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Abstract We introduce synchronized and calibrated multi-view video and motion
capture dataset for motion analysis and gait identification. The 3D gait dataset
consists of 166 data sequences with 32 people. In 128 data sequences, each of
32 individuals was dressed in his/her clothes, in 24 data sequences, 6 of 32 per-
formers changed clothes, and in 14 data sequences, 7 of the performers had a
backpack on his/her back. In a single recording session, every performer walked
from right to left, then from left to right, and afterwards on the diagonal from
upper-right to bottom-left and from bottom-left to upper-right corner of a rectan-
gular scene. We demonstrate that a baseline algorithm achieves promising results
in a challenging scenario, in which gallery/training data were collected in walks
perpendicular/facing to the cameras, whereas the probe/testing data were col-
lected in diagonal walks. We compare performances of biometric gait recognition
that were achieved on marker-less and marker-based 3D data. We present recog-
nition performances, which were achieved by a convolutional neural network and
classic classifiers operating on gait signatures obtained by multilinear principal
component analysis. The availability of synchronized multi-view image sequences
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with 3D locations of body markers creates a number of possibilities for extraction
of discriminative gait signatures. The gait data are available at goo.gl/fzBJBo.

Keywords Gait recognition · covariate factors · biometrics, markerless 3D
tracking

1 Introduction

Gait is a complex function of body weight, limb lengths, skeletal and bone struc-
tures as well as muscular activity. From a biomechanics point of view, human
walk consists of synchronized, integrated movements of body joints and hundreds
of muscles. Although these movements share the same basic bipedal patterns across
all humans, they vary from one individual to another in several aspects, such as
their relative timing, rhythmicity, magnitudes and forces involved in producing
the movements. Since gait is largely determined by its musculoskeletal structure,
it is unique to each individual. Cues such as walking speed, stride length, rhythm,
bounce, swagger as well as physical lengths of human limbs all contribute to unique
walking styles [42].

The human can identify individual people from movement cues alone. In a
study of the motion perception from a psychological point of view, Johansson
used Moving Light Display (MLD) and shoved that the relative movements of
certain joints in the human body carry information about personal walking styles
and dynamics [36]. It turned out that humans can in less than one second identify
that MLD patterns corresponding to a walking human. Cutting and Kozlowski [21]
shoved that friends can be recognized by their gait on the basis of reduced visual
stimuli. Barclay et al. [8] showed that the identity of a friend and the person’s
gender can be determined from the movement of light spots only. They investi-
gated both temporal and spatial factors in gender recognition on the basis of data
from point light displays. They showed that in the spatial domain, the shoulder
movement for males and hip movement for females are important factors in the
recognition. Another research finding is that the duration of dynamic stimulus
plays crucial role in gender recognition.

Much research in biomechanics and clinical gait analysis is dedicated to study-
ing the inter-person and intra-person variability of gait, primarily to determining
normal vs. pathological ranges of variation. Several measures have been proposed
to quantify the degree of gait deviation from normal gait, stratify the severity
of pathology and measure changes in gait patterns over time [18]. Although the
pioneering research on gait analysis was performed using 2D techniques, such 2D
analysis is currently rather rarely used in clinical practice, and 3D methods are now
the standard. There are two main reasons for this: parallax errors and perspective
errors [38].

In the last decade, gait recognition has been extensively studied as a behav-
ioral biometric technique [19,20,17,70]. Identity recognition on the basis of gait is
non-invasive, can be done at a distance, is non-cooperative in nature, and is dif-
ficult to disguise. However, the recognition performance of existing algorithms is
limited by the influence of a large number of nuisance or so-called covariate factors
affecting both appearance and dynamics of the gait, such as viewpoint variations,
variations in footwear and clothing, changes of floor surface characteristic, various
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carrying conditions and so on. Vast of present approaches to gait recognition make
use of extracted human body silhouettes in image sequences from a single camera
as input [76,50]. In addition to clothing and carrying variations, the view angle
is found to be the most influential covariate factor on recognition performance.
Many methods have been elaborated to establish a cross-view mapping between
gallery and probe templates [19]. However, their effectiveness is restricted to small
variations of view angle. Thus, how to extract informative features, which of them
are robust, and how to represent them in a form that is best suited for gait recog-
nition is still an active research topic. Clearly, being a natural representation of
human gait perceived by human, 3D gait data conveys more information than
2D data. Moreover, the research results obtained by clinicians [38] demonstrate
that 2D data is often inadequate for carrying out an accurate and reliable biome-
chanical assessment since many gait features are inherently unique to 3D data.
However, until now, only limited research on 3D data-based biometric gait recog-
nition has been done because of restricted availability of synchronized multi-view
data with proper camera calibration [50]. Motivated by this, taking into account
a forecast formulated at Stanford for an evolution of methods for the capture of
human movement [52], promising results that were obtained using marker-less 3D
motion tracking [40] and marker-based 3D motion tracking [5,33] for gait recogni-
tion, in this work we introduce a dataset for marker-less 3D motion tracking and
3D gait recognition. Since gait abnormalities are often impossible to detect by eye
or with video based systems, we also share data from marker-based moCap, which
is synchronized and calibrated with marker-less motion capture system.

2 Background and Relevant Work

At present, the most common methods for precise capture of three-dimensional hu-
man movement usually require the attachment of markers or sensors to the body
segments and can only be applied in laboratory environments [64,47]. In [16],
in order to determine disease-specific gait characteristics a marker-based motion
capture system (moCap) was employed for investigating and understanding body
movement. One of the major limitations of marker-based moCap systems is the
need of attaching the markers on the person. The markers are placed manually on
the skin with respect to anatomical landmarks. Since the markers are attached to
the skin, their position is influenced by the movement of the soft tissue underneath.
Benoit et al. [11] investigated the effect of skin movement on the kinematics of the
knee joint during gait through comparing skin markers to pin in bone markers.
They found that kinematic analysis is burdened with errors resulting from move-
ment of the soft tissue, which should be considered when interpreting kinematic
data. The accuracy of the measurements is also influenced by the placement of the
markers. Differences can occur between different clinicians applying the markers
on the same patient and also between placements made by the same clinician. In
general, marker-based moCap systems are costly and thus they are not available
in many clinical settings [57].

Recently, increasing interest in using the Kinect sensor for motion capture has
emerged, including clinical and scientific analysis of gait [9,28,65]. The experi-
mental results achieved in [74] showed that the Kinect sensor can follow the trend
of the joint trajectories with considerable error. Gait analysis of healthy subjects
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using Kinect V2 in single-camera [9] or multi-camera [28] setups showed high ac-
curacy of the motion sensors for estimation of gait speed, stride length, stride time
but lower accuracy for other parameters like stride width or speed variability. A
recently proposed 3D method [1] employs the spatiotemporal changes in relative
distances and angles among different skeletal joints to represent the gait signa-
ture. A comparison of traditional marker-based motion capture technologies and
Kinect-based technology for gait analysis is presented in [57]. The experiments
demonstrated that for the Kinect and Vicon the correlation of hip angular dis-
placement was very low and the error was considerable, whereas the correlation
between Kinect and Vicon stride timing was high and the error was fairly small.

Over recent years, the research community has given much interest in gait
as a biometric modality [19], primarily due to its non-intrusive nature as well
as ease of use in surveillance [54]. As already mentioned, the pioneering works
on human motion analysis and gait recognition fall into the category of marker
based techniques [21,8]. Since then, various methods [76] and modalities [77,10,26]
were proposed to determine one’s identity. Usually, the vision-based methods start
with extracting the human silhouette in order to obtain the spatiotemporal data
describing the walking person. The extracted silhouettes are then pre-processed,
normalized and aligned. Afterwards, various computer vision and machine learning
techniques are utilized to extract and model gait signatures, which are finally
stored in a dictionary/database. During the authentication a test gait signature is
calculated and compared with the dictionary formed in advance.

Human gait analysis and recognition techniques can be divided into main cat-
egories, namely model-free and model-based methods. The methods belonging to
the first category characterize the entire human body motion using a concise rep-
resentation without taking into account the underlying structure. They can be in
turn divided into two major categories based on the way of preserving temporal
information. The methods belonging to the first subcategory consider temporal
information in the recognition. Liu et al. [43] utilized a population hidden Markov
model (pHMM) defined for a set of individuals to model human walking and gen-
erated the dynamics-normalized stance-frames to identify pedestrians. For such
probabilistic temporal models, a considerable number of training samples are gen-
erally needed to achieve satisfactory performance. The methods from the second
subcategory convert an image sequence into a single template. Han and Bhanu [30]
proposed the gait energy image (GEI) to improve the accuracy of gait recognition.
The disadvantage of template-based methods is that they may lose the temporal
information. Several limitations can arise in real scenarios since GEI relies heavily
on shape information, which is significantly altered by changes of clothing types
and carrying conditions. As demonstrated in many studies, e.g. [75], single-view
GEI-based gait recognition performance can drop significantly when the view an-
gle changes. Model-based methods infer gait dynamics directly by modeling the
underlying kinematics of human motion. A method proposed in [12] uses a motion-
based model and elliptic Fourier descriptors to extract the key features. A recently
proposed method [25] combines spatiotemporal and kinematic gait features. The
fusion of two different kinds of features gives a comprehensive characterization of
gait dynamics, which is less sensitive to variation in walking conditions.

Generally speaking, gait-based person identification is achieved through ex-
tracting the image and/or gait signatures using the appearance or shape of the
subject undergoing monitoring, and/or the dynamics of the motion itself [22,43].
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What constrains the application of biometric gait recognition is the influence of
several of so-called covariate factors, which affects both appearance and dynamics.
Those include not only viewpoint, footwear and walking surface, clothing, carried
luggage, but also illumination and camera setup. Viewpoint is considered as the
most crucial of those covariate factors [76]. Thus, view-invariance to achieve more
reliable gait recognition has been studied by several research groups [19,69,24,
58,34,35]. Clothing and carrying conditions are other important covariate factors
that are frequently investigated [23,53,2].

In the last few years a number of datasets have been designed to study the
effect of covariate factors [50] in gait recognition. A SOTON database with five
covariates has been introduced in 2002 [63]. The USF database [61] has been
specifically designed to investigate the influence of covariate factors on identity
classification. CASIA Gait Database [13] is a newly developed challenge dataset for
evaluation of gait recognition techniques. Most current gait recognition approaches
performs the recognition on the basis of silhouettes captured in side-view, i.e.
when the individual walks in a plane parallel to the camera. When the view angle
deviates from the side-view, the gait representation on the silhouette is not so
informative, and the recognition performance tends to degrade heavily. In [48,44],
view-invariance has been enhanced using 3D reconstructions.

Three-dimensional approaches to gait recognition are resistant to changes in
viewpoint. In general, 3D data provides richer gait information in comparison to
2D data and thus has strong potential to improve the recognition performance.
However, only a little research on 3D data-based gait recognition has been done
due to the limited availability of synchronized multi-view data with proper calibra-
tion parameters [50]. Though the CMU MoBo [29] and the CASIA [75] multi-view
databases have been available for a long time, there are no significant results on
3D data, because either the data was recorded on a treadmill and thus does not
represent 3D gait or the calibration parameters of the multi-camera system are not
available. In the MoBo multi-view dataset [29], six cameras are used to provide
full view of the walking person on the treadmill. It comprises 25 individuals, where
each one performed four gait types – slow walk, fast walk, ball walk, and inclined
walk. Each sequence is recorded at 30 frames per second and is eleven seconds
long in duration. An inherent problem associated with gait analysis on the basis
of walking on a treadmill is that the human gait is not natural. The main reason
for this is that the gait speed is usually constant, and the subjects cannot turn left
or right. The INRIA Xmas Motion Acquisition Sequences (IXMAS) database [72],
comprises five-view video and 3D body model sequences with eleven activities and
ten subjects. The data were collected by five calibrated and synchronized cameras.
However, this dataset cannot serve as a benchmark dataset for 3D gait recognition
since the gait data has only been registered on closed circle paths. CASIA Dataset
B is a multi-view gait database with 124 subjects, where the gait data was captured
from eleven views [75]. Three covariate factors, namely view angle, clothing and
carrying condition changes are considered separately. However, neither the cam-
era position nor the camera orientation are provided for this frequently employed
dataset. A multi-biometric tunnel [62] at the University of Southampton is a con-
strained environment similar to an airport for capturing multimodal biometrics of
walking pedestrians, i.e., gait, face and ear in an unobtrusive way for automatic
human identification. For gait recognition, the walking subject was recorded at
30 fps by eight synchronized cameras of resolution 640 × 480. The face and ear
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biometrics have been captured by two other high-resolution cameras, which had
been placed at the exit of the tunnel. The walls of the tunnel were painted with a
non-repeating rectangular lattice of different colors to support automatic camera
calibration. However, the dataset has limited applicability for 3D tracking-based
gait recognition. The main reason for this is that this dataset has no ground-
truth data of 3D joints location. This means that the accuracy of 3D tracking
of the joints and 3D motion estimation cannot be easily determined. 3D tracking
[68], 3D motion descriptors [37], and 3D reconstructions [59] can provide useful
information for gait recognition.

Since motion capture technology became recently more affordable, 3D structure-
based gait recognition has attracted more interest from researchers [66,7,5,33].
Recently, a new benchmark data and evaluation protocols for moCap-based gait
recognition have been proposed in [6]. As recently shown in [60], marker-less mo-
tion capture systems can provide reliable 3D gait kinematics in the sagittal and
frontal plane. In [39], a system for view-independent human gait recognition using
marker-less 3D human motion capture has been proposed. The accuracy of the
3D motion reconstruction at the selected joints has been determined on the basis
of marker-based moCap. In [14], a comparison of marker-less and marker-based
motion capture technologies through simultaneous data collection during gait has
been presented. A recently conducted study [56] showed that a marker-based and
a marker-less have similar ranges of variation in the angle from the start of a squat
to peak squat in the pelvis and lower limb in a single leg squat.

3 Databases for Gait Recognition

Table 1 contains a collective summary of major databases for gait recognition,
which were evoked in the relevant literature. As we can observe, only a few datasets
provide calibration data and/or were recorded using synchronized cameras. To our
knowledge, only one publicly available dataset contains moCap data. However, the
benchmark dataset mentioned above contains only moCap data.

Our dataset has been designed for research on vision-based 3D gait recognition.
It can also be used for evaluation of the multi-view (where gallery gaits from
multiple views are combined to recognize probe gait on a single view) and the
cross-view (where probe gait and gallery gait are recorded from two different views)
gait recognition algorithms. Unlike related multi-view and cross-view datasets, our
dataset has been recorded using synchronized cameras, which allows to reducing
the influence of motion artifacts between different views. Other application of our
dataset is gait analysis and recognition on the basis of moCap data. For such
research the data were stored in commonly used c3d and Acclaim asf/amc data
formats. Last but not least, the discussed dataset can be used to evaluate the
accuracy of marker-less motion capture algorithms as well as their performance in
3D gait recognition.

4 3D Gait Dataset

The motion data were captured by 10 moCap cameras and four calibrated and
synchronized video cameras. Figure 1 depicts the placement of the cameras of
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Table 1 Comparison of major gait recognition databases

Database Covariate factors #Subj. #Seq. Views Environment Synch. Calib. moCap Year

HID-UMD [15] 25 100 side, front outdoor no no no 2001
CMU MoBo [29] multi-view recognition,

diff. walk cond.
25 100 6 views indoor,

treadmill
yes yes no 2001

CASIA A [71] 20 240 3 views outdoor no no no 2001
USF Human ID [61] diff. clothing and

carrying cond., time
(6 months)

122 1870 2 views outdoor yes yes no 2001

SOTON small [55] diff. clothing and car-
rying cond.

11 - 2 views indoor,
green back-
ground

no no no 2002

SOTON large [55] multiple purposes 115 2128 2 views in-outdoor,
treadmill

no no no 2002

CASIA B [75] multi-view recognition,
diff. clothing and car-
rying cond.

124 13640 11 views indoor yes yes * no 2005

CASIA C [75] diff. walk cond. 153 1530 side outdoor,
night, ther-
mal camera

- no no 2005

TokyoTech DB [3] speed variation 30 1602 side indoor,
treadmill

- no no 2010

TUM-IITKGP [32] occlusions, diff. carry-
ing cond.

35 840 side indoor,
occlusions

- no no 2011

SOTON Temporal [51] diff. clothing, time (0,
1, 3, 4, 5, 8, 9 months)

25 2280 12 views indoor yes yes no 2012

OU-ISIR A [49] speed variation 34 612 side indoor,
treadmill

- no no 2012

OU-ISIR B [49] clothes variation 68 2746 side indoor,
treadmill

- no no 2012

OU-ISIR D [49] gait fluctuation 185 370 side indoor,
treadmill

- no no 2012

AVA [24] multi-view recognition 20 200 6 views indoor yes yes no 2013
GAID [31] 305 3370 side indoor - - no 2014
CMU MoCap [7] marker-based mocap

data
54 3843 gait

cycles
3D data indoor - - yes 2017

GPJATK multi-view recognition,
marker-based mocap
data, clothes variation,
seq. with backpack

32 166 4 views,
3D data

indoor yes yes yes 2017

* Only some geometry information on subjects could be reconstructed aided by some cali-
bration equipment (four calibration taps were placed to support reconstruction of geometry
information).

both systems. During the recording session, the actor has been requested to walk
on the scene of size 6.5 m × 4.2 m along a line joining the cameras C2 and C4
as well as along the diagonal of the scene. In a single recording session, every

C3

C4

C1

C2

x

y

6,5 m

4,2 m

7,7 m

12,8 m

RGBRGB
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G
B

R
G
B
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IR

area of data acquisition 

from the system

control
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Fig. 1 Camera layout.

performer walked from right to left, then from left to right, and afterwards on the
diagonal from upper-right to bottom-left and from bottom-left to upper-right cor-
ner of the scene. Some performers were also asked to attend in additional recording
sessions, i.e. after changing into other garment and putting on a backpack. Fig-
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ure 2 demonstrates sample images from three sessions with the same person. The
first row depicts a passage from left to right (the transition from right to left is
not shown), the second row depicts a passage on the diagonal from upper-right
to bottom-left (the transition from bottom-left to upper-right is not shown), the
third and fourth rows illustrate the same passages as above but with different
garment, whereas the fifth row illustrates sample images from the transition with
the backpack (the remaining passage from the session with the backpack is not
shown).

Fig. 2 Sample images from the dataset. First row: a walk from left to right, second row: a
walk on diagonal from upper-right to bottom-left, third and four rows: walks in other clothes
from left to right and on diagonal from upper-right to bottom-left, respectively, fifth row: a
walk from upper-right to bottom-left with a backpack.

The 3D gait dataset consists of 166 data sequences. The data represents the
gait of thirty-two people (10 women and 22 men). In 128 data sequences, each of
thirty-two individuals was dressed in his/her clothes, in 24 data sequences, 6 of 32
performers (person #26 – #31) changed clothes, and in 14 data sequences, 7 of
the performers attending in the recordings had a backpack on his/her back. Each
sequence consists of videos with RGB images of size 960×540, which were recorded
by four synchronized and calibrated cameras with 25 frames per second, together
with the corresponding moCap data. The moCap data were registered at 100 Hz by
Vicon system consisting of ten MX-T40 cameras of resolution 2352× 1728 pixels.
The synchronization between RGB images and moCap data has been realized
using Vicon MX Giganet.

The calibration data of the vision system are stored in the xml data format.
The camera model is the well known Tsai model [67], which has been chosen due
its frequent use to calibrate multi-camera systems. Every data sequence consists
of:

– four videos, see sample images on Fig. 2, which were compressed with Xvid
video codec,

– foreground images that were extracted by background subtraction [78], and
which are stored in videos compressed by Xvid codec,
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– images stored in the png image format with the extracted edges using Sobel
masks,

– moCap data in c3d and Acclaim asf/amc data formats.

The moCap data contains 3D positions of 39 markers, which are placed at the main
body joints, see Fig. 3. From the above set of markers, 4 markers were placed on
the head, 7 markers on each arm, 12 on the legs, 5 on the torso and 4 markers were
attached to the pelvis. The marker-less and marker-based systems have a common
coordinate system, whose origin is located in the geometric center of the scene,
see also Fig. 1.

Fig. 3 Placement of the markers.

The GPJATK dataset is freely available at goo.gl/fzBJBo1. The dataset has
size 6.5 GB and is stored in .7z format. The names of the data sequences are in the
format pXsY , where X denotes person name, whereas Y stands for the sequence
number. The assumed name convention is as follows:

– s1, s2 - straight walk, s1 from right to left, s2 from left to right, clothing 1
– s3, s4 - diagonal walk, s3 from right to left, s4 from left to right, clothing 1
– s5, s6 - straight walk, s5 from right to left, s6 from left to right, clothing 2
– s7, s8 - diagonal walk, s7 from right to left, s8 from left to right, clothing 2
– s9, s10 - walk with backpack, s9 from right to left, s10 from left to right

All data sequences, except s9 and s10, have corresponding marker-based moCap
data.

5 Baseline Algorithm for 3D Motion Tracking

At the beginning of this Section, we outline 3D motion tracking on the basis of
image sequences from four calibrated and synchronized cameras. Afterwards, we
explain how the accuracy of the system has been calculated using ground-truth
from the marker-based moCap system. Finally, we present the accuracy of 3D
motion tracking.

1 The password is 9AYt5ZzgBP (access to dataset will be free after publication of the paper)
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5.1 3D Motion Tracking

The human body can be represented by a 3D articulated model formed by 11 rigid
segments representing the key parts of the body. The pelvis is the root node in
the kinematic chain and at the same time it is the parent of the upper legs, which
are in turn the parents of the lower legs. The model is constructed from truncated
cones and is used to generate contours, which are then matched with the image
contours. The configuration of the body is parameterized by the position and the
orientation of the pelvis in the global coordinate system and the angles between
the connected limbs. Figure 4 (left) illustrates the 3D model utilized in marker-
less motion tracking, whereas Fig. 4 (right) depicts the 3D model employed by the
marker-based system.

0 - Root
1 - LowerBack
2 - UpperBack
3 - Thorax
4 - LowerNeck
5 - UpperNeck
6 - Head
7 - RFemur
8 - RTibia
9 - RFoot
10 - RToes
11 - LFemur
12 - LTibia

13 - LFoot
14 - LToes
15 - RShoulderJoint
16 - RHumerus
17 - RRadius
18 - RWirst
19 - RHand
20 - LShoulderJoint
21 - LHumerus
22 - LRadius
23 - LWirst
24 - LHand

0 - Root (6 DoF)
1 - Spine1 (3 DoF) 
2 - Head (3 DoF)
3 - RightUpLeg (2 DoF)
4 - RightLeg (1 DoF)
5 - LeftUpLeg (2 DoF)
6 - LeftLeg (1 DoF)
7 - RightArm (3 DoF)
8 - RightForearm (1 DoF)
9 - LeftArm (3 DoF)
10 - LeftForearm (1 DoF)

Fig. 4 3D models used by marker-less and marker-based motion capture systems.

Estimating 3D motion can be cast as a non-linear, high-dimensional optimiza-
tion problem. The degree of similarity between the real and the estimated pose is
evaluated using an objective function. The motion tracking can be achieved by a
sequence of static PSO-based optimizations, followed by re-diversification of the
particles to cover the possible poses in the next frame. In this work the 3D motion
tracking is achieved through the Annealed Particle Swarm Optimization (APSO)
[41]. The fitness function expresses the degree of similarity between the real and
the estimated human pose. Figure 5 illustrates the algorithm for calculation of the
objective function. For single camera c it is determined in the following manner:
fc(x) = 1− (f1,c(x)w1 · f2,c(x)w2), where x stands for the state (pose), whereas w
denotes weighting coefficients that were determined experimentally. The function
f1(x) reflects the degree of overlap between the extracted body and the projected
3D model into a 2D image. The function f2(x) reflects the edge distance-based
fitness value. A background subtraction algorithm [41] is employed to extract the
binary image of the person, see Fig. 5b. The binary image is then utilized as a
mask to suppress edges not belonging to the person, see Fig. 5d. The projected
model edges are then matched with the image edges using the edge distance map,
see Fig. 5g. Moreover, in multi-view tracking, the 3D model is projected and then
rendered in each camera’s view. The fitness value for all four cameras is determined
as follows: f(x) =

∑4
c=1 fc(x).
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Fig. 5 Calculation of the fitness function. Input image a), foreground b), gradient magnitude
c), masked gradient image d), edge distance map e), 3D model h) projected onto image 2D
plane i) and overlaid on binary image f) and edge distance map g).

5.2 Evaluation Metrics

Given the placement of the markers on the human body in the marker-based
system, see Fig. 3, the virtual positions of the markers were determined for the
marker-less system. A set of M = 39 markers has been defined for the 3D artic-
ulated model that is utilized in the marker-less moCap. Given the estimated 3D
human pose by the algorithm discussed in Subsection 5.1, as well as the position
of the virtual markers with respect to the skeleton, the virtual 3D positions of the
markers were determined and then utilized in calculating the Euclidean distance
between the corresponding 3D position of the markers as follows:

dist(p, p̂) =
√

(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2 (1)

where the x−, y− and z−variables represent the X-, Y- and Z-coordinates of the
physical markers, whereas the x̂−, ŷ− and ẑ− are estimates of the X-, Y- and Z-
coordinates of the virtual markers. On the basis of 3D Euclidean distance between
ground truth and estimated joint positions, Root Mean Squared Error (RMSE),
which is also referred as the average joint error over all joints has been calculated
in the following manner:

RMSE(P, P̂) =
1

MF

M∑
i=1

F∑
j=1

dist(p
(j)
i , p̂

(j)
i ) (2)

where p
(j)
i ∈ P, p̂

(j)
i ∈ P̂, P = {p(1)

1 , . . . ,p
(1)
M , . . . ,p

(F )
M } represents the set of

ground-truth joint positions, P̂ = {p̂(1)
1 , . . . , p̂

(1)
M , . . . , p̂

(F )
M } represents the set of

estimated joint positions, M represents the total number of joints, whereas F
represents the total number of frames.

For each marker i the average Euclidean distance d̄i between the physical and
virtual markers has been calculated in the following manner:

d̄i =
1

F

F∑
j=1

dist(pj , p̂j) (3)
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For each marker i the standard deviation σi has been used to measure the spread
of joint errors around the mean error. It has been determined as follows:

σi =

√√√√ 1

F − 1

F∑
j=1

(
dist(pj , p̂j)− d̄i

)2
(4)

The standard deviation for all M markers has been obtained through averaging
σi values.

5.3 Accuracy of 3D Motion Tracking

Table 2 presents RMSE errors that were achieved on sequences p1s1, p1s2, p28s1
and p28s2. The results were obtained in ten runs with unlike initializations.

Table 2 RMSE for M = 39 markers in four sample image sequences.

Seq. p1s1 Seq. p1s2 Seq. p28s1 Seq. p28s2

#part. it.
error
[mm]

error
[mm]

error
[mm]

error
[mm]

100 10 42.6±21.6 48.4±25.4 58.7±34.1 67.1±33.2

100 20 41.7±23.6 45.4±22.5 52.6±25.0 63.6±30.0

300 10 39.7±20.1 44.8±23.4 52.7±25.4 63.1±27.5

300 20 43.2±21.0 48.8±22.8 40.8±22.8 60.9±24.7

Figure 6 shows sample plots of Euclidean distance (1) over time for head, torso,
left forearm, right forearm, left tibia and right tibia, which were obtained on the
sequence p1s1. The average Euclidean distances d̄i and the standard deviations
for mentioned above body parts are equal to: 36.8±18 mm (head), 37.7±13.0 mm
(torso), 32.6±14.9 mm (left forearm) 24.5±10.7 mm (right forearm), 39.3±25.0 mm
(left tibia) and 47.5± 27.4 mm (right tibia). The discussed results were obtained
by APSO consisting of 300 particles and executing 20 iterations.

The plots in Fig. 7 depict the distance between ankles for marker-less and
marker-based motion capture systems, which were obtained on p1s1 and p1s2
sequences.

6 Performance of Baseline 3D Gait Recognition

At the beginning, we discuss the evaluation methodology. Then, we outline the
Multilinear Principal Component Analysis algorithm, afterwards in Subsection 6.3
we present the evaluation protocol. Afterwards, in Subsection 6.4 we present the
recognition performance, which has been achieved by the baseline algorithm as
well as a convolutional neural network. Finally, in Subsection 6.5 we analyze the
performance of individual identification.
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Fig. 6 Tracking errors [mm] versus frame number for p1s1 sequence, achieved by APSO
consisting of 300 particles and executing 20 iterations.

Fig. 7 Distance [m] over time between ankles for marker-less and marker-based motion capture
systems.

6.1 Methodology

The single gait cycle is a basic entity describing the gait during ambulation, which
includes the time when one heel strikes the floor to the time at which the same
limb contacts the floor again. In our approach, gait is recognized on the basis of
a single gait sample, which consists of two strides. Since the number of frames
registered in gait samples differs slightly from the average number of frames, the
time dimension was chosen to be 32, which roughly equals to the average number
of video frames in each gait sample. Having on regard that the marker-based
system has four times higher frame rate, the time dimension for moCap data was
set to 128. The data extracted by the motion tracking algorithm were stored in
ASF/AMC data format. For such a single gait cycle, a third order tensor 32×11×3
for marker-less data is determined, whereas for marker-based a tensor 128×25×3
is calculated. The marker-less data was filtered by applying a running mean of
length nine samples to the original data. For data from the marker-less system,
the second dimension of the tensor is equal to the number of bones (excluding
pelvis), i.e. 10 plus one element in which the distance between ankles and person
height are stored. The third mode accounts for three angles, except the eleventh
vector that contains distance between ankles and person’s height. For data from
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marker-based system, the second dimension of the tensor is equal to the number
of bones, see also Fig. 4, whereas the third mode accounts for three angles. Such a
gait signature was then reduced using Multilinear Principal Components Analysis
(MPCA) algorithm [45], which is overviewed in Subsection 6.2.

A benchmark dataset for gait recognition should have two subsets: the gallery
and the probe. Gait samples in the gallery set are labeled with person identities
and they are utilized in training, while the probe set encompasses the test data,
which are gait samples of unknown identities, and which are matched against data
from the gallery set. The introduced GPJATK dataset has gallery and probe sets.
The gallery set contains a known class label, and a model is learned on this data
in order to be generalized to probe set later on. The evaluation methodology is
discussed in Subsection 6.3

6.2 Feature Extraction Using Multilinear Principal Component Analysis

Tensors are denoted by calligraphic letters and their elements are denoted by
indexes in brackets. An N th–order tensor is denoted as A ∈ RI1×I2×...IN . The
tensor is addressed by N indexes in, where n = 1, . . . , N , and each in addresses
the n-mode of A. The n-mode product of a tensor A by a matrix U ∈ RJn×In

is a tensor A×n U with elements: (A ×n U)(i1, . . . , in−1, in, in+1, . . . , iN ) =∑
in
A(i1, . . . , iN ) ·U(jn, in). A rank-1 tensor A is equal to the outer product of

N vectors A = u(1) ◦ u(2) ◦ · · · ◦ u(N), which means that for all values of indexes,
A(i1, i2, . . . , iN ) = u(1)(i1) · u(2)(i2) · · · · · u(N)(iN ).

The MPCA operates on third-order gallery gait samples {X1, . . . ,XL ∈
RI1×I2×I3}, where L stands the total number of data samples in the
gallery subset. The MPCA algorithm seeks for a multilinear transformation
{Ũ(n) ∈ RIn×Pn , n = 1, 2, 3} , where Pn < In for n = 1, 2, 3, which transforms

the original gait tensor space RI1RI2RI3 into a lower-dimensional tensor subspace
RP1RP2RP3 , in which the feature tensor after the projection is obtained in the

following manner: Yl = Xl ×1 Ũ(1)T ×2 Ũ(2)T ×3 Ũ(3)T , where ×n is the n-
mode projection, l = 1, . . . , L, and Ũ(1) ∈ RI1×P1 is a projection matrix along
the first mode of the tensor, and similarly for Ũ(2) and Ũ(3), such that the to-
tal tensor scatter ΨY =

∑L
l=1 ||Yl − Ȳ||

2
F is maximized, where Ȳ = 1

L

∑L
l=1 Yl

denotes the mean of the training samples. The solution to this problem can be
obtained through an iterative alternating projection method. The projection ma-
trixes {Ũ(n), n = 1, 2, 3} can be viewed as

∏3
n=1 Pn so-called EigenTensorGaits

[45]: Ũp1p2p3 = ũ
(1)
p1 ◦ ũ

(2)
p2 ◦ ũ

(3)
p3 , where ũ

(n)
pn is the pthn column of Ũ(n).

In the Q-based method [45], for each n, the first Pn eigenvectors are kept in the
n-mode such that Q(1) = Q(2) =, . . . , Q(N) = Q, where Q is a ratio determined

as follows: Q(n) =
∑Pn

in=1 λ
(n)∗
in

/
∑In

in=1 λ
(n)∗
in

, and where λ
(n)∗
in

is the inth full-
projection n-mode eigenvalue.

Having on regard, the distance between two tensors A and B, which can be
measured by the Frobenius norm dist(A,B) = ||A − B||F , equals the Euclidean
distance between their vectorized representations vect(A), vect(B), the feature
tensors extracted by the MPCA were vectorized. They were then utilized in the
gait recognition using k-Nearest Neighbors (kNN), Näıve Bayes (NB), Support
Vector Machine (SVM) and Multilayer Perceptron (MLP) classifiers. To the best
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of our knowledge, MPCA and its extended versions were only used in conjunction
with kNN classifiers, c.f. [46].

6.3 Evaluation Protocol

From 166 video sequences, 414 gait samples were extracted (325 – clothing 1,
58 – clothing 2, 31 – backpack). From every sequence, 2 or 3 gait samples were
determined and then employed in the evaluations. The performance of the system
has been evaluated as follows:

– clothing 1

– 10–fold cross–validation on 325 gait samples
– gallery–probe: 164 gait samples in training set (sequences s1 and s2), 161

gait samples in probe set (sequences s3 and s4)

– clothing 2

– gallery–probe: training data – 325 gait samples (clothing 1: sequences s1, s2,
s3 and s4), test set – 58 gait samples (clothing 2: sequences s5, s6, s7 and s8
with persons p26–p31).

– backpack
– gallery–probe: training data – 325 gait samples (clothing 1: sequences s1, s2,

s3 and s4), test set – 31 gait samples (backpack: sequences s9 and s10 with
persons p26–p32).

The Correct Classification Rate (CCR) has been used to quantify the devia-
tions between real outcomes and their predictions. The CCR is a ratio of correctly
classified number of subjects to the total number of the subjects in the test subset.
The classification rates for rank 2 and rank 3 were also determined. They corre-
spond to percentages of correctly recognized gait instances in the first two and
first three indications of a classifier, respectively.

6.4 Evaluation of Recognition Performance

Gait-based person identification has been performed using Näıve Bayes (NB), Sup-
port Vector Machine (SVM), Multilayer Perceptron (MLP) and k-Nearest Neigh-
bor (1NN, 3NN and 5NN) classifiers, operating on features extracted by the Mul-
tilinear PCA. The classification and the performance evaluation were performed
using WEKA package. Sequential Minimal Optimization (SMO) is one of the com-
mon optimization algorithms for solving the Quadratic Programming (QP) prob-
lem that arises during the training of SVMs. SMO operates by breaking down
the dual form of the SVM optimization problem into many smaller optimization
problems that are more easily solvable. The C parameter of the SMO algorithm
has been determined using cross–validation and grid search.

6.4.1 Cross–validation on Gait Data

In order to assess how the results of statistical analyses will generalize to inde-
pendent data set we performed evaluations on the basis of cross–validation. In the
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ten-fold cross–validation, the 325 gait samples are randomly partitioned into ten
equal size sample subsets. Nine of ten sample subsets are used as training data,
and the remaining one is retained as the validation data. The cross-validation pro-
cess is then repeated ten times, with each of ten sample subsets used exactly once
as the validation data. Ten results were then averaged to produce a single eval-
uation. To evaluate the recognition performance we determined the classification
accuracies for rank 1, 2 and 3.

Table 3 shows the classification accuracies that were obtained in 10-fold cross-
validation on the basis of data from marker-less motion capture. As we can observe,
the MLP achieves the best results for ranks 1–3. At this point, it is worth empha-
sizing the high classification accuracy that was achieved by the baseline algorithm
on data from markerless motion capture system, where almost 90% classification
accuracy has been achieved for rank 1, and almost 97% classification accuracy has
been obtained for rank 3. These promising results are a strong argument for the
necessity to introduce this dataset for the pattern recognition community.

Table 3 Correctly classified ratio [%] in 10–fold cross-validation using data from marker-less
motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 79.69 84.31 89.85 56.92 50.46 52.62 58.15 52.92 56.92

2 88.92 92.92 95.69 59.08 65.54 66.15 60.00 70.15 70.77

3 91.08 95.38 96.92 60.31 77.23 73.23 61.23 82.15 77.23

The experimental results in Tab. 4 were obtained in 10-fold cross-validation
on the basis of data from marker-based motion capture. As we can observe, the
best classification accuracies are obtained by the MLP classifier, which achieves
CCR higher than 98% for rank 1 and classification accuracy better than 99%
for rank 2. The SMO classifier achieves competitive results in comparison to the
MLP, whereas the kNN classifiers, which are frequently used in biometric systems
as baseline algorithms, achieve far worse results. The practical advantage of kNN
classifiers is that they deliver the closest identities, and thus they permit analysis of
the causes of miss classification. The availability of precise motion data for several
joints allows identification of most important body segments for gait recognition.

Table 4 Correctly classified ratio [%] in 10–fold cross-validation using data from marker-based
motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 96.62 97.54 98.15 92.62 87.38 84.31 93.85 89.85 88.31

2 96.92 97.54 99.38 92.92 92.62 91.38 94.15 93.23 92.31

3 97.85 97.85 99.38 92.92 94.77 93.23 94.15 95.38 93.85

As seen from the above presented results, marker-less motion capture systems
are able to deliver useful information for view-invariant gait recognition. They
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were obtained for Q = 0.99, for which the number of attributes in the vectorized
tensor representations is equal to 144. Such value of Q gives the best results and
it will be utilized in remaining evaluations.

6.4.2 Train/Test Split - Clothing 1

In this subsection, experimental results that were obtained in train/test data split
are presented. In the following tables, we present classification accuracies that were
obtained on data from marker-less and marker-based motion capture systems.

Table 5 illustrates the classification accuracy for train/test (train - clothing
1, test - clothing 1) split of data from marker-less motion capture system. As
we can observe, for rank 1 the best classification accuracy is slightly better than
80% and it was achieved by the MLP, whereas for ranks 2 and 3 the best results
were achieved by the SMO and they are equal to 89.1% and 94.2%, respectively.
In this multi-view scenario, where a straight walk that was perpendicular to a
pair of cameras was used in gallery/training, whereas diagonal walk was used in
probe/testing, promising results were obtained despite noisy data from marker-less
system. Slightly better than 94% classification accuracy for rank 3 is promising
since the gait data was recorded at significantly different observation perspectives.

Table 5 Correctly classified ratio [%] for train/test (train - clothing 1, test - clothing 1) split
of data from marker-less motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 55.77 67.95 80.13 47.44 44.23 44.23 50.64 46.79 49.36

2 64.74 89.10 84.62 50.00 60.26 59.62 52.56 63.46 64.74

3 73.08 94.23 89.74 50.64 71.79 71.15 53.21 77.56 78.21

Table 6 shows the classification accuracy for train/test (train - clothing 1, test
- clothing 1) split of data from marker-based motion capture system. As we can
observe, the classification accuracies are slightly worse in comparison to results
demonstrated in Tab. 4.

Table 6 Correctly classified ratio [%] for train/test (train - clothing 1, test - clothing 1) split
of data from marker-based motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 87.18 92.95 92.95 91.03 82.69 77.56 92.31 86.54 82.05

2 89.74 96.15 95.51 91.67 89.10 85.90 92.95 91.67 90.38

3 91.67 98.72 98.08 91.67 91.67 91.03 92.95 94.23 92.31
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6.4.3 Train - Clothing 1 / Test - Clothing 2

This subsection is devoted to the analysis of classification results for the
clothing covariates. We present results that were achieved using clothing 1 in
gallery/training and clothing 2 in probe/testing data split.

Table 7 presents the classification accuracy for train/test (train - clothing 1,
test - clothing 2) split of data from marker-less motion capture. In such a scenario
the best classification accuracy was obtained by the MLP classifier. As we can
observe, for rank 3 the classification accuracy is better than 96%.

Table 7 Correctly classified ratio [%] for train/test (train - clothing 1, test - clothing 2) split
of data from marker-less motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 56.90 63.79 75.86 37.93 24.14 31.03 29.31 15.52 27.59

2 74.14 84.48 87.93 37.93 36.21 37.93 29.31 31.03 36.21

3 82.76 91.38 96.55 37.93 56.90 41.38 29.31 51.72 44.83

The experimental results in Tab. 6 illustrate the classification accuracies, which
were obtained on data from marker-based system. As expected, the classification
accuracy does not change noticeably with respect to previously considered scenar-
ios with data from marker-based system.

Table 8 Correctly classified ratio [%] for train/test (train - clothing 1, test - clothing 2) split
of data from marker-based motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 51.72 82.76 94.83 63.79 53.45 55.17 63.79 53.45 55.17

2 55.17 89.66 98.28 63.79 60.34 62.07 63.79 60.34 62.07

3 58.62 93.10 98.28 63.79 74.14 65.52 63.79 74.14 65.52

6.4.4 Train - Clothing 1 / Test - Knapsack

In this subsection, we present the classification accuracies that were achieved in a
scenario in which clothing 1 was used in gallery/training, whereas in probe/testing
the knapsack data was used. As shown in Tab. 9, the system achieves 77.4%, 87.1%
and 93.55% accuracies for rank 1, 2 and 3, respectively.

6.4.5 End-to-end Biometric Gait Recognition by Convolutional Neural Network

Recently, deep learning methods such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) have shown vast potential for automatically
learning features for action recognition and motion analysis [4]. Several CNN-based
methods have been applied to biometric gait recognition [70]. Deep learning-based
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Table 9 Correctly classified ratio [%] for train/test (train - clothing 1, test - knapsack) split
of data from marker-less motion capture.

Rank NB SMO MLP
Euclidean distance Manhattan distance

1 NN 3 NN 5 NN 1 NN 3 NN 5 NN

1 70.97 67.74 77.42 38.71 32.26 41.94 51.61 32.26 58.06

2 74.19 80.65 87.10 38.71 38.71 48.39 51.61 41.94 61.29

3 90.32 93.55 93.55 38.71 61.29 48.39 51.61 77.42 64.52

methods usually benefit from big training datasets. Due to limitations of currently
available datasets for multi-view [20] and 3D biometric gait recognition [7], limited
research has been dedicated to this research topic. In [73] a 3D convolutional neural
network has been applied to recognize gait in multi-view scenarios. A method pro-
posed in [27] can be applied to cross-view gait recognition. Heatmaps extracted on
the basis of CNN-based pose estimates are used to describe the gait in one frame.
An LSTM recurrent neural network is then applied to model gait sequences. Below
we show that promising results can be achieved on the proposed dataset in end-to-
end biometric gait recognition by a neural network built on 1D convolutions. We
evaluated the gait recognition performance in clothing 2 and backpack scenarios.

One of the benefits of using CNNs for sequence classification is that they can
learn from the raw time series data directly, and thus do not necessitate a feature
extraction for the subsequent classification. The input of a neural network built
on 1D convolutions are time series with a predefined length. The input data is
33-dimensonal and can consist of 25 or 32 time steps. The output consists of a
probability distribution over number of persons (C = 32) in the dataset, i.e. it is
a softmax classifier with C neurons. The CNN model consists of a convolutional
block and a fully connected layer. The convolutional block comprises two 1D CNN
layers, which are followed by a dropout layer for regularization and then a pooling
layer. The length of the 1D convolution window in the first layer is set to three,
whereas the number of output filters is set to 256. The length of the 1D convolution
window in the second layer is set to three and the number of filters is set to 64. The
fraction of units to drop is equal to 0.5, whereas the size of max pooling windows
is equal to two. After the pooling, the learned features are flattened to one long
vector and pass through a fully connected layer with one hundred neurons. Glorot’s
uniform initialization, also called Xavier uniform initialization, is used to initialize
all parameters undergoing learning. The parameters are learned using the Adam
optimizer (with learning rate set to 0.0001, and the exponential decay rates of
the first and second moment estimates set to 0.9 and 0.999, respectively) and the
categorical cross-entropy as the objective cost function.

The experimental results that were achieved by the convolutional neural net-
work are shown in Tab. 10. The neural network has been trained on 325 gait sam-
ples belonging to Clothing 1 covariate. Comparing results in Tab. 7 and Tab. 10
for Cloting 1 – Clothing 2 covariate, we can observe that for the rank 1 the CCR
is better than CCR achieved by NB, equal to CCR achieved by SMO, worse than
CCR obtained by the MLP, and better in comparison to CCRs achieved by k-NNs.
On the Clothing 1 – Knapsack covariate, the CCR achieved by the CNN is better
in comparison to CCRs achieved by k-NNs, equal to CCR achieved by SMO, and
worse in comparison to CCRs achieved both by the NB and the MLP.
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Table 10 Correctly classified ratio [%] achieved by 1D convolutional neural network on data
from marker-less motion capture.

Covariate
Rank

1 2 3

Clothing 1 - Clothing 2 63.79 75.86 82.76

Clothing 1 - Knapsack 67.74 77.42 87.10

As seen in Tab. 11, on precise motion data acquired by the marker-based sys-
tem, the convolutional neural network achieved better results in comparison to
results achieved by classical classifiers operating on MPCA features, c.f. Tab. 8. It
is worth noting that in order to relate results achieved on the basis of marker-less
and marker-based data, the discussed evaluation has been performed on time-series
of length equal to 32, i.e. sub-sampled motion data. The temporal convolutional
neural network demonstrated that it is capable of extracting characteristic spa-
tiotemporal 3D patterns generated by human motions.

Table 11 Correctly classified ratio [%] achieved by 1D convolutional neural network on data
from marker-based motion capture.

Covariate
Rank

1 2 3

Clothing 1 - Clothing 2 94.83 98.28 100.00

6.5 Individual Identification Based on Gait

In this subsection, we analyze the performance of individual identification on the
basis of data from marker-less system. Figure 8 depicts the confusion matrix for
train/test (train - clothing 1, test - clothing 1) split of data from marker-less
motion capture, that was determined on the basis of MLP classification results.

The left plot in Figure 9 depicts the recognition rates for persons p1-p32,
which were achieved by the MLP classifier in train/test (train - clothing 1, test
- clothing 1) split of data from marker-less motion capture, see also confusion
matrix in Fig. 8. The right plot shows recognition rates for persons p26–p31 in
clothing 1/clothing 1, clothing 1/clothing 2 and clothing 1/backpack data splits,
respectively.

7 Conclusions and Discussion

We have introduced a dataset for analysis of 3D motion as well as evaluation of gait
recognition algorithms. This is a comprehensive dataset that contains synchronized
video from multiple camera views with associated 3D ground truth. We compared
performances of biometric gait recognition, which were achieved by algorithms on
marker-less and marker-based data. We discussed recognition performances, which
were achieved by a convolutional neural network and classic classifiers operating
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Fig. 8 Confusion matrix for train/test (train - clothing 1, test - clothing 1) split of data from
marker-less motion capture, achieved by the MLP classifier, see also Tab. 5.

Fig. 9 Recognition rate [%] vs. person ID, (left) recognition rate for train/test (train - cloth-
ing 1, test - clothing 1) split of data from marker-less motion capture, achieved by the MLP
classifier, corresponding to confusion matrix depicted in Fig. 8, (right) ) recognition rate for
persons p26–p31 in clothing 1/clothing 1, clothing 1/clothing 2 and clothing 1/backpack data
splits.

on handcrafted gait signatures. They were extracted on the basis of 3D gait data
(third-order tensors) using multilinear principal component analysis. All data are
made freely available to the research community. The experimental results ob-
tained by the presented algorithms are promising. Much better results achieved
by algorithms operating on marker-based data suggest that the precision of motion
estimation has strong impact on performance of biometric gait recognition. The
availability of synchronized multi-view image sequences with 3D locations of body
joints creates a number of possibilities for extraction of gait signatures with high
identification power.
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Maŕın-Jimenez and Rafael Muñoz-Salinas: The AVA Multi–View Dataset for Gait Recogni-
tion. In: Activity Monitoring by Multiple Distributed Sensing, Lecture Notes in Computer
Science, pp. 26–39. Springer Int. Publ. (2014). DOI 10.1007/978-3-319-13323-2 3

25. Deng, M., Wang, C., Cheng, F., Zeng, W.: Fusion of spatial–temporal and kinematic
features for gait recognition with deterministic learning. Pattern Recognition 67, 186
– 200 (2017). DOI http://dx.doi.org/10.1016/j.patcog.2017.02.014. URL http://www.
sciencedirect.com/science/article/pii/S0031320317300560

26. Devanne, M., Wannous, H., Daoudi, M., Berretti, S., Bimbo, A.D., Pala, P.: Learning
shape variations of motion trajectories for gait analysis. In: 23rd Int. Conf. on Pattern
Recognition (ICPR), pp. 895–900 (2016). DOI 10.1109/ICPR.2016.7899749

27. Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: 23rd Int. Conf.
on Pattern Recognition (ICPR), pp. 325–330 (2016). DOI 10.1109/ICPR.2016.7899654

28. Geerse D. J. Coolen B. H., R.M.: Kinematic validation of a multi–Kinect v2 instrumented
10–meter walkway for quantitative gait assessments. PLoS ONE 10(10):e0139913
(2015). DOI 10.1371/journal.pone.0139913

29. Gross, R., Shi, J.: The CMU motion of body (MoBo) database. Tech. Rep. CMU-RI-TR-
01-18, Pittsburgh, PA (2001)

30. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern
Anal. Mach. Intell. 28(2), 316–322 (2006). DOI 10.1109/TPAMI.2006.38. URL http:
//dx.doi.org/10.1109/TPAMI.2006.38

31. Hofmann, M., Geiger, J., Bachmann, S., Schuller, B., Rigoll, G.: The TUM gait from
audio, image and depth (GAID) database. J. Vis. Comun. Image Represent. 25(1), 195–
206 (2014). URL http://dx.doi.org/10.1016/j.jvcir.2013.02.006

32. Hofmann, M., Sural, S., Rigoll, G.: Gait recognition in the presence of occlusion: A new
dataset and baseline algorithms. In: Proc. of Int. Conf. on Computer Graphics, Visualiza-
tion and Computer Vision, Plzen, Czech Republic, pp. pp. 99–104 (2011)

33. Hosni, N., Drira, H., Chaieb, F., Ben Amor, B.: 3D Gait Recognition based on Functional
PCA on Kendall’s Shape Space. In: Int. Conf. on Pattern Rec. (ICPR), pp. 2130–2135.
Beijing, China (2018)

34. Hu, H.: Enhanced Gabor feature based classification using a regularized locally tensor
discriminant model for multiview gait recognition. IEEE Trans. on Circuits and Systems
for Video Technology 23(7), 1274–1286 (2013). DOI 10.1109/TCSVT.2013.2242640

35. Isaac, E.R., Elias, S., Rajagopalan, S., Easwarakumar, K.S.: View–invariant gait recog-
nition through genetic template segmentation. IEEE Signal Processing Letters 24(8),
1188–1192 (2017). DOI 10.1109/LSP.2017.2715179

36. Johansson, G.: Visual perception of biological motion and a model for its analysis.
Perception & Psychophysics 14(2), 201–211 (1973). DOI 10.3758/BF03212378. URL
https://doi.org/10.3758/BF03212378

37. Khokhlova, M., Migniot, C., Dipanda, A.: 3D visual–based human motion descriptors: A
review. In: 12th Int. Conf. on Signal–Image Technology Internet–Based Systems (SITIS),
pp. 564–572 (2016). DOI 10.1109/SITIS.2016.95

38. Kirtley, C.: Clinical Gait Analysis. Theory and Practice. Churchill Livingstone, Edinburgh
(2006)

39. Krzeszowski, T., Kwolek, B., Michalczuk, A., Świtoński, A., Josiński, H.: View independent
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