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ABSTRACT
In this work we extend WGAN-GP in order to achieve better generation of synthesized images for finger spelling

classification. The main difference between the ordinary WGAN-GP and the proposed algorithm is that in the training
we employ both training samples and training labels. These training labels are fed to the generator, that generates the
synthetic images using both the randomized latent input and the input label. In ordinary WGAN-GP, latent input variables
are usually sampled from an unconditional prior. In the proposed algorithm the latent input vector is a concatenation of
random part, the class labels and additional variables that are drawn from Gaussian distributions representing hand poses
or gesture attributes. The JSL dataset for Hiragana sign recognition has been balanced using the rendered samples on the
basis of a 3D hand model as well as the extended WGAN-GP.
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1. INTRODUCTION
Hand gesture is one of the most intuitive and versatile methods to achieve user-friendly communication between people

and machines [1]. Gesture recognition is becoming one of the key technologies in the area of human-machine commu-
nication, including virtual reality [2], game control, robotics [3] and assistive technologies for the handicapped and the
elderly [4]. Touch-less gesture recognition systems are introduced in automotive user interfaces as they have strong poten-
tial to improve safety and comfort of travel [5]. Gesture recognition on videos from a single color camera is very useful, yet
difficult task, due to occlusions, differences in hand anatomy, variations of posture appearance, etc. In real scenarios, many
challenging sub-tasks such as detection of hands and other body parts, motion modeling and tracking, pattern recognition
and classification should be executed to perform on-line gesture recognition. Despite considerable research [6], there are
still challenges in designing hand gesture recognition systems for real-life applications.

While gesture communication may involve motion of all parts of the body, most of the research focuses on arms
and hands, which are the most essential limbs in nonverbal communication. Hand gestures can be classified into static
hand gestures that are characterized by hand posture with a particular finger-thumb-palm configuration, and dynamic hand
gestures, which can be characterized by their shape, position and movement. Depending on the type of the input data,
interpreting hand gestures could be achieved in several ways. In the last decade, several approaches to static gesture
recognition on color images were proposed [7]. Despite high potential of convolutional neural networks (CNNs), a recent
survey on hand gesture recognition [7] reports only one significant approach, i.e. [8]. In [9], a CNN has been utilized in
classification of six hand gestures to control robots using colored gloves. In a more recent work [10], a CNN has been
implemented using Theano framework and then executed on the Nao humanoid robot. In recently published work [11],
a CNN has been trained on one million of exemplars. However, only a subset of data, namely 3361 manually labeled
frames into 45 classes of real sign language has been made publicly available. One of the obstacles to broader use of CNNs
for gesture recognition is lack of properly aligned datasets of sufficient size as well as shortage of robust real-time hand
detectors.

In this work, a Generative Adversarial Network (GAN) has been used to improve the accuracy of classification of finger
spellings from Hiragana sign language. It has been used to balance and augment the training part of JSL dataset consisting
of 5890 samples, which were recorded by a single RGB camera [12]. We demonstrate that better classification rates can
be obtained by convolutional neural networks learned on data balanced and augmented by the GAN as well as images
rendered on the basis of 3D articulated hand models that were configured to shape the finger spellings.

Finger spelling is a form of sign language, where each sign corresponds to a letter of the alphabet. Tabata and Kuroda
[13] proposed a system to recognize hand shapes for finger spelling in Japanese Sign Language (JSL), which they call



”Stringlove”. Their system uses a custom-made glove, equipped with sensors to capture finger features. The glove contains
nine contact sensors and 24 inductcoders that jointly estimate several descriptors such as: adduction/abduction angles of
fingers, thumb and wrist rotations, the joint flexion/extension of the fingers and the contact positions among the fingertips
of the fingers. In [14], a modified form of the shape matrix that is capable of capturing salience of the finger spelling
postures on the basis of precise sampling of contours and regions has been proposed. In [15], recognition of JSL finger
spellings is achieved by a CNN, which has been trained on a dataset consisting of 5000 real images, 1000 augmented
images and 2000 synthetic images, which were generated on the basis of a 3D articulated hand model.

2. DATA AUGMENTATION
Data augmentation refers to generating additional training data for learning a model by transforming the given input

data. Typically, data augmentation is performed online during the learning process. Even for learning deep models using
very big amounts of labeled data it can be an useful data regularizer [16]. Classical deep augmentation techniques of images
comprise augmenting by adding additive noise, augmenting by intensity scaling/shift, random flipping, random translation
and/or rotation, warping. Another group of techniques is based on synthetic data generation. In such an approach, data
is generated on the basis of a generative model of some kind that is capable of resembling the real data. An example of
such technique is rendering on the basis of 3D models. In a recent work [17], 3D models have been employed to render
highly realistic images in order to increase the amount of training data and to improve the performance of object detection.
In [15], 3D articulated models of the hand were used to improve the classification of Hiragana finger spelling.

Very recently, it has been demonstrated that GAN networks can enhance the synthetically generated data using infor-
mation from real data [64]. In order to refine the synthetic image data, for which the annotation is given, a GAN-based
network called SimGAN has been introduced. The goal of the refinement process is to use real, unlabelled data to enhance
the realism of the rendered images, while preserving the annotation information.

3. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) are a class of algorithms utilized in unsupervised learning, implemented by

two differentiable submodels contesting with each other in a zero-sum game framework. They were introduced by Ian
Goodfellow et al. in 2014 [18]. The first submodel is the generator G with parameters θG, whereas the second submodel is
the discriminator D with parameters θD. The trainable generator is responsible for generating images G(z) that resemble
the training data distribution pR, using a latent noise vector z from an input distribution p(z). The aim of the trainable
discriminator, which operates on the generated images G(z) as well as the real training data x is to discriminate between
generated images and real images. The discriminator and the generator compete against each other. The generator G is
learned to minimize the likelihood of D to recognize the generated images as synthetic, i.e. (D(G(z))) ≈ 0, while the
discriminator D is trained to maximize the likelihood of correct decisions for differentiating between real and synthetic
images, i.e. (D(x) ≈ 1), (D(G(z))) ≈ 0. This leads to the following minimax function:

min
G

max
D

V (G,D) = Ex∼pR(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]

= Ex∼pR(x)[log(D(x))] + Ex∼pG(x)[log(1−D(x))]
(1)

where pG(x) stands for generator’s distribution over data x, pz(z) is data distribution over noise input z, whereas pR is the
distribution of the real images, and Ex∼pR(x)[log(D(x))] has no impact on G during gradient descent updates.

For fixed G, one of the optimal discriminator D is as follows:

D∗G =
pR

pR + pG
∈ [0, 1] (2)

The optimum of such a minimax game is for pR = pG, when the generator is perfect at replicating the distribution of the
training data. If pR = pG, D∗G becomes 1

2 , and the discriminator is unable to differentiate between the real images and
synthesized images by the generator. The minimax objective (1) is optimized by alternate optimizations of G and D. The
GANs can be trained by using well known techniques, such as backpropagation and Stochastic Gradient Descent.



The training of GANs is not an easy task. One of the undesirable effects that can take place during training of GANs
is mode collapse [19]. It is a common problem for GANs. If this undesirable effect occurs, the generator learns to map
multiple different input vectors z to identical output G(z). The reason for this is that the gradients of the discriminator
are calculated without regard to each other, i.e. without considering any kind of similarity measure for comparison of
samples from a given minibatch [19]. In consequence, the generator tends to learn a single (to create a single image) with
the biggest response of the discriminator. When this happens, the discriminator learns that this image is synthetic one, i.e.
that it was generated by the generator, and in the response the generator shifts this mode a little bit. Because all of the
synthesized images in a mode-collapsed minibatch are very similar, there is not enough difference in gradients to coerce
the generator to create multiple unlike images. Instead, it will generate only slightly different images, leading to some
oscillatory stagnation resulting on creating only vastly small amount of different images, or images that share identical
features. Techniques like minibatch discrimination [19] or Wasserstein loss [20] can be used to cope with such undesirable
effects.

In [21], it has been demonstrated that the changes of input vector z can lead to representing the training data by a
submanifold spanned by the input images. In particular, it has been demonstrated that on the basis of two noise vectors
z1 and z2 from a uniform distribution and a linear interpolation between them, the generated images between z1 and
z2 compose a smooth transition. Thus, it has been shown that the generator just does not learn to recreate the training
images, but it is also capable of establishing a submanifold spanned by the input images. It has been also demonstrated
that such latent spaces allow manipulation on the generated images. For instance, by calculating the average of latent
vector corresponding to output images with people wearing glasses, such an average can be employed to add glasses to a
person without glasses. This can be completed by adding the average of latent vector for images with people with glasses
to the vector of a person without glasses and then generating the images using the updated vector. The discussed work
demonstrated also that using the discriminator as a feature extractor in the image classification can lead to competitive
results on SVHN (Street View House Numbers) and CIFAR datasets.

In the original formulation for GANs introduced by Goodfellow et al. [18], the objective function was the Jensen-
Shannon (JS) divergence. In the recently introduced Wasserstein Generative Adversarial Networks (WGANs) by Arjovsky
et al. [20], the loss function uses the Earth-Mover (EM) distance or Wasserstein distance, which expresses the optimal cost
of transferring the distribution pR into pG. It has been proved that a small EM distance corresponds to a small difference in
distributions. When optimized, the Wasserstein distance has better properties in comparison to JS or KL (Kullback-Leibler)
divergence, including more reasonable behavior during learning distributions supported by low dimensional manifolds.
Out of JS, KL, and Wasserstein distance, only the Wasserstein distance guarantees the continuity and differentiability.
As a result, the WGANs are being able to model probability distributions, where other algorithms with JS- or KL-based
objectives fail. Thus, the Wasserstein distance allows us to construct a compelling loss function for generative models.
Unfortunately, calculating the Wasserstein distance

W (pR, pG) = inf
λ∈Π(pR,pG)

E(x,y)∼γ [‖x− y‖] (3)

exactly is intractable. The discussed paper demonstrates how we can calculate an approximation of W using results from
Kantorovich-Rubinstein duality, which shows that W is equivalent to

W (pR, pθ) = sup
||f ||L≤1

Ex∼pR [f(x)]− Ex∼pθ [f(x)] (4)

where sup is the least upper bound and f is a 1− Lipschitz function following the constraint:

|f(x1)− f(x2)| ≤ |x1 − x2| (5)

In order to compute the Wasserstein distance, we just need to find a 1− Lipschitz function. So, we can construct a deep
neural network to learn it. Such a network is quite similar to the discriminator, just with no sigmoid function, with a scalar
score as output rather than a probability. This scalar score reflects how real the input images are and such a discriminator
is called a critic to reflect its new role. In the WGAN neural networks when the critic operates well the generator can still
learn. In GAN, the loss is a measure how well the discriminator is fooled rather than a measure of quality of the image.
On the other hand, the WGAN loss function reflects the image quality that is far more desirable. One of the difficulties



in learning the WGAN is to enforce the Lipschitz constraint. Clipping permits enforcing the Lipschitz constraint on the
critic’s model to compute the Wasserstein distance:

|f(x1)− f(x2)| ≤ K|x1 − x2| (6)

However, the use of clipping to restrict the maximum weight value in f can result in a model that does not converge and
poor quality of the rendered images, particularly if the hyperparameter c that controls the range in which the values assumed
by the discriminator should be: w ← clip(w,−c, c), is not tuned properly. In practice, the performance of WGAN can be
very sensitive to hyperparameter c. Moreover, the weight clipping reduces the capacity of the model as well as constraints
the ability of modeling complex functions. Additionally, the weight clipping can lead to vanishing or exploding gradient
norms, which in turn result in unstable gradients, and thus, unstable training [22]. The recently introduced Wasserstein
GAN with gradient penalty (WGAN-GP) [22] employs gradient penalty instead of the weight clipping in order to enforce
the Lipschitz constraint. The discussed work proved that the optimal critic in the WGAN neural networks has unit gradient
norm almost everywhere under pR and pG. By using a soft penalty on the gradient norm of the critic to enforce the 1-
Lipschitz constraint of the original WGAN, the gradient norm can be encouraged towards 1. In the proposed approach,
Gulrajani et al. [22] sample uniformly from a distribution px̂ that is defined along lines among pairs of samples coming
from the model distribution pG and the real data distribution pR. The WGAN-GP loss function can be expressed as follows:

L = Ex∼pR(x)[(D(x))]− Ez∼pz(z)[D(G(z))]︸ ︷︷ ︸
WGAN critic loss

+λEx̂∼px̂ [(‖∇x̂D(x̂)‖2)2]︸ ︷︷ ︸
WGAN-GP gradient penalty

(7)

where λ stands for a penalty coefficient. Compared to the WGAN neural network, which should use batch normalization
in both the generator and the discriminator, the WGAN-GP does not utilize the batch normalization in the critic, as the
gradient penalty term in the objective function would not be valid [22]. Instead, it is recommended to utilize the layer
normalization [23].

4. THE ALGORITHM
We extended WGAN-GP in order to achieve better generation of synthesized images for data augmentation and learning

CNNs for finger spelling classification on such augmented datasets. The proposed algorithm for generation of synthetic
images of finger spelling employs label conditioning, which has previously been applied to ordinary GANs [24]. By
adding an auxiliary classifier to the discriminator of WGAN-GP, the modified discriminator produces not only a probability
distribution over sources but also probability distribution over the class labels. The main difference between the ordinary
WGAN-GP and the proposed algorithm is that to train it we employ both training samples and training labels. These
training labels are fed to the generator, that generates the synthetic images using both the random noise and the input label.
The discriminator also has to predict the source of the image (i.e. if it is a synthesized image or a real one), and it also has
to predict the label of the image.

In the ordinary GANs, latent input variables are sampled from an unconditional prior. As a result, it is not easy
to interpret the contribution of the individual variables and to steer the synthesis of the images. As shown in [21], by
performing some operations on latent input samples we can steer the image synthesis, for instance, we can add some
attributes to the synthesized objects. This observation motivated us to include additional variables in the latent input vector.
In the proposed algorithm the latent input vector is a concatenation or random part, the class labels and additional variables
that are drawn from some number of Gaussian distributions, and represent (characteristic) hand poses or gesture attributes.
They were sampled from Gaussian distributions representing classes sharing common poses or hand appearances.

5. GESTURE DATASET
Experimental evaluations have been performed on JSL finger spelling dataset [15]. The JSL words are articulated by

five fingers of the single hand and the direction of the hand. Most of finger spellings are expressed through static postures.
In addition, dullness, half dullness, and long sound are expressed by dynamic hand postures. In this work we considered
only static Hiragana signs and classified 41 static finger spellings from the JSL. Figure 1 depicts sample images from the
JSL dataset [15]. In the following columns and rows (from left to right and from top to bottom), the words that make up
the Hiragana alphabet are presented.



Figure 1. Sample images from JSL dataset.

Training and evaluation of CNN-based classifiers as well as GANs that were used for data augmentation has been
performed on 5890 real images from the JSL dataset. The evaluations were performed in a person independent scenario,
wherein gestures performed by some subject have been used for testing, whereas gestures performed by remaining subjects
have been utilized for training. The test data consists of 579 images with the finger spellings, which were expressed by
person #10. All experiments were performed on gray images of size 64× 64.

Figure 2 contains a plot of number of training images versus Hiragana sign in the training part of the JSL dataset. As
we can notice on the discussed plot, the JSL dataset is somewhat unbalanced. The Hiragana sign ’chi’, see third sign in the
third row from top on Fig. 1, is represented by the smallest number of images (45 images).

Figure 2. Number of images vs. finger spelling in training part of the JSL dataset.

6. EXPERIMENTS
At the beginning we experimented with various architectures of GANs. However, due to specificity of JSL finger

spelling dataset, the synthesized images were not suitable for augmenting or even balancing the JSL dataset. It turned
out that existing implementations of GANs, and even WGANs achieve unsatisfactory results. The main reason is that the
parameters used in the models of the existing implementations were tuned for widely used datasets like MNIST, FMNIST,
etc. What is more, it turned out that after manual selection of the images from the synthesized image pools and using them
to augment the JSL training data the classification results were even worse.

Next, we employed the 3D articulated hand model from libHand library [25] to synthesize Hiragana finger spellings. A
program in C/C++ language with OpenGL/Glut graphics engine has been developed and implemented to configure the 3D
hand model in the requested poses and then to render them on images of size 64 × 64. Posing the articulated hand model
in the desired poses has been done using a slider for selecting a joint on the hand skeleton and three sliders to change the



rotation angles of the selected joint. By observing the reference image with a model Hiragana sign (pattern-sign), changing
values of the sliders, and eventually rotating the model to observe the rendered hand from a different view point, the fingers
could easily be bent to the desired shapes. For each Hiragana sign the 3D hand model has been manually configured in
thirty different poses to represent possible variations in expressing the given Hiragana sign by different performers. Posing
of the 3D hand models has been done by thirty modelers/students. Each of 1230 hand signs has been rotated about x, y
and −z axes. For each axis two random numbers were generated to rotate the 3D hand. On the basis of such set of models
configured in such a way we rendered gray images of size 64×64, i.e. 41×30×7 = 8610 images. The JSL-rend dataset is
available at: http://home.agh.edu.pl/˜bkw/research/data/icmv. Figure 1a) illustrates example images
that were sampled from the dataset (model not rotated). Given the collection of rendered finger spellings we sampled
images to balance the JSL dataset such that the minimal number of training images in each class (JSL+JSL-rend) was not
smaller than one hundred and forty. Thanks to balancing the dataset and then using it to synthesize the images on the basis
of WGANs, perceptually better Hiragana signs were generated in comparison to experiments in which only real images
from JSL dataset were employed.

a) b)

Figure 3. Synthesized Hiragana signs using libHand a), synthesized Hiragana signs using GAN b).

Owing to expanding the JSL dataset about 3D-model based rendered Hiragana signs, the WGAN-GP achieved better
results, but the quality of most synthesized images was still unsatisfactory. Extending WGAN-GP about class information
and adding attribute dependent latent variables improves the quality of synthesized Hiragana signs. The experimental
results are presented in Tab 1. As we can notice, extending the JSL dataset about JSL-rend data allows us to improve the
classification performance, cf. first and second row in Tab 1. Balancing the JSL dataset with manually selected samples
from pool of images generated by WGAN-GP did not improve the classification results, despite numerous training sessions
with unlike parameters, see also 3rd row in Tab 1. In the discussed experiment the JSL+JSL-rend dataset has been further
balanced so that the minimal number of samples in the considered classes is equal to one hundred and fifty.

As we can notice in Tab 1, the best results were achieved using the proposed extension of WGAN-GP. In the presented
experiment the length of latent vector with samples from uniform distribution has been set to 60. It has been extended
about 41 element vector with labels representing classes and 20 element vector with samples drawn from five Gaussian
distributions, representing three hand poses (vertical/horizontal/neutral) and frontal/backward hand sides, see also Fig. 1.
Given the trained WGAN-GP on JSL dataset augmented with 3D-model based rendered Hiragana words, the generator has
been used to generate synthetic images. The classification has been performed on JSL data, augmented by samples rendered
on the basis of 3D hand models and data generated by WGAN-GP. For gestures having the number of training images
smaller than 150 we manually selected the images from the synthesized pool to achieve the mentioned above number of
training samples. This means, that several rendered Hiragana words (’a’, ’u’, ’o’, ’ki’, ’ku’, ’ke’, ’shi’, ’so’, ’nu’, ’hi’,
’mu’, ’ra’, ’wa’), were not included in the dataset, see also poorly rendered sign ’ra’ on Fig. 1b, which is indistinguishable
from ’nu’ and ’ha’, which in turn are similar to each other. Samples selected in such a way were concatenated with real
images from Hiragana JSL dataset as well as images rendered on the basis of the 3D hand models. The classification has
been performed using CNNs that were used in our previous work [12]. The WGAN-GP has been built on ResNet and
trained on TitanX GPU with epoch size set to 32 and number of epochs set to 300. The time for training the WGAN-GP

http://home.agh.edu.pl/~bkw/research/data/icmv


on the Titan X is about one day. The WGAN-GP neural network has been implemented in Python using TensorFlow/Keras
frameworks.

Table 1. Classification performance in performer independent experiment: first row - performance measures obtained by CNN on JSL
dataset, second row - performance attained by CNN on JSL + JSL-rend data, third row - performance achieved by CNN on JSL +
JSL-rend and data augmented by WGAN-GP, fourth row - performance obtained by CNN on JSL + JSL-rend and data augmented by
proposed WGAN-GP.

Accuracy Precision Recall F1-score
CNN - JSL 0.753 0.792 0.754 0.730

CNN - JSL + JSL-rend 0.769 0.770 0.771 0.742

CNN - JSL + JSL-rend + WGAN-GP 0.734 0.738 0.734 0.705

CNN - JSL + JSL-rend + WGAN-GP prop. 0.788 0.820 0.788 0.777

7. CONCLUSION
In this work we proposed an approach for finger spelling recognition using data augmented by GANs as well as data

rendered on the basis of 3D hand model. The experimental results show that owing to proposed WGAN-GP extensions
we can synthesize additional data, which allows us balance JSL dataset and to improve the classification performance of
Hiragana fingerspellings. The samples generated on the basis of the 3D hand models relatively well reflect the shapes of the
gestures as well as the position of the fingers within hand expressing the given gesture, but they look as gestures performed
by flat hands. Future work will focus on extending the WGAN-GP to refine, i.e. to make more realistic the synthesized
images on the basis of 3D models of the hands. We expect that thanks to further extensions of our GAN it will be possible
to achieve more realistic data, as well as to generate more data, thanks to which rational premises for classifying color
images will arise.
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