is used for the
classification, with parameter C' = 1 determined by a grid search. JD and JMHC
features are evaluated separately for each plane. The proposed method obtains
the best results in four out of seven cases, whereas for two of them AdaBoost
provides similar accuracy. PCA is the most effective method in three cases,
which indicates significant data redundancy, particularly in the case of JMHC
features. This is due to the features being computed for all joints, even though
in many actions only a relatively small subset of joints undergoes movement.
For instance, in the wave action, only the motion of joints of one arm is relevant.
It is worth noting that the proposed algorithm is only slightly less effective than
PCA for two JMHC feature sets, while still being significantly more effective in

comparison to other methods.

Table 6: Recognition accuracy (%) for the UTD-MHAD dataset using linear SVM (C = 1)

and different feature selection methods on different feature sets.

w/osel. PCA  AdaBoost Lasso Proposed

JDgy #feat 2640 100 500 900 600
acc. 82.79 85.58 84.88 85.81 86.05
JD.- #feat 2640 200 1000 900 700
acc. 84.19 75.81 85.58 85.35 85.58
JD,. #feat 2640 100 2000 1750 200
acc. 83.95 79.07 86.98 85.12 86.98
JMHC,, #feat 16800 400 750 2000 2000
acc. 63.02 80 66.51 72.56 78.14
JMHC,,  #feat 16800 400 1250 600 800
acc. 63.02 73.95 68.14 74.19 82.09
JMHC,, #feat 16800 400 1250 2500 4500
acc. 64.19 73.95 65.12 68.84 71.63
Acc #feat 168 100 120 140 150

acc. 78.14 79.53 77.91 79.07 78.6
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Evaluation of the feature selection in the proposed fusion scenario was per-
formed next, see results in Table 7. Two scenarios were considered - using
only Kinect-based features and with additional Acc features. In both scenarios
the proposed method outperforms the algorithms used for comparison. We can
also observe, that including Acc data provides better results. The recognition
accuracy was further improved, by employing SVM with RBF kernel, see Ta-
ble 8. The following values for the classifier parameters were determined by a
grid search: C = 1 for the linear SVM, C' = 10 and gamma = 0.03 for the
SVM-RBF.

Table 7: Recognition accuracy (%) for the UTD-MHAD dataset using fusion of multiple

feature sets with respect to different feature selection methods. Selections are made for each

feature set separately.

w/osel. PCA AdaBoost Lasso Proposed
JD + JMHC 90.89  92.29 91.12 91.82 92.76

JD + JMHC + Acc 90.89 93.39 92.99 92.52 94.39

Table 8: Recognition accuracy (%) for the UTD-MHAD dataset using the proposed feature
selection method and fusion of multiple feature sets for linear SVM (C = 1) and SVM-RBF
(C =10 and gamma = 0.03).

SVM LIN SVM RBF

JD + JMHC 92.76 93.93

JD + JMHC + Acc 94.39 94.91

Comparison of the proposed algorithm with state-of-the-art methods is pre-
sented in Table 9. Modalities used in each work are included in the above
mentioned table. The proposed method outperforms all depth, skeleton and
inertial-based methods. Also, it is only slighty worse (94.91% compared to
95.11%) than the best VGG-16 based algorithm, which employs RGB, depth
and skeleton modalities, as well as uses a deep CNN [59]. It is worth noting,
that our method operates in real-time. The average processing time of a sin-

gle frame is 17 ms (measured on a machine with Intel Core i5 2.5 GHz CPU).
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When using the extracted features, the average time needed for classification of
an action is 2 ms. On the other hand, large CNN architectures are unable to
operate in real-time and for this reason smaller architectures are proposed [60].
VGG-F [59], which is a faster, smaller version of the VGG-16 network, obtains

lower recognition accuracy than our method, even though it employs RGB data

(see Table 9).

Confusion matrix for the obtained results is presented in Table 9. Out of 27

actions, 21 are recognized without any error. Pairs of similar actions, such as

draw circle CW and draw circle CCW were the most difficult to distinguish.

Table 9: Recognition accuracy for the UTD-MHAD dataset - the proposed method compared

to the state-of-the-art methods.

Method Acc. (%) Modalities

DMM-CRC [23] 79.10 Depth + Inertial

GF + LF [61] 84.89 Depth + Skeleton

SD-SR [62] 86.12 Skeleton

JTM + CNN [63] 87.90  Skeleton
DMM-CT-HOG-LBP-EOH [64] 88.40 Depth

DMM-CRC-LOGP [65] 91.50 Depth + Skeleton + Inertial
TPM-LLC-BoA [66] 93.02 Skeleton

MDACC [67] 93.26 Depth + Skeleton + Inertial
VGG-F [59] 94.60 RGB + Depth + Skeleton
VGG-16 [59] 95.11 RGB + Depth + Skeleton
JD + JMHC (ours) 93.93 Depth + Skeleton

JD + JMHC + Acc (ours) 94.91

Depth + Skeleton + Inertial
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Table 10: Confusion matrix for the proposed method (JD + JMHC + Acc) on the UTD-MHAD dataset.

al a2 a3 ad ab a6 a7 a8 a9 al0 all al2 al3 al4 al5 al6 al7 al8 al9 a20 a2l a22 a23 a24 a25 a26 a27

swipe left 100 - - - - - - - - - - - - - - - - - - - - - - - - - -
swipe right - 100 - - - - - - - - - - - - - - R - - - - - - _ _ _ _
wave - - 100 - - - - - - - - - - - - - - - - - - - - - - - -
clap - - - 100 - - - - - - - - - - - - - - - - - - - - - - -
throw 18.75 - - - 81.25 - - - - - - - - - - - - - = = - . - - . - -
arm cross - - - - - 100 - - - - - - - - - - - - - - - - - - - - -
basketball shoot - - - - - - 100 - - - - - - - - - - - - - - - - - - - -
draw x - - - - - - - 100 - - - - - - - - - - - - - - - - - - -
draw circle CW - - - - - - - - 100 - - - - - - - - - - - - - - - - - -
draw circle CCW - - - - - - - - 43.75 56.25 - - - - - - - - - - - - - - - - -
draw triangle - - 6.25 - - - - - - 12.5 81.25 - - - - - - - - - - - - - - - -
bowling - - - - - - - - - - - 100 - - - - - - - - - - - - - - -
boxing - - - - - - - - - - - - 100 - - - - - - - - - - - - - -
baseball swing - - - - - - - - - - - - - 100 - - - - - - - - - - - - -

tennis swing - - - - - - - - - - - - - - 100 - - - - - - - - - - - -

514

arm curl - - - - - - - - - - - - - - - 100 - - - - - - - - - - -
tennis serve - - - - - - - - - - - - - - - - 100 - - - - - - - - - -
push - - - - - - - - - - - - - - - - - 100 - - - - - - - - -
knock - - 6.25 - - - - - - - - - - - - - - - 93.75 - - - - - - - -
catch - - - - - - - - - - - - - - - - - - 25 75 - - - - - - -
pickup&throw - - - - - - - - - - - - - - - - - - - - 100 - - - - - -
jog - - - - - - - - - - - - - - - - - - - - - 75 25 - - - -
walk - - - - - - - - - - - - - - - - - - - - - - 100 - - - -
sit to stand - - - - - - - - - - - - - - - - - - - - - - - 100 - - -
stand to sit - - - - - - - - - - - - - - - - - - - - - - - - 100 - -
lunge - - - - - - - - - - - - - - - - - - - - - - - - - 100 -

squat - - - - - - - - - - - - - - - - - - - - - - - - - - 100
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6. Conclusions

In this paper we proposed a novel depth map and skeleton-based action
descriptor, which is able to improve action representation in a multimodal sce-
nario and therefore provides better action recognition accuracy. The proposed
descriptor considers motion patterns relative to each joint, by employing log-
polar histograms to quantify the observed motion. The temporal structure of
the action is captured by using motion differences that are computed between
multiple frames, as well as by employing time segments for creating the final
feature vector. An effective feature selection method is also proposed, which
ranks features based on their inter-class discriminative strength, but also re-
duces redundancy in the final selected subset.

The proposed algorithms are evaluated on two publicly available datasets.
Our feature selection method outperforms state-of-the-art algorithms - PCA,
AdaBoost and Lasso. The results obtained in action recognition on both datasets
are better than for relevant methods from the literature, when using the same
modalities. For the UTD-MHAD dataset, recognition accuracy is only slightly
lower than the best approach, which employs additional channel with RGB data
and a large CNN. For both datasets, using multiple feature sets computed from
the depth and skeleton data provided better results compared to using separate
feature sets, which indicates that the employed decision-level fusion is effec-
tive. Using even more feature sets for the fusion is an interesting subject, worth

investigating in future work.
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