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Chapter 1

Introduction

This chapter presents the context of the research conducted in this work. First, the
background for the subject of the thesis and the motivation for addressing the specific
issues are discussed. Then, the research goals and contributions are presented. Finally,
the chapter structure of the thesis is shown.

The use of modern technology is a part of many sports disciplines, both during competi-
tions and trainings, in various aspects. Measurements in sports became automated and
more precise due to the development of electronic sensors [205]. Laser and video sensors
allow to measure times of sprinters with high precision [118]. RFID sensors are used
in long distance runs to automatically detect each person crossing the finish line [118].
Video recordings are used in ball games, such as volleyball or tennis, to verify whether
the ball hit the ground inside the court [83, 106]. Electric scoring devices are used in
fencing for hit detection [117].

In recent years, personal devices such as smartphones, smartwatches or fitness track-
ers have begun to be used more and more widely in sports training. Based on signals
from the GPS and inertial sensors, as well as pulsometers, these devices are capable of
providing various types of useful information. Route recording is available for runners
and cyclists, and includes time, distance, and speed statistics [252]. The runners can
optimize their pace based on heart rate monitoring [232]. Step counting, based on the
accelerometer signal, provides feedback on the amount of everyday activities [53]. Dedi-
cated smartphone applications allow to track progress during training, by recording the
number of repetitions performed during each training session [71].

The discussed applications, while being very useful, seem to be limited, considering
the current state-of-the-art methods used in signal processing and machine learning.
Computer vision algorithms for the recognition of general actions have been investigated
for many years, and are capable of providing high accuracy under various conditions
[312]. Many successful studies on specific applications, such as gait recognition [148] or
fall detection [145], have been reported as well. Pedestrian detection is already being
used in commercial driver assistance systems [89]. Inertial sensors are being employed
for gesture and sign language recognition [297]. Despite the richness of the available
methods for the analysis of human motion, few of them have found a way to be applied
in sports, thus motion analysis in sports poses an interesting research topic.

1



Chapter 1. Introduction

1.1 Sports motion analysis

Quite limited application of general human motion analysis methods in sports stems
from certain characteristics of athletes’ motion and the expected feedback. First of all,
actions in sports differ from actions performed in typical everyday activities, therefore
models of generic actions are not directly applicable. Secondly, motion in sports is usu-
ally faster and more dynamic, which makes the tracking more difficult. Sports actions
also require a lot of precision, therefore motion analysis methods need to be precise as
well in order to provide useful feedback. Quantitative information, such as how many
actions of a given type were performed, is often not sufficient. What is more needed, it
is qualitative information providing feedback on how well an action was performed, as
that is the basis for improving sports skills.

Another issue is the differentiation of actions between various sports. Usually, motion
analysis methods which are suitable for one sport are not directly applicable to others.
Rather than developing general methods for all sports, researchers have to address each
sport separately in order to provide precise feedback. On the other hand, methods from
one sport can often be adapted to others, as long as some similarity of motions exists.

In this work, both techniques corresponding to actions, as well as body motion patterns
corresponding to sequences of actions, are considered. Temporal segmentation of body
motion patterns is needed to extract time segments containing the executions of specific
techniques. Then, the detected actions can be analyzed in order to provide qualitative
feedback, which is useful for athletes and coaches.

1.2 Thesis statement

The goal of this thesis was to develop methods which would support improving sports
skills. This objective is attained by employing the analysis of techniques and body mo-
tion patterns for providing the qualitative measurements essential for this task. In the
proposed approach, the extracted information can be used both by athletes and coaches,
during or after practice. The thesis of this dissertation is formulated as follows:

Automatic analysis of techniques and body motion patterns of athletes generates
feedback, which is useful for improving sports skills

The dissertation focuses on several aspects, which are related to providing feedback
relevant for improving sports skills. First of all, the problem of distinguishing specific
sports actions is addressed. Contrary to general action recognition, in sports, different
dynamics of motion can result in different actions. Secondly, the temporal segmentation
of continuous training routines is considered, as this is necessary to perform qualitative
analysis. Typically, this stage is omitted in the literature, as most algorithms are verified
on pre-segmented data. Thirdly, methods for computing performance parameters are
proposed as well. Finally, efficient presentation of feedback is addressed. The solutions
proposed in regard to all of the discussed issues can operate in real-time, which is
a crucial aspect in terms of usability. The research is conducted on a single sports
discipline, based on the aforementioned assumption, that the methods developed for
one sport need, and can be adapted to others.

2



Chapter 1. Introduction

1.3 Research contribution

This thesis considers automatic analysis of motion in fencing, which was chosen as the
sports discipline of interest, due to several identified research challenges (see Section
2.3.5). The main contributions of this dissertation are as follows:

• a comprehensive review of state-of-the-art methods for human motion analysis,
and sports analysis in particular, which are based on various signal modalities

• novel methods for the classification of similar sports actions which are based on
motion dynamics, including several novel feature extraction algorithms, employing
both visual and inertial data, as well as new feature selection and fusion methods

• a dedicated dataset with fencing footwork actions, used to verify the classification
methods, which was made publicly available

• evaluation of the proposed classification methods on two datasets including a pub-
licly available UTD-MHAD dataset; the proposed methods are shown to outper-
form state-of-the-art algorithms for both datasets

• novel methods for the detection of actions in a continuous fencing footwork training
routine, as well as for the qualitative analysis of the extracted segments, which are
based on both visual and inertial signals

• a proof-of-concept implementation of a system capable of detecting and analyzing
actions in a fencing footwork training routine in real-time

• evaluation of the proposed footwork action detection and analysis methods by
using two dedicated datasets

• novel methods for blade tracking, weapon action model learning, bladework prac-
tice evaluation, and providing immersive feedback by using augmented reality

• a proof-of-concept implementation of an augmented reality-based system for sup-
porting bladework practice

• evaluation of the proposed methods for bladework practice support

1.4 Dissertation structure

The structure of the dissertation is as follows. Chapter 2 presents the background for
the research. A thorough review of human motion analysis methods is presented. Then,
sports motion analysis is discussed and the discipline of interest is introduced. Chapter 3
addresses the problem of fencing lunge action classification by employing motion dynam-
ics. A dedicated dataset is introduced, methods for feature extraction, selection, and
fusion are presented, and an extensive evaluation is provided. In Chapter 4, methods for
the detection and analysis of actions in a continuous fencing footwork routine are pro-
posed. Their evaluation is based on two dedicated datasets which allow for comparisons
between the results obtained in regard to visual and inertial data. Chapter 5 focuses on
providing real-time, immersive feedback by employing augmented reality. Issues regard-
ing blade tracking, weapon action model learning and creating mixed virtual-real views
with augmented reality glasses are addressed. Chapter 6 concludes the dissertation and
presents directions for further work.

3
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Chapter 2

Background and related work

This chapter discusses context of the research in detail and explains the motivation
behind addressing the specific problems of the field. First, the problem of motion anal-
ysis in sport is introduced. Then, a thorough review of methods for automatic human
motion analysis is conducted. Finally, automatic motion analysis in sport is discussed,
and the research objectives are presented.

Sport plays an important role in modern society [51]. It allows for social interaction not
only for athletes during training and when taking part in competitions, but for sports
fans as well, due to attending sports events and emotional engagement involved [122].
It is greatly beneficial for health, both in terms of one’s physical [284] and mental [84]
well-being. World-class sports competitions, such as the Olympic games, are a signifi-
cant part of global culture. Sport is commonly present in our live, and it is therefore
justified that many researchers make efforts to help understand and positively influence
the various aspects of this domain.

There are two groups of people that can benefit the most from introducing novel tech-
nologies in sports: the athletes and the spectators. In this work, the focus is on devel-
oping motion analysis methods, which could provide useful feedback for the athletes.
This includes precise tracking of the performed movement, the temporal segmentation,
detection, and recognition of specific actions, the qualitative analysis of these actions,
and, finally, providing useful feedback, preferably in real-time. Issues regarding the
presentation of sports activities to the spectators, for instance by the detection of the
key events of a sports broadcast [99], are not a part of this research and are therefore
discussed only briefly.

This chapter is organized as follows. In Section 2.1, the concept and the goals of motion
analysis in sports are presented, as context for the research. Section 2.2 includes a de-
tailed review of the methods used in the field of automatic human motion analysis which
constitute a reference point for developing more specific methods for sports analysis. In
Section 2.3, related work is presented, new challenges are identified, and the discipline
of interest - fencing - is introduced. Fencing is a highly dynamic and technical sports
discipline, in which the identified challenges are relevant. Finally, the research objectives
are presented and the chapter is summarized.

5



Chapter 2. Background and related work

2.1 Motion analysis in sports

From an athlete’s point of view, one of the main objectives of practicing a sport is to
develop the proper skills and achieve the best possible results in sports competitions.
Although the amount of effort put into the task is very important, little can be accom-
plished without the proper training methods. It is essential to assess performance and
provide feedback to improve skills in sports. The motivation behind this work is that
both performance assessment and feedback can be effectively supported by automatic
motion analysis.

2.1.1 Sports skills

Sports can be perceived as a task of employing skills in a competitive activity with
well-defined rules. In order to achieve better results, extensive practice is required, as it
enables the improvement of skills. In order to understand how the process of increasing
one’s skill level works, we first need to define skill. Stallings [249] distinguishes three
domains of skill: cognitive (knowledge of what to do and how to do it), perceptual (in-
terpretation of information from the surrounding environment), and motor (performing
movement). A skill is always composed of all three domains, although we can usually
distinguish a dominant domain for a particular task. In sports analysis, motor skills are
considered, which are defined by Stallings as follows:

A motor skill is a learned, goal-directed activity accomplished primarily through
muscular contributions to action and entailing a broad range of human behav-
iors.

Stallings emphasizes that this definition highlights an important feature of motor skills
- that they can be improved by learning. A skill is influenced by two factors - abilities
and technique, both of which are important in the learning process [218]. Abilities such
as strength, flexibility, balance, and coordination [249] define the maximum possible
characteristics of a performed movement, such as range, speed or accuracy. Technique
is a motor procedure for tackling a motor task [218]. It defines how a certain action
should be performed, for instance, how to hit the ball in the context of a serve in vol-
leyball or how to perform a parry in fencing. An athlete becomes skillful by learning
how to properly execute a particular technique, which requires certain abilities. While
technique is the basis for movement in sports, the body motion pattern is a sequence of
techniques performed by an athlete. For instance, the body motion pattern in a triple
jump includes techniques such as running, hopping, stepping and jumping.

The analysis of techniques and body motion patterns is essential for coaching in sports for
two reasons. First of all, it allows to provide feedback to athletes, which is necessary in
order for them to correct their movement, and eventually improve their skills. Secondly,
the technique itself may be improved - the coach may decide that a certain movement
should be performed differently. This thesis focuses on providing feedback to athletes,
although some of the presented methods may also be employed for analyzing techniques
in general.

2.1.2 Performance assessment

Typically, athletes can assess their performance through proprioception, measurements
and feedback from a coach. Proprioception is the sense of the relative position of one’s

6



Chapter 2. Background and related work

own body parts and the amount of effort being exerted in a movement [237]. Unfortu-
nately, proprioception is rather limited and not very reliable - our perception of our own
motion often differs in reality. Measurements, on the other hand, can provide a highly
accurate assessment of a performed action. For instance, a sprinter can measure their
time in a 100-meter dash, and a jumper can measure the length of their jump. However,
when the assessment of the performance of a particular technique is needed, rather than
just the final outcome of a sports action, measurements are difficult to make. Neverthe-
less, as will be shown in this work, by applying sophisticated sensors and data processing
algorithms, accurate analysis of techniques and body motion patterns in sport is possi-
ble. The third type of feedback, provided by a coach, is usually the most valuable for an
athlete. The coach knows how the technique should be performed, observes the errors
that are being made and informs on how to correct them. However, the availability of
the coach is an issue, as they usually need to share their attention between multiple ath-
letes. Also, quick and fine motions may be difficult to observe, even for an experienced
coach.

The goal of this work is to provide athletes with feedback based on advanced measure-
ments and therefore allow them to efficiently improve their skills even in the absence of
a coach. An additional objective is to provide coaches with relevant and precise infor-
mation which would be difficult to obtain with simple observation. It is worth noting
that the automatically gathered information could also be used to create repositories of
data, for use in statistical analysis and progress tracking. These goals can be realized
by the analysis of techniques and body motion patterns. Athletes usually practice tech-
niques separately at first, and then combine them into sequences. Therefore, during an
automatic analysis, the observed body motion pattern needs to be segmented in time
in order to detect particular techniques. An athlete executes techniques with regard to
their level of proficiency as well as their personal style, therefore the models of tech-
niques need to account for such variations.

For the sake of completeness of the argument we need to address another aspect of an
athlete’s preparation, which is tactics [111]. While techniques define how to perform
specific actions, tactics regards knowing when and how to employ a technique. Tactical
skills are particularly important in sports where direct interaction with an opponent is
present. Although interesting and important, the analysis of tactics is outside the scope
of this work, as the focus is placed on the techniques. It is, however, worth noting that
the ability to recognize specific techniques is crucial for analyzing tactics, and therefore
the presented methods are useful also in this context.

One of the key characteristics of analyzing motion in sports is that each sport has its
own unique set of techniques and body motion patterns. This makes it very difficult to
develop generic methods for sports action analysis. For instance, tennis players need to
perform the movement of hitting a relatively small ball with a racket, while in football,
most techniques are limited to the legs. There seems to be very little correspondence in
the analysis of these two disciplines. On the other hand, once we are able to reconstruct
the motion trajectory of the upper limbs of a tennis player, we can expect to develop
similar methods for tracking the lower limbs of football players. Therefore, rather than
trying to create general methods that could be employed in any sport, this work focuses
on analyzing specific actions in a specific discipline in order to develop methods which
could be adapted for other disciplines as well.
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2.2 Automatic analysis of human motion

Automatic analysis of human motion can provide information in regard to which ac-
tions are being performed and how. There are multiple applications for such meth-
ods, including human-computer interaction [167, 183], surveillance [168], gait recogni-
tion [142], fall detection [146], facial expression recognition [178], sign language recog-
nition [116, 130, 172] or sport practice support [226]. The most common task is action
recognition, for which the goal is to classify actions, usually based on previously gathered
knowledge [223]. This is most often done with pre-segmented data, where the actions
have already been extracted [34], although in real-time applications, the temporal seg-
mentation of motion remains an important issue. The process of action recognition
includes the acquisition of data from a sensor, the extraction of relevant features, and
applying machine learning methods to build classifiers capable of distinguishing between
actions [250, 287]. Most works in the literature focus on proposing novel features. In
regard to machine learning, general methods are typically applied and optionally tuned
for specific scenarios. What is more, deep learning methods have recently become pop-
ular, where features can be extracted automatically by a neural network which also
performs classification [109]. In the qualitative analysis of motion, the goal is to identify
and measure the important characteristics of an action. Although the description of
motion may be similar to that in the case of action recognition, the difference is that
instead of classification, the relevant parameters are extracted in order to analyze the
performance of an action. Qualitative analysis of motion is particularly important for
providing useful feedback in sports [138].

In this section, a thorough review of the literature in the area of human motion analysis is
provided. While most works focus on the action recognition task, the described methods
are largely applicable to qualitative analysis as well, since the most important aspect
in both cases is description of motion. This section starts with the definition of action,
which is a basic term in human motion analysis. Next, the key challenges in the field
are presented and an overview of methods found in the literature is provided. The most
important methods in the field of automatic human motion analysis are discussed in
more detail in separate subsections.

2.2.1 Actions

Automatic analysis of human motion is usually considered in terms of actions and ac-
tivities. Although an action seems to be an intuitive concept, its exact definition varies
between authors. Activity is commonly considered to be a broader term than action,
although, the exact boundary between the two concepts is rather vague. Herath et
al. [109], in their survey on action recognition, refer to several definitions of both action
and activity in the literature. According to [193], an action, for instance running, is a
movement composed of action primitives such as moving a leg forward, while an activity
is a number of subsequent actions. The authors of [263] characterize actions as simple
motion patterns executed by a single person and of a short duration, while defining ac-
tivity as a complex sequence of actions performed by multiple persons. Wang et al. [283]
emphasize the result of an action (in terms of interaction with the environment) to be
the defining factor. Based on that, Herath et al. [109] propose their own definition: ’Ac-
tion is the most elementary human-surrounding interaction with a meaning’. Gestures
are another related concept, commonly associated with hand gestures and sign language
recognition in particular. A gesture can be considered to be a type of action, however it
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can also be understood as a basic component of an action [157]. In this work, an action
is considered to be an execution of a technique, and a sequence of techniques is referred
to as a body motion pattern. Other terms, like activities and gestures, are not used.

2.2.2 Challenges

In order to be useful in real-life applications, human motion analysis methods need to be
robust to multiple factors which may vary depending on the scenario. There are several
challenges which need to be addressed [223, 287]. First of all, variations in the perfor-
mance of actions always occur. At least slight variations are expected, even when the
same person is repeating the same action under the same conditions. Different persons
may perform an action in a significantly different manner due to their personal style
and anatomical construction. The rate of performance needs to be considered as well,
as it may vary depending on the person and the situation. Environmental conditions
may also constitute a relevant factor. For instance, running on sand and running on a
road will result in different leg movement. Environment is also important in the context
of the data acquisition and processing. Video-based methods are often vulnerable to
changing lighting conditions, occlusions, and different viewpoints [223]. The difficulty
of localizing a person can depend on complexity of the background. These issues can be
addressed by applying depth cameras, although they are more expensive and operate
in a limited range, and can therefore not always be employed. Inertial sensors are free
of the problems specific to visual sensors, but they have their own limitations, such as
battery life, data transfer, signal noise and the necessity to wear the sensor. In order
to gain robustness, human motion analysis methods should address all of the aforemen-
tioned issues.

Most of the works available in the literature focus on general action recognition, which
mostly includes significantly differing actions [34]. The recognition of similar actions
is rarely addressed, even though it is an important issue particularly in sports motion
analysis. It is also worth noting that many works do not consider the task of tempo-
ral segmentation, and operate on pre-segmented data instead [309]. The problem of
temporal segmentation is relevant in the context of real-world applications. Qualitative
analysis of actions is also rarely performed, as most works are limited to the classifica-
tion task [312]. Finally, in some scenarios, particularly in sports, the issue of providing
feedback is crucial, although it is not addressed in the typical case of general action
recognition. While it is useful to perform analysis after an action has been finished, e.g.
based on a video recording, the real challenge is to provide feedback in real-time.

Data availability is an important aspect as well, as it is necessary for the development
and evaluation of different methods [34, 251, 309]. The data acquisition process is
usually time-consuming [169]. The key challenge is to record sufficient variations to
allow machine learning algorithms to achieve generalization. Public action recognition
datasets have become popular, as they allow for reliable comparisons between different
methods.

2.2.3 Methods overview

One of the basic factors in the examined works is the type of the analyzed signal. Most
commonly employed sensors include: cameras, providing RGB videos; depth sensors,
providing depth map sequences; and inertial measurement units (IMU), providing data
from accelerometers, magnetometers, and gyroscopes. Motion capture (MoCap) systems
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are also used. They employ a number of coordinated IMUs or multiple cameras tracking
a set of markers in order to reconstruct human motion with high accuracy. Fusion of
multiple modalities is also an interesting research direction.

An overview and discussion of the methods based on RGB data can be found in a number
of survey papers [24, 109, 193, 223, 263, 287, 312]. Approaches to the classification
of these methods vary between authors, as they highlight different aspects. Reviews
devoted to depth and inertial sensors can be found in [45, 157, 225, 300] and [6, 10,
54, 151, 220] respectively. Based on the survey papers and the analyzed literature, the
following categories of methods are distinguished and discussed in this work:

• Body-based methods - a person is detected in the scene and either whole figure
movement is considered or the body is segmented into body parts, so that their
movement can be analyzed separately or with respect to one another

• Spatio-temporal interest points - points distinctive in both space and time are
detected, then dedicated descriptors around these points are computed

• Grid-based local descriptors - motion is described in a per-pixel fashion or in cells
of a spatio-temporal grid

• Deep learning - action recognition is based on deep neural networks which can
operate on raw images without the explicit feature extraction step

• Depth-based methods - depth maps are employed either directly or for skeleton
tracking, which enables the analysis of joint motion

• IMU-based methods - data from accelerometers, gyroscopes, and magnetometers
are employed

• Multi-sensor systems - multiple homogeneous sensors are used for motion capture
systems or heterogeneous sensors are employed for multimodal data fusion

The most important methods in each category are described in the following subsections.

2.2.4 Body-based methods

Body based methods aim at detecting, tracking, and, optionally, segmenting the figure
of a person. The figure can be represented as a silhouette or a contour, usually ex-
tracted by background subtraction [219]. In [23, 63], silhouettes are used in order to
generate motion energy images (MEI) as well as motion history images (MHI) (see Fig.
2.1). MEIs are binary cumulative motion images indicating regions of motion, while in
MHI, pixel intensity is a function of the temporal motion at a given point, computed
using a decay operator. The MEI and MHI of actions constitute temporal templates
which can be matched by computing Hu moments [119]. Weinland et al. [286] extend
the temporal templates to 3D by introducing motion history volumes (MHV). 3D rep-
resentations of silhouettes in time are also employed in [19, 94] to construct space-time
shapes, from which features such as space-time saliency and space-time orientations are
extracted. The contours of silhouettes are used in [41] for generating so-called star skele-
tons. Both silhouettes and contours are utilized in [278] for computing average motion
energy (AME) and mean motion shape (MMS) representations.

Modeling background for subtraction may be difficult, therefore alternative methods
for finding persons in images were proposed. One of the most efficient and popular
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approaches to human detection is employing histograms of oriented gradients (HOG)
[60]. The authors of [258] extend the HOG descriptor for recognizing pose primitives.
A method for both tracking and action recognition using the PCA-HOG descriptor is
proposed in [162]. Once a person is detected in an image, it is possible to employ 2D
or 3D parametric body models in order to obtain relevant information with respect to
motion of specific body parts. In [96], a simple 2D model in the form of a stick figure is
fitted to a silhouette. The authors of [197] localize joints and limbs in an image based on
multiple visual cues. A method for recovering a 3D human pose from a monocular image
is presented in [3]. In [196], 3D human body configuration is estimated by employing a
shape context. A detailed survey on pose estimation and modeling is presented in [222].

Fig. 2.1: Silhouette-based action recognition - original image (left), motion energy
image (center) and motion history image (right) (source: [23]).

2.2.5 Spatio-temporal interest points

Instead of focusing on finding a person in a video, it is possible to track a number of
keypoints which are distinctive in both space and time. One of the main advantages
of such an approach is the increased robustness to occlusions and changing conditions.
Space-time interest points (STIP) were introduced in [149], where the authors extended
the Harris corner detector [104] to 3D in order to construct a model of a walking human.
Dollar et al. [69] observed that stable interest points are rather rare and addressed this
issue by proposing to employ Gabor filtering on spatial and temporal dimensions sepa-
rately, in order to improve interest point detection. Hessian-based detectors proved to
be efficient as well, as reported in [293].

The detected interest points can be used for motion analysis in different ways. One
popular approach is to compute local descriptors around the interest points. Spatio-
temporal image gradients within Gaussian neighborhoods are used in [238] for human
action recognition. Lowe [161] assigned a scale and an orientation to each interest point
and used this information for computing gradient-based descriptors in regions around
the keypoints (see Fig. 2.2). The proposed approach is called the scale invariant feature
transform (SIFT). SIFT features are invariant to both scale and orientation, and enable
efficient matching between different views of objects or persons. SIFT proved to be
crucial for many applications, such as object recognition [161], robot localization [240]
or image stitching [155]. SIFT was later extended to 3D SIFT [239], which is computed
in spatio-temporal cubes rather than on single images. The authors of [14] addressed
the SIFT feature matching process efficiency problem and proposed speeded-up robust
features (SURF), which provide similar recognition accuracy at a lower computational
cost. An evaluation of local spatio-temporal features can be found in [82, 273].
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Another approach for employing interest points is to analyze their trajectories of mo-
tion. In [191], the velocity of the tracked points is computed over a long temporal
range, and such sequences are then employed for classification by using the bag-of-
words model [246]. The authors of [186] argue that short trajectory snippets, denoted
as trajectons, are better suited for action recognition. Dense trajectories and improved
dense trajectories, introduced in [271] and [272] respectively, include multiple different
descriptors that are computed along densely sampled trajectories. The motion relation-
ships between different objects are considered in [125] by inclusion of local and global
reference points for computing trajectory shape descriptors as well as motion represen-
tation.

Fig. 2.2: Detection of space-time interest points - original image (left) and the
detected keypoints, including location, scale, and orientation (right) (source: [161])

2.2.6 Grid-based local descriptors

While descriptors such as SIFT or SURF were devised specifically to be used with
spatio-temporal interest points, there are multiple relevant descriptors proposed in the
literature, which do not require finding keypoints. An alternative approach is to divide
the spatio-temporal volume with a grid and compute the descriptors in cells [285]. It is
worth noting, that such descriptors can also be computed in 3D neighborhoods defined
around the interest points [150].

HOG can be used not only for person detection, but for motion description as well.
In [137], 3D gradients are employed to construct a spatio-temporal descriptor. HOG
3D is also employed in [285] to deal with occlusions and viewpoint changes. Local
binary patterns (LBP) encode gradient changes around a point in a binary manner.
This descriptor was primarily used for texture recognition [208], and later extended to
three orthogonal planes (LBP-TOP) for the description of dynamic textures in facial
expression recognition. LBP-TOP was also employed for action recognition [133]. The
shape context [16] was designed to describe mutual relations of points in the contours
of shapes, including distance and orientation. It was also adapted for pose [163] and
motion description [311].

Optical flow is a well-known algorithm which provides motion information by computing
the pixel-wise oriented difference between consecutive frames [15] (see Fig. 2.3). Such
information proved to be useful for human motion analysis. The authors of [73] produce
four separate channels from the optical flow by taking the x and y components in
both positive and negative directions and apply such features for action recognition at
a distance. Motion descriptors based on optical flow are also proposed in [62]. The
histogram of optical flow (HOF), inspired by the HOG descriptor, was introduced in
[150]. Variations of HOF, including motion vector orientations, were presented in [61]
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and [36]. The HOF descriptor is also popular in methods combining multiple descriptors,
such as dense trajectories [272].

Fig. 2.3: Motion description by the optical flow algorithm - original image (left) and
the computed optical flow (right) (source: [73]).

2.2.7 Deep learning

Artificial neural networks (ANN) were inspired by the biological neural networks in
human brains. The structure of ANNs consists of multiple connected layers of artifi-
cial neurons. Early implementations of ANNs employed only a few layers with several
neurons and were efficient in solving relatively simple problems. More difficult prob-
lems required deeper and larger networks which proved challenging to learn. Hinton et
al. [112] presented an algorithm for fast learning of deep neural networks (DNN), launch-
ing the era of deep learning. It [253] it was shown, that the so-called vanishing gradient
problem [17] can be solved by using well-designed random initialization and therefore it
is possible to train DNNs with stochastic gradient descent algorithm with momentum.
Deep convolutional neural networks (CNN) proved to be particularly effective for large-
scale image classification and were able to outperform other methods on the ImageNet
dataset which contains 15 million images belonging to roughly 22 000 categories [141].
Large-scale visual recognition found applications in web search engines [254]. A com-
parison of shallow and deep methods for image recognition is provided in [35].

A straightforward approach to applying deep CNNs to action recognition is to em-
ploy 3D filters in spatio-temporal volumes rather than employing 2D filters in images.
In [135], a sequence of the 2D contours of a person is used to extract features using a
CNN with 3D Gabor filters. Action classification is then performed with a weighted
fuzzy min-max neural network. The raw images are fed to a 3D CNN in [123], and
the network extracts the features automatically (see Fig. 2.4). The authors of [12] first
extract the spatio-temporal features with a 3D CNN, and then train a recurrent neu-
ral network (RNN) [114] to classify action sequences based on the temporal evolution
of the features. Unsupervised learning based on long short-term memory (LSTM) [90]
networks enables not only video classification, but also prediction of future sequences,
by extrapolating the observed motion [248]. Bi-directional LSTMs are used for action
recognition in video sequences in [265].

Neural networks can be provided with multiple streams of data and some layers of the
network can be processed separately. The authors of [128] propose a two-stream net-
work with a context stream containing the full images and a fovea stream containing
the regions of interest. They also analyze different methods of fusion of the streams -
early, late, and slow. Another two-stream network is presented in [245], where a spatial
stream encodes information extracted from still images and a temporal stream encodes
the motion between frames. Fusion of spatial and temporal streams is addressed in [81].
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Some works explored the possibilities of creating hybrid methods, including both deep
learning and feature-based approaches. In [261], a 3D CNN is used to extract spatio-
temporal features which are then employed for classification based on support vector
machines (SVM). The authors of [277] compute convolutional feature maps which are
then constrained on the basis of the improved dense trajectories [272]. In regard to time
domain most CNNs operate on short time windows, although attempts were made to
employ full-length sequences [302]. Recently, deep learning methods are also adapted for
other data modalities, including depth [305], skeletal [216], infrared [5] and inertial [105]
signals. Multimodal approach is presented in [64]. A surveys on deep learning in action
recognition can be found in [109, 281, 309].

Fig. 2.4: Deep 3D convolutional neural network for human action recognition
(source: [123]).

2.2.8 Depth-based methods

Depth sensors are able to measure the distance of the objects in the observed scene.
Such data is very useful in motion analysis, as it greatly facilitates the segmentation
of objects and provides information about motion along the axis perpendicular to the
view plane. Moreover, infrared depth sensors have their own light source, which makes
them robust to changing lighting conditions. For these reasons, depth-based methods
for motion analysis have been investigated intensely in the recent years as an alternative
to solutions based on data from RGB cameras.

There are three main types of depth sensors [45]: stereo cameras, structured light sen-
sors, and time-of-flight (ToF) sensors. Stereo cameras mimic human vision - images from
two slightly shifted viewpoints are used for 3D reconstruction. This approach requires
only two RGB cameras to compute the depth map, although the calculation cost is sig-
nificant and varying lighting conditions make this process challenging. Structured light
sensors use an infrared light source to project a complex pattern on the scene, which is
invisible to human eye, but visible to the sensor. By analyzing the irregularities in the
pattern cast on the scene, it is possible to reconstruct the depth maps. Such a solution
was employed in the popular Microsoft Kinect [236]. ToF sensors employ active infrared
light pulses and measure the time needed for the reflected light to travel back to the
sensor. This technique was adapted in the Kinect 2 [236]. Finally, 3D laser scanning
devices were used in some studies [20], although they are not very popular due to their
inability to provide data in real-time.

There are two main approaches for employing depth information for human motion
analysis. One is to operate directly on the depth maps, and the other is to extract a
skeleton and make use of the positions of the joints. Depth map approaches include a
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variety of different techniques. The authors of [154] create an action graph which encodes
actions as a sequence of salient postures, described as a bag of 3D points, extracted
from the silhouette. In [307], local spatio-temporal descriptors are extended to 4D by
including the time dimension. Action sequences are modelled as 4D shapes in [275],
and randomly sampled 4D subvolumes are employed to extract the so-called random
occupancy patterns (ROP). Vieira et al. [268] propose space-time occupancy patterns
(STOP) - an action representation based on dividing the space-time volume with a 4D
grid and identifying the relevant cells in order to encode key poses. The authors of [210]
use surface normal orientations of time, depth and spatial coordinates in a 4D space in
order to construct a histogram of oriented 4D normals (HON4D) descriptor (see Fig.
2.5). In [156], a rich motion descriptor is created by combining a depth based motion
history descriptor called the 3D motion trail model (3DMTM) with the pyramid HOG
(PHOG). Recently, convolutional neural networks were employed for depth-based action
recognition as well [279, 305].

Fig. 2.5: Depth map-based action recognition - surface normals in HON4D descriptor
(source: [210]).

Skeleton-based approaches became popular in human motion analysis for several rea-
sons. Johansonn [126] showed in his experiment that actions performed by people can
be successfully recognized by analyzing only the motion of the markers corresponding
to joints without having to see the entire person. Depth data greatly facilitates the
extraction of skeletons and hence the automatic analysis of joint positions. Moreover,
processing joint coordinates is much less computationally expensive than processing
depth maps or RGB data. Early work focused on the detection of distinctive body parts
such as the head, hands, and feet [87]. An efficient method for human pose estimation
was presented by Shotton et al. [244]. The authors created a large, realistic, and varied
synthetic set of training images, which were used to train a random forest (RF), that
allows to efficiently find body joint positions. This algorithm is employed in the Kinect
sensor. Authors of [298] compute histograms of 3D joint locations (HOJ3D) as a com-
pact pose representation. In [276], sequences of joint positions in time are transformed
to the frequency domain and the fourier temporal pyramid (FTP) descriptor is created.
Differences between joint positions in the current, previous, and initial frames are used
in [299] together with principal component analysis (PCA) in order to compute the
EigenJoints descriptor (see Fig. 2.6). Geometric relations between joints are employed
in [274] for learning robust action representations, which are classified with a recurrent
neural network. The combination of both depth maps and skeletons is also investigated
in several works [269, 276, 308].
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Fig. 2.6: Skeleton-based action recognition: EigenJoints method framework
(source: [299]).

2.2.9 IMU-based methods

Inertial measurement units constitute an interesting alternative to visual sensors. Ad-
vanced IMUs are able to measure signals from three types of sensors: an accelerometer,
a gyroscope, and a magnetometer, in three axes each, resulting in a total of 9 degrees-
of-freedom (DOF). IMUs are free of many of the issues related to visual sensing, such as
the susceptibility to changing lighting conditions, occlusions or violation of privacy [28].
Moreover, IMUs usually operate at a much higher sampling frequency (250 Hz - 400
Hz for a typical mid-range sensor), which may be important in the analysis of highly
dynamic motion. On the other hand, IMUs have to be attached to the examined person,
which can be problematic in some scenarios. Other possible issues include the need for
calibration, susceptibility to magnetic disturbances, and limited operational time, as
wireless sensors relay on batteries. Most importantly, IMUs deliver information about
changes in motion, such as acceleration or angular velocity, which makes it difficult to
reconstruct the positions of joints due to the accumulation of errors [235]. On the other
hand, they can measure orientation with high accuracy, which in some scenarios may
be more useful than position.

The first attempts at estimating orientation were based solely on accelerometers [199] or
gyroscopes [25]. However, neither of them proved to be sufficient by themselves, there-
fore a sensor fusion approach was proposed which integrated both the accelerometer and
the gyroscope readings [66]. Even more accurate orientation was achieved by combining
the accelerometer, gyroscope, and magnetometer by using the Kalman filter [230] and
the extended Kalman filter (EKF) [233]. A similar issue to sensor orientation estima-
tion is the analysis of angular kinematics of joints [220], where the goal is to find the
relative position of body parts by estimating the angles in the relevant joints. This is
usually achieved by employing two IMUs, one on each side of the joint, and measuring
the difference between their orientations [207].

Apart from orientation estimation, inertial sensors are also useful for motion analysis [54]
and action classification [6]. Since IMUs operate at high frequencies and produce noisy
data, a popular approach is to compute statistical features in time windows [10]. Tempo-
ral segmentation includes both the detection of activities in continuous signals [202, 247]
(see Fig. 2.7) and the division of the identified activity into adjacent or overlapping win-
dows [6, 46]. For each window, the features are usually computed in one or more of the
following domains: time, frequency or time-frequency [10]. The time domain features in-
clude, among others, mean, root mean square (RMS), standard deviation, variance, and
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mean absolute deviation (MAD) [46, 187]. Fast Fourier transform (FFT) is employed
to transform the signal into the frequency domain and extract features such as FFT
components, energy, and entropy [13]. Wavelet transforms are used to extract wavelet
coefficients in the time-frequency domain [206].

With recent development of smartphones and wrist-worn fitness trackers, equipped with
inertial sensors, IMU-based motion analysis found applications in physical activity recog-
nition and tracking [195]. In [47] a smartphone-based method, robust to changes in ori-
entation, placement and subject variation is proposed for activity recognition. A com-
parison of smartphone and smartwatch-based activity recognition is discussed in [288].
Deep learning approaches are applied to inertial signals as well [105].

Fig. 2.7: Accelerometer (top) and gyroscope (bottom) signals from IMU attached to
hip of walking person (source: [202]).

2.2.10 Multi-sensor systems

Better accuracy of human motion tracking is achievable by employing multiple sensors.
Two approaches can be distinguished in this area. The first one is to use multiple sensors
of the same type, which is the basis of most of the so-called motion capture (MoCap)
systems [243]. The second approach is to use different types of sensors and provide the
motion description by fusing the multimodal information.

MoCap systems can be based on either visual [193] or inertial [151] sensors. Visual
systems often employ markers which are placed on a person and tracked by multiple
cameras from different viewpoints. The markers are usually placed near the joints in
order to allow for accurate skeleton reconstruction, and can be either passive or active.
Passive markers are made from highly reflective materials and require dedicated exter-
nal light sources [200], while active markers each have a light source of their own [217].
Markerless MoCap systems usually employ depth sensors, such as the Kinect, which
is able to reconstruct the skeleton. However, the accuracy of a single Kinect is often
not satisfying, therefore multi-Kinect systems have been proposed [153, 164] (see Fig.
2.8). Full-body motion capture is also possible with an extensive set of inertial sen-
sors [50]. The comparison of motion measurements derived from inertial sensors with a
3D marker-based optical motion capture system is provided in [30].
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Since each type of sensor has its own advantages, fusion of multimodal data can give
better results. Combining RGB and depth, often referred to as RGB-D, is quite intuitive,
as both are visual data. Coordinate mapping between these two modalities is supported
by sensors such as the Kinect, although custom methods can also be found in the
literature [108]. The analysis of human activities using both RGB and depth is discussed
in [140, 152], and a number of RGB-D datasets is publicly available [309]. Multiple
RGB-D cameras are employed in [160] and a fusion of RGB, depth, and skeleton data
is presented in [241]. Inertial sensors can be used in combination with both RGB and
depth cameras. The authors of [247] employ an RGB wearable camera as well as IMUs
for temporal segmentation and activity classification. The fusion of depth and inertial
data have been recently investigated as well [40, 64, 95]. IMUs can also be used with
other types of wearable sensors, such as heart monitors or light sensors [151]. It is worth
noting, that data synchronization of the multimodal signals is an important issue [173].

Fig. 2.8: Calibration of multiple Kinect sensors (source: [164]).

2.3 Automatic motion analysis in sports

General and sports motion analysis differ in two crucial aspects. Firstly, in sports, not
only action recognition is important, but qualitative analysis of motion as well. While
recognition of actions is important in terms of temporal segmentation and the study of
tactics, the most interesting information that can be provided for an athlete is how to
improve their performance of a technique, particularly in the case of individual sports.
This requires systems capable of measuring parameters relevant to the motion. The
second aspect is that sports motion analysis is very domain specific. Different types of
motions and techniques are used in each discipline, therefore it is difficult to propose
general methods for motion analysis which would be suitable for various disciplines.
Instead, methods developed for one discipline could be adapted for another by taking
into account the specifics of the actions in both of them. In this section, a survey
of literature devoted to automatic motion analysis in sports in presented. Then, the
discipline selected for this study is discussed and justified. Finally, the objectives of the
research are presented.

2.3.1 Overview

The automatic analysis of sports can focus on many aspects. The most general problem
is the recognition of sports disciplines, which can be done e.g. by extracting textures
from videos along with other cues, such as audio signals [190]. On a more fine-grained
level the recognition of specific activities or actions is performed [264]. This usually
requires the detection and tracking of athletes as well as the ball in disciplines where
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it is used. Once the actions are extracted, performance measures can be devised and
qualitative analysis can be provided. This can be used as the feedback for the coaches
and the athletes.

The process of the automatic analysis of motion in sports poses a number of challenges,
as described in [257]. Inertial sensors need to be attached in a manner which is non-
interfering with the athlete’s movements. In the case of visual sensors, several issues
need to be addressed, such as different viewpoints, the calibration of multiple cameras, a
large variation of poses, fast movement, occlusions, changing backgrounds or the similar
appearance of players in team sports. There are many aspects on the basis of which
sports disciplines can be classified, such as contact vs non-contact sports or the amount
of static and dynamic motion components [228]. From the perspective of automatic
motion analysis, the most important factor seems to be the division between team
and individual sports, as it results in significantly different analysis methods and goals.
Therefore, the following survey of the literature in this area is presented with respect to
these criteria. Publicly available datasets for sports action analysis are also discussed in
a separate subsection due to their important role in the development and comparison of
sports analysis methods.

2.3.2 Team sports

There are several important characteristics of team sports which significantly influence
the development of automatic analysis methods. Firstly, the presence of multiple players
requires simultaneous tracking of multiple objects as well as their identification. Sec-
ondly, video broadcasts from team games usually include frequently changing shots from
different cameras, and, thus, different perspectives. Finally, team sports usually use a
ball, which is difficult to track, as it is small and moves fast. Camera motion, player
tracking and ball tracking are therefore the most often addressed issues in this area.

In order to analyze footage from team games, it is necessary to either know camera
orientation a priori or detect it automatically. An algorithm for vertical axis detection
in sports videos is proposed in [304]. The authors of [44] go further by introducing a
method for the automatic planning of camera movement based on the players’ current
activities. Segmentation of sports broadcasts is addressed in multiple papers and in-
cludes fine classification of camera shots [127] as well as the detection of key events for
the purpose of summarization [99]. Annotation of sports videos, including both low-level
events and high-level semantics is performed in [295]. Crowd analysis can also provide
interesting and useful information [242].

Player detection, tracking, and identification is a widely researched topic, particularly in
soccer [179]. Commonly addressed issues include occlusions, playfield detection, camera
blur and illumination changes [179]. The detection of players is usually performed by
background subtraction with some additional processing, such as scene-specific classifier
adaptation [213]. Tracking is often based on particle filters combined with techniques
such as position estimation [188] or color histograms [136]. Long-term tracking based on
generating a tracking hypothesis is addressed in [198]. Player identification is possible by
jersey number recognition [88], learning the relative positions of players [88] or combining
video data with inertial sensors for motion feature matching [101]. The tracking and
identification of players allows for high-level tactics analysis including route patterns
and interaction patterns [313].
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Ball detection and tracking in team sports is a challenging problem, due to the fast
movement of the ball, but also due to occlusions resulting from many players being
present in the game. Authors of [158] detect the ball using a combination of color, size
and shape cues. Subsequent tracking is performed with Kalman filter-based template
matching. In [43] trajectories of ball in the game of volleyball are reconstructed in 3D,
based on the input from a single camera (see Fig. 2.9). An alternative approach to
ball tracking in soccer and basketball is presented in [282], based on detecting which
player is in the possession of the ball. Particle filters were proved to be effective for ball
tracking as well [48].

Fig. 2.9: Ball trajectory approximation in volleyball (source: [43]).

2.3.3 Individual sports

Most methods for player detection, tracking, and identification can be successfully ap-
plied to many different team sports with little adaptation. The study of individual
sports, on the other hand, is much more discipline-specific, as the focus is placed more
on qualitative analysis. The performed actions and the motion parameters of interest
vary greatly between individual disciplines. In this subsection, relevant work in regard
to various individual disciplines is discussed.

The most important goals in individual sports analysis are performance assessment and
providing feedback. In [227], high-level analysis of a tennis game is achieved by tracking
the players and the ball, as well as the extraction of action sequences to serve as support
for the coaches. Deep learning approach to tennis ball tracking is presented in [306].
The timing and body angle consistency of a gymnast during a pommel horse spinning
routine is evaluated with the help of the Kinect in [226] (see Fig. 2.10). The Kinect is
also employed in [42], for a Yoga self-training system which helps performing the cor-
rect poses. The authors of [11] present methods for rapid feedback in three disciplines:
rowing, by displaying plots from an accelerometer; table tennis, by the detection and
visualization of ball impact positions; biathlon, by measuring the motion of the barrel
of the rifle just before and after a shot. Multiple inertial sensors are employed in [4] for
technique analysis in basic sports activities such as jogging, sprinting or jumping. Based
on a comparison of data from healthy and injured subjects the authors claim that their
system can help in the early detection of potential injuries. The tracking and evalua-
tion of a golf swing is a popular research topic and has been addressed by employing:
the Kinect with a Gaussian mixture model (GMM) and SVM [310], the Kinect with a
particle filter and dynamic programming matching [143], and statistical features from
multiple inertial sensors [91]. A full body inertial measurement system was employed
in [72] for posture analysis in dressage riding.

Some authors formulate other goals for individual sports analysis, sometimes specific to
a particular discipline. The detection and tracking of athletes is important in racing
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sports such as canoe/kayak slalom [70] or horse racing [107]. It is worth noting that
the movement pattern in racing is significantly different than in team sports, therefore
different methods are proposed for both areas. The recognition of general sports activ-
ities such as cycling, running, rowing or weightlifting is addressed in [184] by analyzing
the similarity of signals from an accelerometer. A summarization of personal sports
videos is achieved in [211] by the extraction of highlights in a game of Kendo. In golf,
not only the swing motion is analyzed [266], but the kinematics of the human body as
well [115, 256]. Oyama Karate techniques are classified by extracting angles from the
skeleton data provided by the Kinect [98]. Authors of [124] utilize a convolutional neural
network for automatic key frame detection in weightlifting videos, therefore allowing to
supervise the athlete’s pose during training. An inertial sensor-based, wearable system
for supporting ice hockey players training is proposed in [103]. Swimming strokes are
counted and the swimming style is identified in [212] on the basis of the accelerometer
signal. The authors of [100] propose gesture-controlled interactive video mirrors, which
provide simple, instant feedback by displaying the recorded action. Boxing punches are
detected and classified from depth images in [129]. A survey on employing inertial sen-
sors for combat sports analysis is given in [296]. The diversity of the discussed methods
illustrates how complex and discipline-specific motion analysis in sports can be.

Fig. 2.10: Pommel horse routine analysis (source: [226]).

2.3.4 Datasets

Publicly available datasets are useful for comparing different algorithms on the same
input data. Many such datasets have been proposed over the years. Detailed reviews
can be found in [34, 309]. The datasets vary in terms of data modality (RGB, depth,
inertial), the number and type of actions, difference in conditions (e.g. occlusions),
viewpoints, and the number of people in the recordings. There is a number of datasets
targeted at specific applications, such as pedestrian detection [77], fall detection [145],
gesture recognition [185] or interaction recognition [303]. However, in this section we
will consider only the datasets which are related to sports actions either directly, by
being designed for sports, or indirectly, by including sports-related actions.

General action recognition is the most popular subject in this area of research, there-
fore datasets with general actions are the most common. A selection of such datasets,
published within the last 15 years, is presented in Table 2.1. While more datasets for
general action recognition are available, these were chosen for discussion as they: include
sports-like actions, are often used in research (according to the number of references in
the literature), and are representative (regarding selection of modalities and actions).
The first generation of datasets (KTH [238], Weizmann [94], UIUC [262]) included color
data modality only. The selection of actions focused mainly on basic movements such as
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Table 2.1: Selected action recognition datasets. #A - number of actions, #S - number
of subjects, #E - number of examples (total).

Name Modalities
#A/#S/#E

Actions

KTH
(2004) [238]

Color
6 / 25 / 2391

walking, jogging, running, boxing, hand waving,
hand clapping

Weizmann
(2005) [94]

Color
10 / 9 / 90

run, walk, skip, jump in place, jumping jack, jump
forward on two legs, wave one hand, wave two
hands, gallop sideways, bend

UIUC Action
(2008) [262]

Color
14 / - / 532

walking, running, jumping, waving, jumping jacks,
clapping, jump from sit-up, raise one hand, stretch-
ing out, turning, sitting to standing, crawling,
pushing up, standing to sitting

MSR-
Action3D
(2010) [154]

Depth, Skele-
ton
20 / 10 / 567

high arm wave, horizontal arm wave, hammer,
hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave,
side-boxing, bend, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing, pickup and
throw

UTKinect
(2011) [298]

Color, Depth,
Skeleton
10 / 10 / 200

walk, sit down, stand up, pick up, carry, throw,
push, pull, wave and clap hands

G3D
(2012) [21]

Color, Depth,
Skeleton
20 / 10 / 659

punch right, punch left, kick right, kick left, defend,
golf swing, tennis swing forehand, tennis swing
backhand, tennis serve, throw bowling ball, aim
and fire gun, walk, run, jump, climb, crouch, steer
a car, wave, flap and clap

UCF-iPhone
(2012) [189]

Inertial
9 / 9 / 383

biking, climbing stairs, descending stairs, gym bik-
ing, jump roping, running, standing, treadmill
walking, walking

UCFKinect
(2013) [75]

Skeleton
16 / 16 / 1280

balance, climb up, climb ladder, duck, hop, vault,
leap, run, kick, punch, twist left, twist right, step
forward, step back, step left, step right

UTD-MHAD
(2015) [38]

Color, Depth,
Skeleton, In-
ertial
21 / 7 / 861

swipe to the left, swipe to the right, hand wave, two
hand front clap, throw, cross arms in the chest, bas-
ketball shoot, draw x, draw circle (clockwise), draw
circle (counter clockwise), draw triangle, bowling,
front boxing, baseball swing, tennis forehand swing,
arm curl (two arms), tennis serve, two hand push,
knock on door, catch an object, pick up and throw,
jogging in place, walking in place, sit to stand,
stand to sit, forward lunge, squat
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walking, running, jumping or waving hands. The release of the Kinect sensor inspired
research on depth-based computer vision methods, including the development of action
recognition datasets which include depth and skeleton data. Due to the use of depth
data, distinction between actions such as throw, push and pull (UTKinect [298]) or step
forward and step back (UCFKinect [75]) became feasible. A few sports-related actions
are included in some datasets, for instance tennis swing, tennis serve, golf swing, bowling
ball throw (MSR-Action3D [154], G3D [21]). The inertial signals were recorded either
exclusively (UCF-iPhone [189]) or alongside color, depth, and skeleton data (UTD-
MHAD [38]). The UTD-MHAD dataset includes a number of sports-related actions not
present in other datasets, for instance basketball shoot or baseball swing.

There is a limited number of datasets focused particularly on sports. These are listed in
Table 2.2. Most of the datasets are designed for recognition of high-level sports activities
rather than specific actions and are based on TV broadcasts (UCF Sports [229], Olympic
sports [203]), YouTube videos (Sports-1M [128]) or smartphone videos (SVW [234]). One
dataset (WorkoutSU-10 [201]) includes actual actions - 10 different types of exercises,
such as hip stretch or squats. It is worth noting that the creation of sports-related
datasets, particularly discipline-specific ones, is a separate challenge in the development
of sports analysis methods and has not been well addressed so far.

Table 2.2: Sport action and activity recognition datasets. #A - number of actions, #S
- number of subjects, #E - number of examples (total).

Name Modalities
#A/#S/#E

Actions

UCF Sports
(2008) [229]

Color (TV
broadcasts)
10 / - / 150

diving, golf swing, kicking, lifting, riding horse, run-
ning, skateboarding, swing-bench, swing-side, walk-
ing

Olympic
sports
(2010) [203]

Color (TV
broadcasts)
16 / - / 50

high jump, long jump, triple jump, pole vault, discus
throw, hammer throw, javelin throw, shot put, bas-
ketball layup, bowling, tennis serve, platform (div-
ing), springboard (diving), snatch (weightlifting),
clean and jerk (weightlifting), vault (gymnastics)

WorkoutSu-
10 (2013)
[201]

Color,
Depth,
Skeleton
10 / 15 /
1500

hip flexion, trunk rotation, lateral stepping, tho-
racic rotation, hip adductor stretch, hip stretch,
curl-to-press, free standing squats, horizontal punch,
oblique stretch

Sports-1M
(2014) [128]

Color
(YouTube)
487 / - / 1M

automatically annotated via YouTube Topic API

SVW (2015)
[234]

Color
(Smart-
phones)
30 / - / 4200

archery, baseball, basketball, BMX, bowling, boxing,
cheerleading, discus-throw, diving, football, golf,
gymnastics, hammer-throw, high jump, hockey, hur-
dling, javelin, long jump, pole vault, rowing, run-
ning, shot put, figure skating, skiing, soccer, swim-
ming, tennis, volleyball, weightlifting, wrestling
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2.3.5 Fencing as a discipline of interest

As discussed in the previous subsections, substantial work has been done in the area of
automatic motion analysis in sports. Nevertheless, there are still some interesting and
unresolved challenges. First of all, even seemingly small variations in the performance
of an action can be of great significance for the final performance of an athlete. This
is rarely addressed, as most classification methods deal with notably different actions.
Secondly, temporal segmentation is indispensable for providing automated feedback in
individual sports, while most works consider either pre-segmented actions or cyclic mo-
tion which is relatively easy to analyze. Qualitative analysis of the detected actions is
important as well, although rarely performed. Moreover, there is a lack of systems which
would be able to learn the proper performance of actions and to evaluate trainings based
on such pre-learned models. There also seems to be little progress in means of providing
feedback to the athletes. Despite the rapid development of multimedia technologies in
the recent years, video recordings and text-based statistics and parameters remain the
most commonly used manners of providing feedback.

Real-life scenarios are needed in order to address these challenges. In this work, the
main requirements for choosing the sports discipline of interest were that it would
include non-cyclic motion as well as advanced techniques and body motion patterns,
so that a sophisticated performance analysis and feedback system would be justified.
Fencing meets these requirements perfectly, as it is highly technical and the sequence
of performed actions is unknown a priori, resulting from ad-hoc decisions of the fencer.
A single discipline was chosen, rather than multiple, for two reasons. Firstly, as stated
before, motion analysis in sports is often discipline-specific, and, rather than devising
general methods, it is more beneficial to devise dedicated methods which can be later
adapted to other disciplines. Secondly, data acquisition and feedback from coaches are
of great importance, therefore it is practical to form a continuous cooperation with a
single sports institution rather than trying to collect data from multiple different insti-
tutions. It is also worth noting that fencing is particularly well-developed in Poland,
as one of the most important forefathers of modern fencing is Zbigniew Czajkowski, a
Polish professor. The fencing knowledge which was necessary for this research was based
on his publications [56–59] as well as consultations with coaches trained directly by him.

Fencing includes two important elements which can be practiced and analyzed indepen-
dently, namely footwork (leg actions) and bladework (weapon control). During footwork
practice, a fencer learns proper stance and movement. Fencers stand in a sideways po-
sition, called the fencing stance, with their weapon arm directed towards the opponent
(see Fig. 2.11 left). Forward and backward steps are used for movement. The basic
footwork action during an attack is the lunge (see Fig. 2.11 right). There are different
kinds of the lunge, as discussed in Chapter 3, which deals with footwork action classifi-
cation. The detection and analysis of the lunge action is addressed in Chapter 4. There
are also other, more sophisticated footwork actions, such as dodging, although, in this
work, only the basic footwork actions are addressed - forward and backward steps, as
well as different kinds of the lunge.
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Fig. 2.11: Fencing stance (left) and lunge (right).

Bladework in fencing is very technical and requires high precision of movement. Two
general types of weapons are used: cutting and thrusting. Regarding the first type,
both the edge and the tip of the blade can be used to score points, by cuts or thrusts
respectively. In sports fencing the only cutting weapon is the sabre (see Fig. 2.12
bottom). In the case of thrusting weapons, only the tip of the weapon can score points,
by way of thrusts. The foil and the épée (see Fig. 2.12 top and middle) are the two
thrusting weapons used in sports fencing. Épée is the French term for small sword, and
is typically associated with the modern version of this weapon, which is characterized
by a large bell-guard (hand protection). Some variations of fencing, such as modern
classical fencing, employ small swords with small bell-guards in order to provide more
historical compliance (see Fig. 2.13). In this work, thrusting weapons are considered,
as they are more technical than cutting weapons, and, therefore, require more accurate
analysis. Bladework is analyzed in Chapter 5.

Fig. 2.12: Sports fencing weapons: foil (top), épée (middle), sabre (bottom)
(source: [215].)

Fig. 2.13: Small sword with historical handle, used in modern classical fencing
(source: [291]).
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2.3.6 Automatic fencing analysis - related work

Technology-aided analysis of fencing is addressed in the literature in a limited range.
The lunge action is analyzed in several papers. The lunge parameters of elite and novice
fencers are compared in [92] by way of kinematic analysis of the lunge using stereopho-
togrammetry. The authors report a considerably larger knee extension during the middle
phase of the motion in the case of elite fencers. The structure of the lunge and its perfor-
mance with regard to the type and complexity of a technical task is investigated in [26]
by employing electromyography (EMG) and high-speed cameras. The authors find that
complex actions affect the timing of motor patterns. In [194], the biomechanics of the
lunge are analyzed by measuring range, speed, and acceleration based on video capture.
Correlation between the ability to maintain lumbosacral neutrality during the lunge and
performance in terms of speed and acceleration is reported. Body dynamics during the
lunge and the fleche actions are compared in [22] using both a motion capture system
and a force plate. Results indicate that the fleche action velocity is higher.

In regard to bladework, various aspects of weapon actions are analyzed. The authors
of [182] perform weapon action classification by using kinematic data acquired by a mo-
tion capture system. The presented methods are able to recognize a number of parry
and attack actions with high efficiency. Kinematic determinants of weapon velocity
during the fencing lunge are identified in [27]. EMG is employed in [159] to study the
influence of different weapon handles. The results show that handle type affects the
distribution of muscle strength in the wrist. Authors of [31] distinguish good and poor
weapon action executions by applying a neural network to inertial signals segmented
with dynamic time warping (DTW).

Apart from lunge and weapon movement analysis, there are also several studies devoted
to reaction time of fencers. The response time of novice and elite fencers is compared
in [294] with the help of EMG. The findings confirm faster muscle action in experienced
fencers. The effects of fencing expertise and physical fitness on action inhibition are
studied in [32]. Based on their results, the authors claim that cognitive control benefits
from a combination of physical and mental training. Faster stimulus discrimination in
top-level fencers is reported in [68] based on a comparison with a control group. Re-
search conducted in [110] shows more efficient dynamic balance control in fencers than
static sport athletes and non-athletes.

While many aspects of fencing have been studied in the literature, several challenges
remain unaddressed, namely: recognition of similar actions, temporal segmentation and
qualitative analysis of detected actions, learning proper action movement, and providing
useful feedback in real-time. The motivation behind this work is to investigate these
problems and propose relevant solutions.

2.3.7 Research objectives

In the previous subsections new important challenges in automatic sport analysis were
identified. Fencing was chosen as a discipline in which these challenges are relevant and
can be addressed by developing proper methods. Objectives of this work are divided
into three main parts, related to these challenges:
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Recognition of action dynamics in fencing footwork

The first part addresses the issue of recognizing similar actions. As stated before, most
works regarding action recognition consider actions which differ significantly. Therefore,
the proposed methods usually allow for significant variations in the performance of an
action, which can be the result of anatomical differences between persons as well as their
personal manner of carrying out a given action. In sports, on the other hand, athletes
need to perform actions very precisely, as even slight variations in movement can make
the difference between two different techniques. In fencing, four types of the lunge
action can be distinguished [56, 59], all of which are very similar. Their trajectories
are virtually the same, and the defining factor is the dynamics of the movement. By
accelerating or decelerating certain parts of the movement, the fencer effectively performs
different types of the lunge. Recognizing actions only by dynamics is a challenging task,
which requires a novel approach. In Chapter 3, methods based on depth maps and
skeleton data provided by the Kinect as well as inertial data from an IMU are proposed
for this task. Novel motion descriptors are proposed to extract relevant information
from multiple modalities. An efficient feature selection method is introduced as well.
The classification is done separately for each feature set at first, and then multi-modal
decision-level fusion is employed to improve recognition accuracy.

Real-time detection and analysis of actions in fencing footwork

The second part is dedicated to the temporal segmentation and qualitative analysis of
actions. Fencing footwork practice is a continuous movement, in which fencers con-
stantly move forward and backward by using fencing steps, keeping the proper distance
from the moving coach, and perform certain actions, such as the lunge, when given the
signal. Alternatively, they can practice the footwork on their own, with random forward
and backward movement, and performing actions by their own initiative. In order to
analyze specific actions, such as the lunge, temporal segmentation of the movement is
necessary. Detection of the lunge action is addressed in Chapter 4 by applying both
an inertial sensor and the Kinect. A novel signal filtering algorithm is introduced in
order to effectively identify action segments, in spite of data disturbances. Methods for
qualitative analysis of the lunge action are proposed as well.

Immersive feedback for bladework practice in fencing using augmented real-
ity

The third part focuses on tracking fast movement, learning motion patterns, and provid-
ing real-time, immersive feedback for fencing bladework practice. Weapon techniques
in fencing, particularly in the case of thrusting weapons, need to be performed very
precisely in order to be effective. The fast motion of the blade is difficult to capture and
therefore bladework analysis constitutes an interesting and challenging research prob-
lem. In Chapter 5, methods for tracking blade movement as well as learning models of
proper trajectories for weapon actions are proposed. Evaluation of bladework practice is
addressed as well, by comparison with the learned models. Finally, a novel approach to
provide immersive feedback is proposed, by using augmented reality semi-transparent
glasses which create a mixed view of the virtual and the real world, by overlaying
computer-generated objects on the perceived environment. A calibration procedure is
devised, which allows to match coordinates between the virtual and the real world.
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2.3.8 Summary

Analysis of motion in sports is an important tool for an athlete’s training. Applying
modern technology to this task allows for new opportunities. Many methods for the
description of motion have been proposed over the years, mostly for the task of clas-
sification of general actions. In sports, more specific motion analysis is needed, which
requires specialized methods. Although many aspects of sports motion analysis have
been addressed in the literature, some important challenges still remain. In this work,
novel approaches are proposed for the recognition of similar actions, the temporal seg-
mentation and qualitative analysis of actions, as well as learning models of motion
patterns and providing feedback by employing augmented reality.
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Recognition of action dynamics in
fencing footwork

This chapter discusses the problem of distinguishing between similar actions, which in
the context of fencing footwork is an important issue in sports motion analysis. Feature
extraction methods relevant for action dynamics analysis are proposed based on signals
acquired with the use of an accelerometer and the Kinect. An efficient feature selection
algorithm is introduced as well. Fusion of multiple feature sets extracted from multiple
modalities is employed. Evaluation is performed on a dedicated dataset of fencing
footwork actions, as well as on UTD-MHAD - a publicly available multimodal dataset
for action recognition. Experimental results demonstrate that the proposed methods
outperform state-of-the-art algorithms on both datasets.

Action recognition is one of the most popular research topics in the area of computer
vision [223, 312]. In a typical scenario, a selection of a number of actions is recorded with
multiple subjects and optionally with some additional variations, for instance different
view angles [34]. Then, various methods are used to extract informative features, which
are employed to train classifiers for the recognition of previously unseen cases [287].
The selection of actions for recognition is one of the crucial aspects of such a workflow.
Many datasets were created for this purpose and are available publicly, as presented in
Section 2.3.4. In most cases, however, the choice of actions to be included in a dataset
is rather arbitrary and not justified by any specific scenario. Moreover, the actions are
considerably different. In particular, it is relatively easy for a human to recognize any
of these actions just by analyzing their trajectories.

This is not always the case for actions in sports. Figure 3.1 presents trajectories of 2
types of step actions as well as 4 types of lunge actions used in fencing (described in
detail in Section 3.1.1). As can be seen, the trajectories of lunge actions are very similar
and cannot be efficiently distinguished without additional information. Therefore, in
this chapter, the analysis of action dynamics is discussed by taking into consideration
the temporal structure of the actions. Novel methods for action recognition, specific for
this task, are proposed and verified experimentally. Two types of sensors are employed.
The first is an IMU, from which a 3 axis acceleration signal is used. The second one is
the Kinect, which provides depth maps as well as skeleton estimation in the form of joint
positions. Different modalities are used independently to extract informative features.
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Finally, fusion of multiple feature sets is applied in order to achieve higher recognition
accuracy. The proposed methods were described in three papers [174, 176, 177].

This chapter is organized as follows. Section 3.1 discusses the details of the fencing
footwork actions chosen for the classification task. It also presents the structure and ac-
quisition protocol of the fencing footwork dataset recorded specifically for this research.
In Section 3.2, the details of the proposed feature extraction, selection, and fusion meth-
ods are described. Experimental results are presented and discussed in Section 3.3. The
chapter ends with a short summary in Section 3.4.
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Fig. 3.1: Trajectories of 6 fencing footwork actions for 8 lower body joints: hips (light
blue), knees (red), ankles (green), feet(dark blue). Each presented joint trajectory is

generated as a mean from multiple repetitions of a given action performed by a single
person. Trajectories for a total of 10 persons are presented. Coordinates are given in

the Kinect camera coordinate space.

3.1 Fencing footwork dataset

In order to develop automatic sports action analysis methods, a proper dataset is re-
quired. Such data are useful not only for developing and testing algorithms, but also
for the purposes of comparison with other methods. In Section 2.3.4, an overview of
publicly available sports-related datasets is presented. Since there are no publicly avail-
able datasets specific to fencing, a dedicated dataset, called the fencing footwork dataset
(FFD), was recorded for the purpose of action dynamics analysis in this work. It includes
6 basic fencing footwork actions, which are explained in Section 3.1.1. The acquisition
protocol is described in detail in Section 3.1.2. The dataset is publicly available [166].

3.1.1 Fencing footwork

The fencing stance is a sideways position, with the armed hand directed towards the
opponent and the other hand kept behind (see Fig. 3.2 left column). The sideways pose
is maintained during movement, therefore the front and back legs can be distinguished
at all times. The fencer moves forwards and backwards by performing steps. A step
forward is done by moving the front foot and then the back foot, thus returning to the
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fencing stance (see Fig. 3.2 middle row). A step backward is analogous, but it starts
with the back foot and ends with the front foot (see Fig. 3.2 bottom row). During
an attack, the fencer performs a fencing lunge (see Fig. 3.2 top row), which is used
for rapidly shortening the distance to the opponent. During a lunge, the front foot is
slightly lifted, then the front leg is straightened and the back leg energetically pushes
the body forward. The full power of the motion is obtained from fully extending the
back leg. Returning from the lunge position is performed by bending the knee of the
back leg and bringing the front leg back, into the fencing stance. According to fencing
coaches and [56], there are four types of lunges:

• Rapid - performed as quickly as possible, usually in a relatively short distance,
useful for quick weapon actions

• With increasing speed - starting slowly and finishing quickly, with the speed grad-
ually increasing during the action, useful for feint attacks

• With waiting - includes a short pause in the first phase, during which the fencer
waits for the opponent’s reaction in order to counter it with their own action

• Jumping-sliding - used in long distances, this lunge resembles a jump, as the fencer
strongly pushes with the back leg, which then slides on the floor during the forward
motion

The four types of lunges together with the forward and backward steps constitute the
basic footwork actions considered in this work. Other footwork actions, such as dodging
down or sideways, are not included, as they are significantly different and therefore not
relevant for the problem of distinguishing between similar motion patterns. Figure 3.2
presents the key poses of stepping forward, stepping backward, and the lunge actions.
The differences between various lunge actions cannot be illustrated simply by key poses,
therefore only a single lunge action is depicted.

Fig. 3.2: Key poses of basic footwork actions: lunge (top), step forward (middle) and
step backward (bottom). Although there are four types of lunge actions, their key

poses are the same, therefore only a single lunge action is depicted.
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3.1.2 Proposed dataset

The dataset acquired for this work includes six basic fencing footwork actions, as de-
scribed in Section 3.1.1:

• rapid lunge (R)

• lunge with increasing speed (IS)

• lunge with waiting (WW)

• jumping-sliding lunge (JS)

• step forward (SF)

• step backward (SB)

In order to verify the applicability of different data modalities for the purpose of fencing
footwork analysis, two sensors were employed for the recording, namely the Kinect
depth sensor and the x-IMU inertial sensor [255]. The Kinect was placed approximately
3 meters from the person, and recorded the RGB, depth, and skeleton data from the
side, at 30 frames per second (see Fig. 3.3). RGB data (640 x 480) were stored in
compressed video files. Depth data (16 bit images, at a resolution of 640 x 480) were
saved in two 8 bit channels of uncompressed videos. These data include the depth map
saved on first 13 bits as well as automatically extracted silhouettes of the person, saved
in the last 3 bits. Skeleton data for 20 tracked joints were saved in the MATLAB .mat
file format. The IMU sensor was attached to the person’s knee and recorded data from
the built-in accelerometer, magnetometer, and gyroscope, with a sampling frequency of
256 Hz. Data from the IMU were saved in the .mat file format.

Fig. 3.3: Data provided by the Kinect sensor: RGB (top left), depth (top right),
silhouette (bottom left), skeleton (bottom right).
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The dataset was recorded thanks to the courtesy of Aramis Fencing School [9], one
of the biggest fencing institutions in Poland. Recordings were made of 10 fencers, at
levels ranging from intermediate to advanced, both male and female. Every action was
repeated by each person 10 or 11 times. Each repetition was recorded separately, in order
to avoid the need for temporal segmentation, as the focus was placed on distinguishing
fencing actions by their dynamics. The recorded dataset is publicly available: [166]. The
RGB data were used to verify recorded actions, but are excluded from the dataset, as for
several reasons they are not well suited for sports analysis. Firstly, the lighting conditions
in training rooms are often poor, resulting in blurred images, which makes RGB-based
analysis of dynamic movement very dependent on these conditions. Secondly, during
training, many persons are usually present in the background, making it very difficult
for RGB-based algorithms to extract motion of the person of interest. Finally, RGB
videos allow to identify persons, which raises privacy issues, an important aspect for
many people. The depth and inertial data are free of all these problems.

3.2 Methods

For the purpose of distinguishing similar fencing footwork actions by their dynamics,
multiple data modalities are employed, as obtained by the IMU and the Kinect: the
3 axis accelerometer signal, skeleton data, and depth maps. Novel feature extraction
methods are proposed in order to capture relevant information regarding the performed
motions, from each of these modalities. Accelerometric features are extracted from the
IMU data, joint dynamics and local trace images are computed based on skeleton data,
and joint motion history context features are based both on the skeleton data as well
as the depth maps. Although the proposed features were designed for the analysis of
fencing footwork, where the relevant motion occurs on a single plane xy, their extension
to 3D is presented as well, by employing 3 orthogonal planes, xy, xz, yz. On the basis of
depth data, computing projections for the 3 orthogonal planes is rather straightforward
(see Fig. 3.4). Experiments on the 3D extensions of the features were conducted on
the UTD-MHAD dataset [38], which contains multimodal recordings of general actions.
Even though the proposed features were designed for dynamics analysis in sports actions,
they proved to be effective for general action recognition as well. The parameters selected
for each method are given for both employed datasets.

Fig. 3.4: Depth and skeleton data from the Kinect projected onto 3 orthogonal planes.

Since some of the proposed methods generate a large number of features, an efficient
feature selection algorithm is introduced, which allows to identify relevant features and
obtain better generalization capabilities. Fusion of multiple feature sets, extracted either
from one or multiple modalities, has been shown to be beneficial [37]. In this work, both
feature-level and decision-level fusion schemes are evaluated, which include not only
different modalities, but also multiple feature sets computed from the same modalities.
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3.2.1 Accelerometric features

Accelerometric features (Acc) were computed on the raw acceleration data araw, pro-
vided by the IMU sensor, including three components arawx , arawy , arawz . In order to
remove the gravitational component, the signal from the accelerometer was filtered with
the use of a high-pass filter (hpf) with the stopband frequency at 0.4 and the passband
frequency at 0.8 normalized frequency units:

af = hpf(araw) (3.1)

As the information about changes in acceleration and the gravitational component is
relevant, the first derivative of the filtered signal adf and the difference between filtered
and raw signal ag were also computed:

adf =
d

dt
af (3.2)

ag = af − araw (3.3)

In order to capture action dynamics, the Acc features were designed to operate in fixed-
size time windows. Since the recorded samples differ in length, time normalization was
needed. In the FFD dataset, the duration of each recording is close to 2 seconds at a
sampling frequency of 256 Hz, therefore each recording was interpolated to a common
length of 512 data points. Next, division to time windows was applied. After evalua-
tion of multiple window sizes (32, 64, 128, 256), a size of 128 was selected, with 50%
overlap, which resulted in a total of 7 windows per action (see Fig. 3.5). Features were
computed in each window separately. For the UTD-MHAD dataset, the duration of the
recordings is similar, although the sampling frequency was 50 Hz, therefore the samples
were interpolated to 128 data points, and 7 overlapping windows of size 16 were used.
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Fig. 3.5: Accelerometer signal (x, y, z ) for the incremental speed lunge action. For
feature extraction, the signal is divided into 7 overlapping time windows.

A number of accelerometer-based features have been proposed in the literature [151],
including time domain [214], frequency domain [13], and wavelet features [102]. In the
time domain, statistical features are extracted from time windows, e.g. mean value or
the standard deviation. Transformation to the frequency domain is usually obtained
by using the fast Fourier transform (FFT) which enables extracting features such as
FFT’s coefficients. Approximation of the signal is also possible with different wavelet
families by finding the proper coefficients, which can be then used as features as well.
In this work, each of these domains was studied in order to find the solution best fitted
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for action dynamics recognition. The most effective features in each domain were as
follows:

• Time domain - using the filtered signal af , the difference between the original
and filtered signal ag and the first derivative of the filtered signal adf , statistical
measures were computed, namely the mean value and root mean square (RMS)
for each axis and magnitude (a total of 24 features per window)

• Frequency domain - using the filtered signal af , the difference between the original
and filtered signal ag and the first derivative of the filtered signal adf , the short
time Fourier transform (STFT) was computed, and the mean value and RMS of
the magnitudes for each axis were taken (a total of 18 features per window)

• Wavelet domain - multilevel wavelet decomposition for the original signal araw and
the filtered signal af was computed by using the Daubechies 3 wavelet mother.
Next, for each axis, the sums of normalized absolute differences of coefficients for
the original signal araw and the filtered signal af were computed, and the sums
for levels 3, 4, 5, 6 were used as features (a total of 12 features per window)

From these three domains, the time domain features provided the best accuracy, there-
fore they were chosen to be used as the Acc features. Given m - mean function, rms -
RMS function, ax, ay, az - x, y, z components of a, am - magnitude of a, the Acc features
for window w are computed as:

Accw = {m(afx),m(afy),m(afz ),m(afm)),

rms(afx), rms(a
f
y), rms(a

f
z ), rms(a

f
m)),

m(agx),m(agy),m(agz),m(agm)),

rms(agx), rms(a
g
y), rms(a

g
z), rms(a

g
m)),

m(adfx ),m(adfy ),m(adfz ),m(adfm)),

rms(adfx ), rms(adfy ), rms(adfz ), rms(adfm))}

(3.4)

The final Acc feature vector is the concatenation of features computed in all windows:

Acc =

#windows⋃
w=1

Accw (3.5)

Using 7 temporal windows, the size of the Acc feature vector is 168. It is worth noting
that the gyroscope and magnetic data are also sometimes useful in motion tracking [314],
particularly for trajectory reconstruction [7]. In this work, both gyroscope and magnetic
data were evaluated, but did not improve the recognition accuracy.

3.2.2 Joint dynamics

The Kinect sensor performs real-time tracking of the 3D positions of 20 joints of the
human skeleton (see Fig. 3.6). The joint positions are often used for motion analysis
by making use of their relative distance in both space and time [276, 299]. However, in
this work, in order to focus on action dynamics, velocity and acceleration are considered
rather than location, by computing the first and second derivatives of the joint positions
respectively. Given p j(t) - position of j − th joint in time moment t, velocity v j and
acceleration a j are computed in the following manner:
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v j(t) = p j(t+ 1)− p j(t) (3.6)

a j(t) = v j(t+ 1)− v j(t) (3.7)

The proposed features are called joint dynamics (JD), as they focus on describing the
changes in the motion rather than the trajectories. For the purpose of the recognition
of actions from the FFD dataset, only the lower body joints are considered, namely
the hips, knees, ankles, and feet. The reason is that multiple weapon actions may be
performed with identical footwork actions, therefore making upper body motion not
relevant in this case. In general, any subset of joints may be selected. Only the xy plane
is considered for the FFD dataset, as any motion along z axis is not relevant for the
selected actions. In the case of the UTD-MHAD dataset, all joints are employed, and the
features for the orthogonal planes xy, xz, yz are computed separately. It is worth noting
that including too many joints may lead to redundancy of information and therefore
a negative impact on recognition accuracy. This can be handled either by manually
selecting the subset or using a feature selection method, as discussed in Section 3.2.5.

Fig. 3.6: Skeleton joints tracked by the Kinect sensor (source: [192]).

As in the case of Acc features, time windows are employed in order to handle various
lengths of recordings and to better model the temporal structure of the actions. However,
for the JD, multi-level time division and frequency domain features are employed. The
skeleton data for each sample is interpolated in time to 64 data points, as the Kinect
acquisition rate is 30 Hz, and the recordings, in both of the considered datasets, are
approx. 2 seconds long. Time windows are then employed on multiple levels with a
different window size at each level. Based on the experimental study, 3 levels are used,
with window sizes 64, 32, 16 and 50% overlap. This division corresponds to 1, 3 and 7
windows respectively, which results in total of 11 windows per action (see Fig. 3.7).

1 x 64

Level 2 3 x 32

Level 3 7 x 16

Level 1

Fig. 3.7: Multi-level time windows for computing JD features.
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In each window, a short time fourier transform (STFT) is computed for the velocity and
acceleration of each joint along both axes of a given plane. The absolute values of each
transform’s first 3 coefficients are used as features, resulting in 12 features per joint, per
window. Therefore, JD in the xy plane, for joint j and window w are defined as follows:

JD j,w
xy = {s1(v j,w

x ), s2(v j,w
x ), s3(v j,w

x ), s1(v j,w
y ), s2(v j,w

y ), s3(v j,w
y ),

s1(a j,w
x ), s2(a j,w

x ), s3(a j,w
x ), s1(a j,w

y ), s2(a j,w
y ), s3(a j,w

y )}
(3.8)

where: v j,w is the velocity of joint j in window w, a j,w is the acceleration of joint j in
window w, and sk is the absolute value of k − th coefficient of STFT transform. The
final JDxy feature vector is the concatenation of the JD j,w

xy features for all joints in all
temporal windows:

JDxy =

#windows⋃
w=1

#joints⋃
j=1

JD j,w
xy (3.9)

For the FFD dataset, when using a single plane xy, 8 joints, and 11 windows, the total
size of feature vector is 1056. For the UTD-MHAD, all 20 joints are employed, and
therefore the feature vector size is 2640 per each of the three planes xy, xz, yz.

3.2.3 Local trace images

Instead of using time windows, another approach to motion analysis is to create a single
image representing the action. Motion energy images (MEI) and motion history images
(MHI) were introduced in [23] and [63]. MEI are simply the sum of the person’s silhou-
ette’s binary images during the action and represent the region where the movement
occurs. In MHI, the intensity of each pixel is computed from the current silhouette and
the previous MHI image taken with a decay operator, and therefore it corresponds to
the temporal motion at that point. This results in brighter pixels in regions where the
motion occurred most recently (see Fig. 3.8 left).

Changes in velocity and acceleration during the motion need to be considered in order
to analyze action dynamics. By computing the average intensity of each pixel in su-
perimposed silhouette images rather than using the decay operator, an energy image is
created, where brighter pixels represent slower motion (see Fig. 3.8 center). However,
employing silhouettes generates noisy images, where relevant information is often lost
due to the overlapping motions of different body parts. Therefore, a different approach
based on skeleton data is proposed in this work. The positions of tracked joints are
modeled by a two-dimensional normal distribution:

b(x, µ, σ) =
1√
2σ2π

exp− (x− µ)2

2σ2
(3.10)

where b denotes pixel brightness, given as a function of x (distance to the joint), µ
(position of the joint) and σ (variance). By superimposing joints modeled by such dis-
tributions, a trace image is constructed (see Fig. 3.8 right) where the spatio-temporal
motion patterns of joints are clearly visible. Nevertheless, some relevant information
may still be lost due to overlapping motion of different joints. Therefore, local trace
images (LTI) are proposed, where each joint’s movement is modeled separately. First, a
separate, large image is created to represent each joint by superimposing the Gaussians
generated for this joint. Then, a minimal square containing all non-zero pixels is selected
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and constitutes a single LTI. Such images are then resized to a common size, which was
experimentally defined as 16 x 16. In order to construct the final motion descriptor, the
images are concatenated (see Fig. 3.9).

LTI can be computed for any given subset of joints and for each of the three orthogonal
planes xy, xz, yz. Similarly, as in the case of JD features, 8 lower body joints in the xy
plane are employed for the FFD dataset (final feature vector size is 2048) and all joints
in 3 planes xy, xz, yz are employed for the UTD-MHAD dataset (final feature vector
size is 5120 per plane). It is worth noting, that even though motion pattern images
are generated during the computation of the LTI descriptor, the method requires only
skeleton data and does not make use of depth maps.

Fig. 3.8: Incremental speed lunge action represented as a single motion image of the
lower body: MHI (left), energy image (middle), trace image (right).

Fig. 3.9: LTI motion descriptor for 8 lower body joints (hips, knees, ankles, feet)
and 6 fencing footwork actions, from left to right: rapid lunge (R), incremental speed
lunge (IS), lunge with waiting (WW), jumping-sliding lunge (JS), step forward (SF),

step backward (SB).

3.2.4 Joint motion history context

The relative motion of body parts is often an important cue in action recognition [259].
Therefore, in this work, a new descriptor is proposed, which is able to capture local
motion changes around the selected joints. The motion is detected by making use of
differences between silhouette images, which are described with histograms. In order to
focus on the relations between local body parts, log-polar histograms are employed. The
algorithm was inspired by the shape context descriptor [16], which is commonly used
to describe shapes on the basis of object edges. However it differs, as silhouette differ-
ences are used rather than edges, and the histograms are computed in the joint positions.

The proposed method employs both depth and skeleton data provided by the Kinect
sensor. Depth data contains the extracted silhouettes of the person. The absolute differ-
ence in silhouettes between two consecutive frames corresponds to the motion performed
in time between the images (see Fig. 3.10 left and center). The joint positions, extracted
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from the skeleton data, are used as the center points for the histograms describing the
motion (see Fig. 3.10 right). Pixels falling into each bin are counted, and then the
histograms are normalized, so that sum of all bins is equal to one.

Given N points p1, p2, . . . , pN representing the silhouette changes between two consecu-
tive depth maps, the motion context of the i− th joint located in point qi is defined as
a log-polar histogram hi of the relative points, that indicate the silhouette motion:

hi(l, ϕ) = #{pj |i 6= j, (log(pj − qi), angle(pj , qi)) ∈ binl,ϕ} (3.11)

where l - log coordinate and ϕ - polar coordinate in the histogram.

Given Ni - total number of points in histogram hi, Nb - number of bins in a single
histogram, bk - bins, the normalization of a histogram is performed as follows:

∀k ∈ 1, ..., Nb, bk = bk/Ni (3.12)

Therefore each histogram forms a probability distribution:

Nb∑
k=1

bk = 1 (3.13)

Based on experiments, the size of a single histogram is 12 x 5 for polar and log coordinates
respectively. This produces 60 values per joint. Histograms computed for each joint are
concatenated, resulting in the joint motion context (JMC) descriptor.

t

t - 1

Fig. 3.10: JMC descriptor. Depth data for current and previous frames include
silhouettes for both frames (left), which is used to generate silhouette difference

(center). Based on the silhouette difference and the skeleton data for current frame,
log-polar histograms around selected joints are computed (right).

While the difference between two consecutive frames carries relevant information about
the motion, additional information may be extracted by employing earlier frames. In
the proposed method, JMC descriptors are computed between the current and several
preceding frames separately, and then their weighted sum is calculated, forming the joint
motion history context (JMHC) descriptor (see Fig. 3.11). Based on experiments, the
number of employed preceding frames is three, and the weight for each frame is: wt−3
= 0.25, wt−2 = 0.5, wt−1 = 0.25. JMHC can be computed for any subset of joints and
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in the three orthogonal planes xy, xz, yz. As in the case of JD and LTI features, the
motion of 8 lower body joints in the xy plane is considered for the FFD dataset (480
features per frame), and for the UTD-MHAD, all joints in all three planes xy, xz, yz are
employed (1200 features per frame in a single plane).

Since the JMHC descriptor is computed per frame, rather than per recording, it requires
further processing before the final feature vector is calculated. For this purpose, division
to temporal windows is employed, similarly as in the case of Acc and JD features. The
vector of JMHC features computed for each frame is interpolated to a length of 64
with single-level time windows of size 16 with 50% overlap, resulting in a total of 7
windows. In each temporal window, statistical measurements are computed from the
JMHC features, namely the mean and RMS. Therefore, in each window, the number of
features is equal to twice the number of features per single frame. The descriptors for
each time window are then concatenated, forming the final feature vector. For the FFD
dataset, the final feature vector size is 6720 and for the UTD-MHAD dataset, the final
feature vector size is 16800. Due to the large number of features, a selection method is
needed, as described in Section 3.2.5.

JMC (t, t-3)w
t-3

* + JMHC→

t-3 t-2 t-1 t

JMC (t, t-2)w
t-2

* + JMC (t, t-1)w
t-1

*

Fig. 3.11: JMHC descriptor is computed as the weighted sum of JMC descriptors
calculated between the current and multiple previous frames.

3.2.5 Feature selection

Employing too many features may hinder classification effectiveness [121]. Correlated
features provide no extra information, but increase the dimensionality, making it more
difficult to train classifiers [33]. Some features may contain more noise than actual
information, which can lead to a situation where the classifier makes decisions based
partially on random noise data. This occurs particularly, when a large number of fea-
tures is generated by the descriptor. In order to deal with irrelevant features a selection
process may be performed. The additional benefits of reducing the number of features
include better generalization and shorter training time [97].
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The main approaches for feature selection are wrapper, filter and embedded meth-
ods [33, 97]. Wrapper methods evaluate the subsets of features using a given classifier
by performing learning and evaluation for each subset. This process is often very time-
consuming and prone to overfitting, which occurs when the classifier recognizes training
samples very well, but fails to generalize and can’t properly recognize test samples.
Filter methods, on the other hand, perform feature selection independently of the clas-
sifier, usually based on the correlation between the features. In the embedded selection
methods, feature selection and classification are combined in order to reduce selection
time while maintaining the correspondence to the given classifier. It is worth noting
that instead of feature selection, dimensionality reduction can be employed as well, by
projecting the features to a lower dimensional space based on their correlation.

Two state-of-the-art feature selection methods, AdaBoost [178, 270] and Lasso [178, 260],
as well as a commonly used dimensionality reduction algorithm, the principal compo-
nent analysis (PCA) [1], were evaluated during experiments concerning the proposed
features. Next, a novel filter feature selection algorithm was designed. It employs fea-
ture ranking approach [33], although it considers correlation between classes, rather than
only between features. It also reduces the redundancy during the selection process, by
computing the correlation with the already selected features.

The features are initially ranked in accordance with their inter-class discriminative power
determined on the basis of distances between histograms computed for each feature per
each class. In each iteration, the correlation between the already selected and the re-
maining features is updated and taken into consideration when selecting the next feature
in order to reduce the redundancy in the final selected feature subset. The details of
the algorithm are as follows:

Given:
F - set of features
C - set of classes
P - set of distinctive pairs of classes

size(P ) = size(C)∗(size(C)−1)
2

Distance metric d between two histograms h1 and h2, with Nb bins each:

d(h1, h2) =
∑Nb

i=1 abs(h1(i)− h2(i))

Step 1:
Compute matrix H of normalized histograms per each feature and per each class. Each
histogram is a probability distribution of a given feature in a given class.

1 2 ... size(C)

1 h1,1 h1,2 ... h1,size(C)

2 h2,1 h2,2 ... ...

... ... ... ... ...

size(F ) hsize(F ),1 hsize(F ),2 ... hsize(F ),size(C)
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where:
hi,j = histogram for i− th feature and j − th class
size(H) = size(F ) ∗ size(C)

Step 2:
Compute matrix A of weights a describing the discriminative power of each feature for
each pair of classes:

for i = 1:size(F )
for k = 1:size(P )

c1 = first class of k-th pair
c2 = second class of k-th pair
ai,k = d(hi,c1 , hi,c2)

where:
ai,k = weight a for i− th feature and k − th pair of classes
size(A) = size(F ) ∗ size(P )

Step 3:
Initialize vector B of weights b describing the correlation between each feature and the
already selected features:

for i = 1:size(F )
bi = 0

where:
size(B) = size(F )

Step 4:
Iteratively select m features, going over the list of distinctive pairs of classes, by choosing
the most discriminative features for each pair, on the basis of the sum of weights A andB.
In each step, update weights B by adding the sums of distances between the remaining
features and the last selected feature, and normalizing weights B accordingly. Given:
FS - set of already selected features, FR - set of remaining features, from which the
selection is performed, i - iteration, the algorithm is as follows:

FS = ∅
FR = F
i = 0

while size(FS) < m
for k = 1:size(P )

fnext = argmax
f∈FR

(af,k + bf )

FS = FS ∪ fnext
FR = FR \ fnext
for f = 1:size(FR)

bf = i
i+1 ∗ bf + 1

i+1 ∗
∑size(C)

c=1 d(hf,c, hfnext,c)
i = i + 1
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3.2.6 Fusion and classification

Two state-of-the-art classifiers were used to verify the usefulness of each feature set
separately, namely support vector machine (SVM) [52] and random forest (RF) [113].
SVM calculates the best hyper-plane separating data samples in a multi-dimensional
space. Regularization parameter C creates a margin allowing for the misclassification
of some samples during the training stage in order to prevent overfitting. For non-
linear problems, different kernels may be used with SVM. In this work, the radial basis
function (RBF) kernel was employed, which requires the additional parameter gamma,
corresponding to the range of influence of a single training data point. The values for
both parameters were determined with a grid search (see Section 3.3). The RF classifier
creates a number of decision trees with random thresholds for feature values in each
node. Classification is based on the mode of the classes returned by all trees. The
number of trees (nTrees) can be set as a parameter of the RF classifier.

Initial experiments with separate feature sets showed that different features are better
suited for recognizing different classes. Therefore, feature fusion was employed in order
to take advantage of the information provided by all feature sets. In the feature fusion
experiments, SVM classifier was used, as it produced better results than the RF classifier.
There are two main approaches to fusion - feature-level (early) fusion and decision-level
(late) fusion [181]. In feature-level fusion, the features are simply concatenated and
provided to the classifier as a single vector. In decision-level fusion, each feature set
is given as a separate vector and the classifier decides how to combine the data. In
this work, both approaches have been verified. For feature-level fusion, concatenated
features were fed to the SVM classifier (see Fig. 3.12). For decision-level fusion, a
separate SVM model was trained for each feature set. Weka implementation of SVM
was employed [132, 221, 289], which outputs the probabilities for each class rather than
only the most probable class. Probabilities from all SVMs were then used as input for
an artificial neural network, namely multilayer perceptron (MLP) [231], which is known
to be effective for problems with a relatively small number of input data. A number of
parameters can be set when training MLP, namely the number of hidden layers, number
of neurons in each layer, learning rate, and momentum. The values for the parameters
were determined in a grid search (see Section 3.3). The architecture of decision-level
fusion is depicted in Fig. 3.13.

Feature set 1 Selec�on C
o

n
caten

a�
o

n

Feature set 2 Selec�on

Feature set n Selec�on

...

SV
M

Fig. 3.12: Feature-level fusion scheme - a single SVM is trained on the concatenated
feature vector.
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Fig. 3.13: Decision-level fusion scheme - separate SVMs, trained for each feature set,
output probabilities for each class, which are then used as the input for MLP.

3.3 Experiments and results

The proposed methods were verified experimentally on two datasets - the proposed
FFD dataset and the publicly available UTD-MHAD dataset [38]. Descriptions of both
datasets are provided in Section 3.3.1. Results and discussion are provided in Sections
3.3.2 and 3.3.3 for the FFD and UTD-MHAD datasets respectively.

3.3.1 Datasets

The proposed FFD dataset is described in detail in Section 3.1.2. It contains six fencing
footwork actions (step forward (SF), step backward (SB), rapid lunge (R), lunge with
increasing speed (IS), lunge with waiting (WW), jumping-sliding lunge (JS)), recorded
by 10 fencers, with 10 to 11 repetitions. The acquired data includes depth and skeleton
data recorded with the Kinect, as well as an accelerometric signal, recorded with the
x-IMU inertial sensor. The employed evaluation protocol included two scenarios: person-
dependent (PD) and person-independent (PI). In the PD scenario, the classifiers were
evaluated using five-fold cross-validation for each person separately - for each fencer, in
each fold, 80% of data were used for training, and 20% for testing. In the PI scenario,
ten-fold leave-one-out cross-validation was employed, where, in each fold, nine subjects
were used for training, and one was used for testing. The PD case allows to verify if
the actions of a given person were consistent, while the PI case verifies the proposed
methods’ ability to generalize. Sample frames are illustrated in Fig. 3.14

Fig. 3.14: Sample frames from the FFD dataset (depth and skeleton view). Left to
right: fencing stance (pose present in all actions), lunge (pose present in all lunge

types), step forward.

UTD-MHAD [38] is a publicly available dataset, which includes RGB, depth, skeleton,
and inertial data, acquired by the Kinect and a custom low-cost inertial sensor. There
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are 27 actions in the dataset, with either one-hand, two-hand, or leg motion: swipe
left, swipe right, wave, clap, throw, arm cross, basketball shoot, draw X, draw circle
clockwise, draw circle counter clockwise, draw triangle, bowling, boxing, baseball swing,
tennis swing, arm curl, tennis serve, push, knock, catch, pickup throw, jog, walk, sit
to stand, stand to sit, lunge, squat. The actions are performed by 8 subjects with 4
repetitions. The evaluation protocol states to use subjects 1, 3, 5, 7 for training and
subjects 2, 4, 6, 8 for testing. Sample actions are presented in Fig. 3.15

Fig. 3.15: Sample actions from the UTD-MHAD dataset (depth and skeleton view).
Left to right: wave, swipe left, basketball shoot, baseball swing, sit to stand.

3.3.2 Results on FFD dataset

The evaluation of the FFD dataset began with the comparison of the SVM and RF
classifiers, for both PD and PI scenarios, for all feature sets separately. For the SVM
classifier C = 1 was used (considered values were 0.1, 0.3, 0.6, 1, 3, 6, 10) and for the RF
classifier nTrees = 150 was employed (considered values were 10, 30, 50, 70, 100, 150,
200). The results are presented in Table 3.1. In the PD scenario, SVM was better for Acc
and JD features, while RF was better for LTI and JMHC features. In the PI scenario,
SVM was superior or equal for all feature sets. The PI case is more important (PD is
used mostly for the purposes of validation of the dataset), therefore SVM was employed
in all subsequent evaluations. It is worth noting that in the case of Acc features another
classifier was also used, namely dynamic time warping (DTW) [18]. DTW is commonly
used for comparisons of time-series. It resulted in 98.18% and 56.75% accuracy for the
PD and PI scenarios respectively, which indicates high efficiency for a single subject,
but poor generalization ability. Due to very low accuracy in the PI scenario, DTW was
not considered in further work.

Table 3.1: Recognition accuracy (%) for the FFD dataset using SVM and RF
classifiers in PD and PI scenarios, for all proposed feature sets.

SVM RF

PD PI PD PI

Acc 93.88 70.71 90.58 63.73

JD 93.55 79.82 92.07 79.82

LTI 94.05 74.62 94.21 72.34

JMHC 86.12 74.16 90.58 71.43

The next step in the evaluation process consisted of feature selection. Firstly, manual
selection was performed, in order to determine the redundancy in the information pro-
vided by multiple lower-body joints. For this purpose, experiments were performed with
reduced sets of joints, by removing, in turn, features corresponding to hips, knees, an-
kles, and feet. The results are presented in Table 3.2. Acc features were not considered
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in this experiment, as they are based on a single joint. For the JD and LTI features, best
results were obtained without using the features corresponding to the ankles. For the
JMHC features, the best accuracy in the PI scenario was achieved when using all of the
joints. Therefore, in subsequent experiments, JD and LTI features generated without
ankles were used, and for JMHC all joints were employed.

Table 3.2: Recognition accuracy (%) for the FFD dataset using the SVM classifier
with manual selection of features.

JD LTI JMHC

Features PD PI PD PI PD PI

All 93.55 79.82 94.05 74.62 86.12 74.16

W/o hips 92.23 79.06 92.40 74.42 86.78 68.94

W/o knees 93.06 77.69 92.56 70.71 86.94 73.48

W/o ankles 94.21 80.42 94.88 77.24 85.45 71.82

W/o feet 93.55 79.36 93.55 74.36 86.45 71.52

Automatic feature selection was evaluated using three different algorithms - AdaBoost
[178, 270], Lasso [178, 260] and the proposed method - as explained in Section 3.2.5.
The experiments also included dimensionality reduction with PCA [1]. Each feature set
was evaluated separately. For each feature set, experiments were conducted for multiple
numbers of selected features. Results for the PD and PI scenarios are given in Tables
3.3 and 3.4 respectively. In the PD scenario, the proposed method is superior for all
feature sets, except the LTI, for which Lasso is slightly better. In the PI scenario, the
proposed method provides significantly better accuracy for the JD and JMHC features.
Also, for the Acc features, it is better than other methods, although, in this case, the
best results were obtain without any selection. For the LTI features, Lasso selection
proved to be better.

Table 3.3: Recognition accuracy (%) for the FFD dataset using the SVM classifier, in
the PD scenario, with different feature selection methods used for the proposed feature

sets.

w/o sel. PCA AdaBoost Lasso Proposed

Acc #feat 168 40 120 120 120

acc. 93.88 92.73 93.72 94.55 94.71

JD #feat 792 45 700 600 500

acc. 93.55 93.72 93.55 94.38 95.05

LTI #feat 1536 100 600 500 800

acc. 94.05 92.07 95.04 95.21 94.88

JMHC #feat 6720 100 750 650 720

acc. 86.12 93.55 90.08 93.39 93.72
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Table 3.4: Recognition accuracy (%) for the FFD dataset, using the SVM classifier, in
the PI scenario, with different feature selection methods used for the proposed feature

sets.

w/o sel. PCA AdaBoost Lasso Proposed

Acc #feat 168 60 150 160 140

acc. 70.71 68.24 70.06 70.36 70.67

JD #feat 792 200 400 600 120

acc. 80.42 78.12 79.18 80.24 82.52

LTI #feat 1536 100 600 500 800

acc. 77.24 74.16 76.9 79.03 77.36

JMHC #feat 6720 100 750 650 720

acc. 74.16 75.99 73.1 76.44 79.03

The next step of the evaluation considered feature fusion. Two fusion schemes were
employed - feature-level fusion and decision-level fusion. In feature-level fusion, the se-
lection was first performed on each feature set, then the selected features from all sets
were concatenated in order to form a single feature vector. This vector was then fed to
an SVM classifier. Decision-level fusion also began by performing selection for each fea-
ture set, but the selected features from each set were evaluated separately by dedicated
SVM classifiers. Each SVM classifier returned the probabilities for each class which
were concatenated and fed to the MLP classifier, as described in Section 3.2.6. MLP
was set to have a single hidden layer, while the other parameters were determined by
a grid search: number of neurons (6 to 24 with step 3, selected value 24), learning rate
(0.1 to 0.6 with step 0.1, selected value 0.2), and momentum (0.1 to 0.4 with step 0.1,
selected value 0.3). The procedure was run for all considered feature selection methods,
as well as for the PCA. The results for the PD and PI scenarios are given in Tables 3.5
and 3.6 respectively. The inclusion of Acc features is treated as a separate case, as it re-
quires an additional device, which has considerable impact on the potential applications.

In the PD case (see Table 3.5), feature-level fusion proved to be significantly better,
achieving 98.74% accuracy when using the proposed feature selection method. For PCA
and Lasso, additional modality (Acc) was beneficial, but it did not influence the accu-
racy in the case of AdaBoost as well as the proposed method. Overall, the results for
the PD case indicate that the actions performed by the fencers were consistent for each
person.

In the PI scenario (see Table 3.6), decision-level fusion provided superior recognition
accuracy, achieving 86.31% when using the proposed feature selection method. Although
additional modality (Acc) was useful when no selection or Lasso selection were employed,
for other methods, including the proposed one, it had negative impact on the final
result. Most likely, a single accelerometer was not able to provide rich enough data to
achieve generalization for this modality - as indicated in Table 3.1 Acc features were
the least efficient in the PI scenario. On the other hand, it is worth noting, that final
recognition accuracy (86.31%), which employed depth and skeleton modalities, processed
by three different feature extraction methods and combined with decision-level fusion,
is significantly better than the best accuracy for a single modality - 82.52% provided by
JD features after selection (see Table 3.4).
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Table 3.5: Recognition accuracy (%) for the FFD dataset, PD scenario, using the
fusion of multiple feature sets with respect to different feature selection methods.

Feature selections were made for each feature set separately.

w/o sel. PCA AdaBoost Lasso Proposed

Feature-level fusion

LTI + JD + JMHC 90.08 97.3 94.59 97.3 98.74

LTI + JD + JMHC + Acc 90.25 98.28 94.59 98.02 98.74

Decision-level fusion

LTI + JD + JMHC 91.89 93.87 91.35 92.79 92.79

LTI + JD + JMHC + Acc 92.79 94.23 93.15 93.51 93.33

Table 3.6: Recognition accuracy (%) for the FFD dataset, PI scenario, using the fusion
of multiple feature sets with respect to different feature selection methods. Feature

selections were made for each feature set separately.

w/o sel. PCA AdaBoost Lasso Proposed

Feature-level fusion

LTI + JD + JMHC 79.33 78.52 82.13 82.79 83.61

LTI + JD + JMHC + Acc 79.48 78.85 81.31 82.95 82.95

Decision-level fusion

LTI + JD + JMHC 83.28 80.16 82.46 83.61 86.31

LTI + JD + JMHC + Acc 83.44 79.67 82.13 84.10 85.66

For the SVM classifier, it is possible to use different kernels and therefore conduct
non-linear classification. Experiments were conducted in order to compare linear and
RBF kernels for the SVM classification stage in feature-level fusion (PD scenario) and
decision-level fusion (PI scenario). Values for parameters C = 1 and gamma = 0.01
were determined by a grid search (for the C parameter considered values were 0.1, 0.3,
0.6, 1, 3, 6, 10, and for the gamma parameter considered values were 0.01, 0.03, 0.06,
0.1, 0.3, 0.6). The results are provided in Table 3.7. Using the RBF kernel did not
provide an improvement in any of the considered cases.

Table 3.7: Recognition accuracy (%) for the FFD dataset using the proposed
feature selection method and fusion of multiple feature sets for two SVM kernels:

linear and RBF.

SVM LIN SVM RBF

PD (feature-level fusion)

LTI + JD + JMHC 98.67 97.12

LTI + JD + JMHC + Acc 98.67 98.02

PI (decision-level fusion)

LTI + JD + JMHC 86.31 85.74

LTI + JD + JMHC + Acc 85.66 84.92
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State-of-the-art algorithms for action recognition were run on the FFD dataset in order
to compare them with the proposed method. The results are shown in Table 3.8. The
proposed method (86.31% in the PI scenario) clearly outperforms the other ones (76.14%
for LOP/FTP in the PI scenario). Such a significant difference indicates that the state-
of-the-art methods are not sufficient for the presented dataset, as they were designed
for typical action recognition tasks, rather than for distinguishing similar actions based
on their dynamics.

Table 3.8: Recognition accuracy (%) for the FFD dataset - the proposed method
compared to state-of-the-art methods.

Method PD PI

EigenJoints [299] 35.04 29.89

MHI [23] 88.60 61.25

SkeletonNet [131] 93.12 64.36

C3D [261] 94.55 67.63

HON4D [210] 93.22 75.87

LOP/FTP [276] 94.21 76.14

LTI + JD + JMHC 98.67 86.31

LTI + JD + JMHC + Acc 98.67 85.66

Confusion matrices for the PD and PI scenarios are provided in Tables 3.9 and 3.10
respectively. It can be observed that two step actions, which are all considerably differ-
ent, are easily recognized, even in the PI scenario. On the other hand, the four lunge
actions are much more difficult to classify. Rapid (R) and jumping-sliding (JS) lunges
are easier to recognize, as they have some distinctive characteristics - the former is the
fastest and shortest and the latter is the longest and includes the foot sliding motion.
The most difficult to recognize is the increasing speed (IS) lunge, due to the fact that its
distinguishing feature is continuous acceleration. Since acceleration occurs in all of the
considered actions, the difference between the IS and the other actions is very subtle.
The distinctive characteristic of the lunge with waiting (WW) is sudden acceleration
after a pause, which can be easily confused with the IS action, as in both cases the
lunge is slower at first, and faster later on.

Table 3.9: Confusion matrix for the FFD dataset, PD scenario, using the proposed
method: LTI + JD + JMHC, with feature-level fusion.

R IS WW JS SF SB

R 99 1 - - - -

IS - 96 4 - - -

WW - 2 98 - - -

JS - 1 - 99 - -

SF - - - - 100 -

SB - - - - - 100
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Table 3.10: Confusion matrix for the FFD dataset, PI scenario, using the proposed
method: LTI + JD + JMHC, with decision-level fusion.

R IS WW JS SF SB

R 85.27 12 1.82 0.91 - -

IS 10.99 71.64 5.55 11.82 - -

WW 4.55 18.18 77.27 - - -

JS - 13.64 - 86.36 - -

SF - - - - 100 -

SB - - - - 2.68 97.32

3.3.3 Results on UTD-MHAD dataset

The UTD-MHAD dataset differs from the FFD dataset in several aspects. There are
significantly more actions (27), which include the motion of all joints. Also, not only
2D, but 3D motion is relevant for classification in this case. On the other hand, the
actions are considerably different from each other, and are therefore much easier to rec-
ognize. LTI features, which were designed specifically to address the difference in the
dynamics of similar actions, although useful for the FFD dataset, performed poorly on
the UTD-MHAD dataset, probably due to the different specifics of actions, as well as a
larger number of actions and considered joints. Therefore, LTI features were not used
for this dataset.

In order to handle 3D motion, JD and JMHC features were computed separately in 3
orthogonal planes (xy, xz, yz ). The proposed feature selection method was compared
to state-of-the-art selection methods for each computed feature set. Experiments with
different numbers of selected features were run for each set in order to determine the
best size of the feature subset in each case. The results are presented in Table 3.11. In
the case of JD features the proposed method outperformed the other ones in all 3 planes,
although AdaBoost provided similar results in two cases. For the JMHC features, the
proposed method was superior for the xz plane. In the other two planes, the proposed
method was significantly better than the other feature selection methods, although di-
mensionality reduction with PCA proved to be more effective in these cases. Also, for
the Acc features, PCA was superior.

Based on the experiments with the FFD dataset, decision-level fusion was employed, as
it was much more effective when actions of previously unseen persons are considered.
As in the case of the FFD dataset, employing Acc features is considered separately, as
it includes data from an additional device. The results are provided in Table 3.12, with
respect to all employed feature selection methods. The selection was run on all 7 feature
sets separately, with features chosen in accordance with the previous experiments. Sep-
arate SVMs were applied to each feature set and the SVM outputs provided the input
for the MLP classifier. MLP used one hidden layer, while the other parameters were
chosen based on the grid search: number of neurons (6 to 27 with step 3, selected value
27), learning rate (0.1 to 0.6 with step 0.1, selected value 0.2), and momentum (0.1 to
0.4 with step 0.1, selected value 0.3). The proposed feature selection method proved to
be superior. Including the Acc features provided for significantly better accuracy.
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Table 3.11: Recognition accuracy (%) for the UTD-MHAD dataset using linear SVM
and different feature selection methods on different feature sets.

w/o sel. PCA AdaBoost Lasso Proposed

JDxy #feat 2640 100 500 900 600

acc. 82.79 85.58 84.88 85.81 86.05

JDxz #feat 2640 200 1000 900 700

acc. 84.19 75.81 85.58 85.35 85.58

JDyz #feat 2640 100 2000 1750 200

acc. 83.95 79.07 86.98 85.12 86.98

JMHCxy #feat 16800 400 750 2000 2000

acc. 63.02 80 66.51 72.56 78.14

JMHCxz #feat 16800 400 1250 600 800

acc. 63.02 73.95 68.14 74.19 82.09

JMHCyz #feat 16800 400 1250 2500 4500

acc. 64.19 73.95 65.12 68.84 71.63

Acc #feat 168 100 120 140 150

acc. 78.14 79.53 77.91 79.07 78.6

Table 3.12: Recognition accuracy (%) for the UTD-MHAD dataset using a
decision-level fusion of multiple feature sets with respect to different feature selection

methods. Feature selections were made for each feature set separately.

w/o sel. PCA AdaBoost Lasso Proposed

JD + JMHC 90.89 92.29 91.12 91.82 92.76

JD + JMHC + Acc 90.89 93.39 92.99 92.52 94.39

As the final tuning step of the classification process, employing the RBF kernel during
the SVM stage was evaluated. The results are provided in Table 3.13. Using SVM with
the RBF kernel, and with parameters C = 10 and gamma = 0.03, improved the final
accuracy in both considered cases (with and without Acc features).

Table 3.13: Recognition accuracy (%) for the UTD-MHAD dataset using the proposed
feature selection method and decision-level fusion of multiple feature sets for two SVM

kernels: linear and RBF.

SVM LIN SVM RBF

JD + JMHC 92.76 93.93

JD + JMHC + Acc 94.39 94.91

A comparison of the proposed method with state-of-the-art algorithms is shown in Table
3.14, including the employed modalities. The proposed method outperforms all other
methods based on the same modalities (depth, skeleton and inertial), and the only,
slightly better algorithm is VGG-16, which employs RGB data. It is worth noting, that
in many scenarios, particularly in sports, it is beneficial not to use RGB data, as it raises
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issues concerning lighting conditions, background noise and privacy. The confusion ma-
trix is provided in Table 3.15. The results indicate that several actions are considerably
more difficult to recognize, as 21 out of 27 actions are classified with 100% accuracy.
Draw triangle and draw circle counter-clockwise are often misclassified, particularly the
second one is easily mistaken with draw circle clockwise (in 43.75%). Other misclassified
actions include: catch (25% recognized as knock), jog (25% recognized as walk), throw
(18.75% recognized as swipe left), knock (6.25% recognized as wave).

Table 3.14: Recognition accuracy (%) for the UTD-MHAD dataset - the proposed
method compared to state-of-the-art methods.

Method Acc. (%) Modalities

DMM-CRC [38] 79.10 Depth + Inertial

GF + LF [79] 84.89 Depth + Skeleton

SD-SR [8] 86.12 Skeleton

JTM + CNN [280] 87.90 Skeleton

DMM-CT-HOG-LBP-EOH [29] 88.40 Depth

DMM-CRC-LOGP [39] 91.50 Depth + Skeleton + Inertial

TPM-LLC-BoA [76] 93.02 Skeleton

MDACC [74] 93.26 Depth + Skeleton + Inertial

VGG-F [134] 94.60 RGB + Depth + Skeleton

VGG-16 [134] 95.11 RGB + Depth + Skeleton

JD + JMHC 93.93 Depth + Skeleton

JD + JMHC + Acc 94.91 Depth + Skeleton + Inertial

3.4 Summary

This chapter addressed the problem of distinguishing similar actions in sports, based
on an analysis of action dynamics. A number of novel feature extraction methods were
proposed - joint dynamics, local trace images, joint motion history context, acc features
- which employ multiple modalities, namely depth maps and skeleton models acquired
with the Kinect, as well as accelerometric data acquired with an IMU. A new feature
selection algorithm was also introduced, capable of efficiently finding subsets, effective at
distinguishing classes in data while minimizing feature redundancy. Both feature-level
and decision-level fusion were employed in order to effectively combine information from
multiple feature sets. A dedicated dataset with fencing footwork actions was recorded.
It includes four similar lunge actions, and therefore allows to properly evaluate the pro-
posed methods. Extensive experiments were conducted on the proposed dataset as well
as the publicly available UTD-MHAD dataset.

The obtained results indicate that the proposed methods are significantly more effective
for distinguishing between similar actions in the FFD dataset than state-of-the-art algo-
rithms designed for general action recognition. This confirms that sports actions differ
considerably from general actions and therefore require dedicated analysis methods. On
the other hand, a subset of the proposed methods proved to be efficient for the UTD-
MHAD dataset, which indicates, that the proposed dynamics-based approach can also
be useful in general action recognition.
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Chapter 3. Recognition of action dynamics in fencing footwork

The ability to properly recognize actions in sports is important in two cases. Firstly, it
allows to determine which actions an athlete has chosen to perform in a given situation,
that is the basis of analyzing and improving their tactics. Secondly, distinctive models of
actions can be employed to evaluate the correctness of the performance of these actions.
In both scenarios, action recognition constitutes for feedback which can be useful in
improving one’s sports skills.
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Chapter 4

Real-time detection and analysis of
actions in fencing footwork

This chapter concerns the detection and analysis of actions in continuous recordings of
fencing footwork training routines. Automatic temporal segmentation is an important
aspect of sports data analysis, as manual segmentation cannot be used in systems op-
erating in real-time. Two modalities are employed - skeleton estimates from the Kinect
and inertial data from a custom-built system with two IMUs. A novel model-based sig-
nal filtering method is proposed, which enables the effective detection of actions, as well
as the extraction of relevant qualitative parameters. Experiments are conducted on two
datasets recorded specifically for this work. The experimental results indicate that the
proposed method can provide useful real-time feedback for fencers and their coaches.

Most of the works devoted to motion analysis, particularly those that consider action
recognition, operate on datasets with temporally pre-segmented data, where each action
execution is provided as a separate sample [34, 309]. While this is convenient for the
development of algorithms, it has little application in real-world scenarios, unless proper
segmentation methods are introduced as well. The problem of temporal data segmen-
tation is rarely discussed in the literature. In the field of automatic sports analysis, it
has been addressed in disciplines involving cyclic motion, by detecting repetitive actions
such as swimming strokes [212] or pommel horse circles [226]. In this work, the detection
of actions in a continuous, non-cyclic training routine is considered. In fencing footwork
training, the fencer moves forward and backwards in steps and performs actions such as
a lunge or a dodge. These actions are performed either on the command of a coach, or
at will. In either case, actions can occur at any moment, therefore the training routine
is not cyclic. In this work, lunge detection is considered, as this is the most important
action in fencing footwork.

Another aspect of the automatic study of motion which is also rarely discussed in the
literature is the qualitative analysis of actions. In the aforementioned work considering
the pommel horse routine [226], the timing of motion cycles is determined. The authors
of [11] provide real-time feedback in rowing, table tennis, and biathlon, with the use
of acceleration plots, visualization of ball impact positions and visualization of barrel
motion respectively. In fencing, the qualitative analysis of lunge actions was performed
by making use of stereophotogrammetry [92], cameras [194], as well as electromyogra-
phy and high-speed cameras [26]. However, none of these solutions provide real-time
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

feedback. In this work, lunge actions are recognized and analyzed immediately, dur-
ing practice. Two approaches are proposed, based on skeleton data from the Kinect
and inertial data from two IMUs. Once a lunge is detected, a number of qualitative
parameters is calculated, namely duration, length, average and maximum speed, and
acceleration, as well as hand timing. Feedback is provided in real-time, as the presented
system is able to detect and analyze the lunge actions instantaneously and send the re-
sults wirelessly to a smartphone, which can be used during training. Therefore, fencers
can correct their actions during practice, rather than receive feedback only afterwards.
The proposed methods were published in [175].

This chapter is organized as follows. Section 4.1 discusses the data acquisition process
with the Kinect and with a custom two IMU-system. In Section 4.2, new Kinect-based
methods for detection and analysis of lunge actions are introduced. In Section 4.2.5,
the proposed methods are adapted for IMU-based signals. Section 4.3 includes details
regarding the experiments and discussion of the results. A summary is given in Section
4.4.

4.1 Data acquisition

The proposed methods for the detection and analysis of fencing footwork are based on
two data modalities - skeleton data from the Kinect and inertial signals from two IMUs.
Two datasets were acquired. In the first stage, the Kinect sensor was employed in order
to verify the suitability of employing joint position data for the temporal segmentation
of continuous recordings of fencing footwork practice. The first dataset was acquired
solely with the Kinect. The sensor captured the side-view of the subject from approx.
3 meters distance. Each person was asked to perform a basic footwork training routine
consisting of moving forward and backward with steps and performing lunge actions at
will. Skeleton and depth data were recorded, the former as input for the developed algo-
rithms, and the latter for the purpose of preparing the ground truth by way of manual
labeling. Eight advanced fencers participated in data acquisition. Some of them were
recorded twice (on different days). For each fencer, 2 to 5 recordings were captured,
each including approx. 5 lunge actions. In total, the first dataset includes 31 recordings
of 149 lunge actions. Each recording was manually labeled with labels indicating the
start and end frames for each lunge action, as well as the frame in which the weapon
arm is straightened. Manual labels were used as the ground truth in the experiments.

While the skeleton data provided by the Kinect proved to be efficient for the discussed
task, the sensor itself is not quite convenient for use in training rooms. The practicing
person needs a rather large space for exclusive use, as the sensor is placed at an approx.
3 meters distance and the space between the sensor and the person must be empty.
Therefore, the next stage of research in this work considered employing IMU sensors,
which are free of the aforementioned limitations. In order to capture both body motion
and arm motion (which is an important qualitative parameter, as discussed in Section
4.2.3), two IMUs were employed. Professional IMUs are expensive, therefore a custom
two-IMU system, more affordable for a typical fencing institution was designed, built
and evaluated. The cost of the proposed system is approx. 10 times lower than typical
commercial solutions.

The architecture of the assembled system is presented in Fig. 4.1 (left). It employs
an Arduino Leonardo board with an Atmega32U4 microcontroller, a multiplexer which
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

enables connecting two I2C [120] devices simultaneously, and two Adafruit LSM9DS0
IMUs, with 9 degrees of freedom (3 axis measurements from accelerometer, magnetome-
ter and gyroscope). The final device is presented in Fig. 4.1 (right). The data from
the device were transferred via a long USB cable, which was sufficient for dataset ac-
quisition, although in the next version, which is to be developed in the near future, the
communication will be performed wirelessly via Bluetooth, which is obviously better in
a practical scenario. The microcontroller was programmed to capture data from both
IMUs simultaneously and provide raw readings from their accelerometers, gyroscopes,
and magnetometers. The effective data delivery rate of the system is approx. 45 Hz.

The second dataset was acquired by employing both the Kinect and the assembled
device. The first IMU was mounted near the elbow of the weapon-hand arm, in order
to detect its forward movement. The second IMU was mounted on the chest, which was
expected to be a good reference point for detecting lunge actions. The main objective was
to capture inertial data, although data from the Kinect were recorded as well in order
to compare both modalities. Once again, depth data were used for manual labeling.
The synchronization of the skeleton and inertial data was performed by ensuring a
simultaneous start and then resampling the inertial data to match the Kinect’s recording
frequency. Nine advanced fencers participated in the acquisition of the second dataset
(five of whom were also present for the recording of the first dataset). For each person,
3 to 4 recordings were captured, each containing 5 to 6 lunge actions. The total size of
the second dataset is 28 recordings of 162 lunges.
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Fig. 4.1: Custom two-IMU system. Architecture (left) and the final device (right).
Symbols: Vin - input power voltage, GND - ground, SDA - serial data line, SCL -

serial clock line.

4.2 Methods

The workflow of detecting and analyzing actions in fencing footwork is as follows. Firstly,
the signal segments which could potentially include lunge actions need to be detected.
Secondly, such lunge action candidates need to be verified. Thirdly, the qualitative
parameters should be extracted. This requires the key frames of the lunge action (start,
end, arm straightening) to be detected precisely. Finally, feedback should be provided
to the practicing subject in real-time. The proposed methods were initially designed for
the data acquired with the Kinect. The detection, classification, qualitative analysis,
and feedback are described in Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4 respectively. The
adaptation of the proposed methods to IMU signals is discussed in Section 4.2.5.
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

4.2.1 Action detection

The proposed method for the detection of a lunge is based on the following characteristics
of the action. A lunge is initiated by extending the front leg and dynamically pushing
off with the back leg, followed by the front leg touching the ground, the fencer coming
to a short halt, and then returning to the previous position by bending the knee of
the back leg and taking the front leg back (see Fig. 4.2). It is worth noting, that arm
extension is also an important part of the lunge action, and the timing between the body
forward movement and arm straightening is a relevant qualitative parameter. The body
motion can be analyzed in terms of velocity. At first, there is rapid acceleration, then
the maximum velocity is reached during the forward movement, and then deceleration
occurs just before coming to a halt, which results in zero velocity. When a fencer
returns to the previous position, similar changes in velocity can be observed, but in the
opposite direction. Therefore, the lunge action can be detected by finding a positive
maximum peak in the velocity plot, followed by a negative minimum peak (see Fig. 4.3
left and right segments). The start of the action is determined by another minimum,
occurring before the maximum peak. However, similar peaks are present when fencer
performs a sequence consisting of a step forward and step backward (see Fig. 4.3 middle
segment). Thus, the detection of a pair of positive and negative peaks results only in
lunge candidates which need to be verified.

Fig. 4.2: Keyframes (depth and skeleton view) of lunge action. Starting from the
fencing pose, the fencer extends the arm, then extends the front leg and pushes off with
the back leg, then reaches the full extent of the lunge, then returns to the basic pose.
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Fig. 4.3: Velocity over time of a fencer during footwork practice. Raw signal (orange
line) is filtered (green line) in order to make signal analysis feasible. A sequence of a

positive maximum peak and a negative minimum peak (green markers) indicates lunge
candidates. There are three detected segments in the plot: left and right are actual
lunges (blue background) and the middle one is a step forward and backward action

(gray background).
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

The skeleton data provided by the Kinect includes 20 joint positions (see Fig. 3.6).
Based on these positions, velocity v in each frame is calculated as the difference in
positions p between two consecutive frames:

v(t) = p(t)− p(t− 1) (4.1)

In order to analyze the forward and backward movement of a fencer, the velocity of
a single joint is sufficient. The joint corresponding to the spine base was chosen, as
it is located near the center of the body, and therefore is tracked by the Kinect most
consistently. Nevertheless, the raw signal is very noisy and needs to be filtered before
applying algorithms for peak finding. An important criterion was to use filters, which
enable local smoothing with a relatively low delay, so that the detection and analysis
could be performed in real-time. The following filters were considered:

• Moving Average (MA) - the arithmetic average of velocity values vi computed over
a moving window of given length n:

ma =
v1 + v2 + ...+ vn

n
(4.2)

Due to significant noise in the Kinect skeleton data, a single pass of this filter was
not sufficient, therefore a double pass was applied, with a shorter filter window
in the second pass. Experimental results demonstrated, that double filtering with
MA resulted in smooth signals.

• Locally Weighted Scatterplot Smooth (Loess) [49] - smoothing filter based on
second degree polynomials, computed as follows. At first, in a window of length n,
distances di are calculated between the data point vc at the center of the window
and the other data points vi:

di = vc − vi, i = 1, ..., n (4.3)

Next, based on these distances, weights wi are computed:

wi = (1− |di|3)3, i = 1, ..., n (4.4)

Then, a second degree polynomial is fitted, by using a weighted linear least-squares
regression [180] to minimize the fit error e:

e =

n∑
i=1

wi ∗ (vi − v̂i)2. (4.5)

where v̂i is the fitted value. The value of the fitted polynomial at the center of the
window is used as the filtered value.

There are two goals when analyzing the velocity signal - the first is to find all rele-
vant peaks, and the second is to avoid finding improper peaks, which can occur due to
data noise. These goals are, in fact, contradictory. Strong smoothing removes improper
peaks, but can result in removing some relevant peaks as well. Weak smoothing, on the
other hand, preserves the relevant peaks, but can produce additional improper peaks.
In the discussed scenario, it is important to find a minimum preceding the positive max-
imum peak, as it indicates the time when the lunge starts (see Fig. 4.4), which is crucial
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

for performing qualitative analysis (see Section 4.2.3). When fencers perform the lunge
after stepping forward, they slow down only slightly, therefore the minimum is small and
can be lost when too much filtering is applied (see Fig. 4.4 left). On the other hand, the
Kinect has difficulties with properly tracking the joints during the slowing-down stage
of the lunge, which sometimes results in outliers in the data that may be misidentified
as peaks if the filtering is not sufficient (see Fig. 4.4 middle).

Experiments were conducted using both MA and Loess filters, at different window sizes,
in order to verify how well-suited they are for this task. It was concluded, that the
MA filter tends to produce smoother plots, therefore sometimes discarding the initial
minimum (see Fig. 4.4 left), while the Loess filter tends to preserve peaks, although it
generates improper peaks when outliers occur in the raw signal (see Fig. 4.4 middle).
It is worth noting that there exists a modified version of the Loess filter dedicated
to removing outliers [49], although it works well only when supplied with long signal
segments, and is therefore not suitable for real-time filtering.
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Fig. 4.4: Velocity over time for lunge action. Raw signal (red line) is filtered (green
line) with different methods, which results in different detection of the start point
(green marker) of action segment (blue background). The MA filter (left) does not

preserve minimum on the rising slope, and the Loess filter (middle) produces improper
peak on falling slope. The proposed method (right) correctly handles both slopes.

In order to address the discussed issues, a novel filtering method is proposed, which
allows to take advantage of both the MA and Loess algorithms. The novelty consists in
providing adaptive filtering which is based on known model of the analyzed signal. In
this scenario, the model assumes that peaks should be preserved on the rising slope and
smoothed on the falling slope. The proposed filter adapts to the signal by computing
the filtered value as a weighted sum of the values from both the MA and Loess filters,
with weights calculated on the basis of the current slope of the signal. Slope direction s
is approximated with the first derivative of the MA-filtered signal v̂ in a window of size
n (equal to the window employed in the filter):

s =
n−1∑
i=1

v̂i+1 − v̂i
n− 1

. (4.6)

Slope direction s is then cut to range (-1,1):

s = max(min(s, 1),−1) (4.7)

and normalized to range (0,1):
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Chapter 4. Real-time detection and analysis of actions in fencing footwork

s =
s+ 1

2
(4.8)

Therefore, s < 0.5 corresponds to falling slope and s > 0.5 corresponds to rising slope.
Slope direction is employed directly to calculate the weights for the MA and Loess filters:

wmovingavg = 1− s (4.9)

wloess = s (4.10)

Since the slope is computed based on a filtered signal, it changes smoothly, therefore
the transition between the MA and Loess values is also smooth. The proposed method
results in the signal filtering being more similar to the Loess filter on the rising slope
(see Fig. 4.4 middle and right), and to the MA filter on the falling slope (see Fig. 4.4
left and right).

The segment of interest detection in the signal is performed as follows. Peaks are
identified as local maxima or minima in the filtered signal. When a pair of peaks of
a maximum higher than zero followed by a minimum lower than zero is detected, it is
marked as a lunge candidate, after which the key frames of the detected action segment
are calculated. The start frame is found by going left from the maximum, looking for
a point in which there is either a local minimum or a negative value, whichever occurs
first. This corresponds to the start of the forward motion during the lunge. The end
frame is found by going right from the maximum and looking for the first point with
a negative value. This corresponds to the end of the forward motion. Returning to
the basic pose is not analyzed and therefore it is not considered a part of the action.
The frame where the arm is straightened is found by going left from the end frame and
looking for a frame in which the angle formed by three of the joints: wrist, elbow and
shoulder, changes from below to above of 160 degrees.

4.2.2 Action classification

The proposed method for action detection results in signal segments which correspond
to either a lunge or a sequence of stepping forward and backward. Therefore, once an
action segment is detected, classification is performed. Even though the velocity pat-
tern of the considered joint (spine base) is similar for both actions, the overall motion
is significantly different. Therefore, information regarding all tracked joints is employed.

Firstly, segments during which the arm is not straightened at all (based on the wrist-
elbow-shoulder angle), are identified as non-lunge, as this is crucial for an action to
be considered a lunge. The remaining segments are classified by using an algorithm
for lunge action recognition that is based on the feature extraction and classification
methods presented in Chapter 3. The x and y direction velocities are computed for
each joint and then interpolated to a common length. Since the Kinect operates at 30
Hz and the average duration of an extracted action segment is approx. 1 second, the
target length is equal to 32 samples. The velocities are transformed to the frequency
domain by applying the FFT. The first 3 coefficients of the FFT, computed for each
joint, in x and y direction, are used as features. Using 3 coefficients, 20 joints and
2 directions, the total size of a feature vector is 120. Linear SVM is then used for
classification (see Section 4.3 for details).
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4.2.3 Qualitative analysis

Once a lunge action is detected alongside its key frames, qualitative analysis can be
performed. The following parameters are calculated, as they were considered by fencing
coaches as important:

• Hand timing - a crucial aspect of properly executing a lunge is to start by extending
the weapon hand and only then moving the whole body forward. Otherwise,
the opponent is likely to perform an effective counteraction. Therefore, the time
difference between the arm straightening and the start of the forward motion is
determined.

• Duration - a faster lunge gives the opponent less time to react. Duration is calcu-
lated as the time between the start and end frames of the detected action segment.

• Length - a longer lunge allows to attack from a greater distance. Lunge length is
determined as the difference between the extreme positions of the selected body
joint (spine base) during the action.

• Average and maximum acceleration - a dynamic lunge results in a greater length
and shorter duration, therefore the dynamic parameters of the motion are relevant.
The average and maximum acceleration are computed as the mean and maximum
change of velocity on the rising slope of the filtered signal respectively.

• Average and maximum velocity - similarly to acceleration, velocity concerns mea-
suring the dynamics of the motion. The velocity parameters are computed as the
mean and maximum value on the rising slope of the filtered signal, respectively.

Fencers can plan their practice according to these parameters, either by choosing a single
parameter to improve at a time, or multiple, which is more difficult, but important for
advanced athletes.

4.2.4 Feedback

Sport support systems are much more effective when feedback is provided in real-time,
as the practicing person can correct their movement while performing exercises. Sev-
eral possibilities for providing feedback were considered. The data from the Kinect are
processed on a laptop, therefore the parameters of the detected lunge actions can be
displayed on the laptop screen. However, it is difficult to make the laptop easily visible
during the entire practice, as the fencer moves forward and backward and thus changes
their position a lot. Therefore, another device was employed for providing feedback,
namely a smartphone. Since the footwork is usually practiced without the weapon, the
fencer can hold a smartphone in their hand, or it can be placed in a transparent case
attached to the forearm. Once a lunge is detected and analyzed, the computer transmits
the calculated parameters wirelessly to be displayed in a dedicated application on the
mobile device. This is a simple, yet effective solution which does not require any addi-
tional devices as the fencers can use their own smartphones. The feedback is provided
instantaneously. Including processing and transfer to the mobile device, the feedback is
available in less than half a second after finishing the forward motion part of the lunge
action. Since motion parameters are evaluated in real-time, corrections in the movement
can be made during the practice session.
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While real-time feedback is most important, post-practice analysis is also interesting,
as it provides additional information. The practice can be recorded with the developed
software and the fencer or their coach can analyze it afterwards. The software enables
replaying the recording, by showing the depth, silhouette and skeleton views, plotting
the raw and filtered velocity signal in a selected time window, highlighting detected
lunge segments and presenting their qualitative analysis (see Fig. 4.5). Statistics from
the entire recording are computed as well. It is worth noting that since the system
analyzes the signal and displays information in real-time, in can also be used by the
coach for overseeing a practicing person.

Fig. 4.5: System for footwork practice analysis.

Finally, two other options of delivering real-time feedback were considered and may
be employed in the future. The first option is an augmented reality (AR) headset
(see Chapter 5), which could display the parameters of the analyzed lunge on semi-
transparent glasses. This solution seems to be more convenient than a smartphone
attached to the hand, although it requires the AR headset which is very expensive.
Another option would be a smartwatch, which could be mounted on the wrist, similarly
to the smartphone, but at a significantly lower weight. Although basic smartwatches are
not that expensive, they are still much less popular than smartphones and users may
prefer using the smartphone that they already have rather than acquire a smartwatch.

4.2.5 IMU-based methods

Signals from IMUs (accelerometric, angular velocity, and magnetic) provide a consider-
ably different type of information than the visual data from the Kinect. Therefore, the
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proposed methods needed to be modified in order to produce similar feedback. The idea
was to detect the lunge and arm straightening with chest-mounted and elbow-mounted
sensors, respectively. Lunge detection is based on accelerometric signal. It is possible to
obtain the velocity signal by integrating the acceleration, although the accumulation of
error makes this approach impractical. Therefore, acceleration in the horizontal direc-
tion is used. Contrary to the Kinect data, peak analysis in the acceleration signal is not
sufficient to detect potential lunge segments. IMUs are sensitive to the dynamics of the
motion, and therefore, without additional information, it is not possible to efficiently
identify which peaks correspond to a lunge action and which correspond to other actions
or changes in speed when performing the exercise (see blue line in Fig. 4.6). For this
reason, the lunge segments are identified by first detecting a moment in which the arm
is straightened by using the elbow-mounted sensor, and only then finding the exact start
and end points of the action by using the accelerometer signal from the chest-mounted
sensor. A drawback of this approach is that some actions, such as moving forward and
backward with a straightened arm, are identified as a lunge as well. Although typically
fencers straighten the arm only during the lunge, it is not always the case, therefore this
is a relevant limitation.

Various approaches can be used for detecting arm straightening. The most obvious one
would be to use sensor fusion algorithms to compute the orientation [165]. However,
initial experiments showed that these either introduce a significant delay or produce a
noisy estimation of angles, and are therefore not suitable for this application. Another
approach which was under consideration was to employ gyroscope readings, which should
generate a peak at such a motion. However, the data was too noisy, as the sensor
was very sensitive to the motion of the arm resulting from the overall movement of
the body. Similar problems were present when using accelerometer data. Therefore,
arm straightening is detected by using magnetometer readings captured along the axis
aligned with the arm. The magnetometer produces much more stable data and arm-
straightening is easily detected by finding a raising slope with a height above a given
threshold, which is determined experimentally (see purple line in Fig. 4.6).
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Fig. 4.6: Detection of lunge action using signals from two inertial sensors. Purple line
represents filtered magnetometer readings from elbow-mounted sensor and blue line
represents filtered accelerometer signal from chest-mounted sensor. Markers indicate

detected keypoints and blue backgrounds indicate detected segments.

Once the arm straightening is detected, the algorithm waits for another 30 data points
to arrive, and then begins searching for the keypoints of the action. The exact point of
arm straightening is determined by finding where the rising slope of the filtered mag-
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netometer signal is the steepest, i.e. where the difference in value in the filtered signal
between the current and the preceding point is at its highest (see purple markers in Fig.
4.6). The end point is determined as the first positive peak in the filtered accelerome-
ter signal (chest-mounted sensor) after the arm-straightening (see blue markers in Fig.
4.6). This corresponds to the time, when the forward motion stops. The start point is
identified as the middle of the first falling slope preceding the peak which indicates the
end point (see blue markers in Fig. 4.6). This corresponds to the moment when the
forward motion starts.

No additional classification is performed for the detected action segment, as the avail-
able data is not sufficient to provide more relevant information for this task. It might
be beneficial to mount another sensor on the knee and employ classification based on
methods presented in Chapter 3.2.1, however, only two sensors were available during
the experiments. The qualitative parameters provided by the IMU-based method are
slightly limited in comparison with the Kinect-based algorithm. Hand timing and lunge
duration are computed based on the detected key frames. Average and maximum ac-
celeration are provided based on the filtered acceleration signal. Average and maximum
velocity, as well as lunge length are not computed, as the accuracy would be too low
due to the accumulation of error. The feedback is provided in a similar manner as in
the Kinect-based method. It is worth noting, however, that with inertial sensors, it is
possible to eliminate the need for a computer, as the sensors could communicate directly
with a smartphone or smartwatch, which would handle the processing.

4.3 Experiments and results

The proposed methods were verified on two datasets recorded specifically for this work
(see Section 4.1), as well as in experiments with fencing coaches. The first dataset in-
cludes data only from the Kinect, while the second dataset includes data from both the
Kinect and the IMUs, allowing for a comparison of the two approaches. The ground
truth was obtained for both datasets by manually labeling the recordings, including the
key frames (start, end, arm-straightening) for each lunge, based on the depth data from
the Kinect. The experiments involved employing 3 different filters: MA, Loess, and
the proposed model-based method, with a number of different filter window lengths, as
provided in the result tables. The MA filter employed double filtering, therefore two
values are given for this filter.

Both the quantitative and qualitative parameters of the detection were measured. The
number of all detected action segments is provided, as well as the number of those
identified as a lunge. The true positive (TP) parameter represents how many of the
segments classified as a lunge matched a lunge segment in the ground truth. Segments
are considered as matching if the middle of the detected segment lays between the start
and end of the actual action segment. The false positive (FP) parameter represents how
many of the segments classified as a lunge were not matching any of the lunge actions
from the ground truth. Additionally, the number of poorly detected segments (Poor) is
given. A segment is considered poorly detected when the difference between the detected
and ground truth segments (frame-wise) is greater than their common part. Based on
these parameters, the performance measurements are computed. Recall represents the
fraction of the actual lunges that were detected. Precision represents the fraction of
detected lunges that were actual lunges. The formulas for the employed parameters are
as follows [224]:
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TP = #{a ∈ A | a is an actual lunge} (4.11)

FP = #{a ∈ A | a is not an actual lunge} (4.12)

Recall =
TP

N
(4.13)

Precision =
TP

L
(4.14)

where: TP - true positive, FP - false positive, a - detected action segment, A - set of
all detected actions segments, N - number of lunge actions in ground truth, L - number
of detected action segments classified as lunge action.

For the Kinect-based method, the classification stage includes employing SVM. In the
experiments, a separate SVM model was trained for each case, defined by a unique set
of arguments: dataset, person, filter type, filter length. There were 8 persons in the
first dataset and 9 in the second. For each person, the SVM model was trained on all
other persons in the considered dataset, resulting in leave-one-out cross-validation [139].
Weka [289] implementation of linear SVM was used, which provided automatic data
normalization. Setting the parameter C = 1 was sufficient to obtain 100% recall and
precision, therefore no experiments with other kernels and parameters were conducted.

The evaluation of the qualitative analysis of the detected lunge segments was performed
by computing the mean absolute difference between the key frames (start, end, arm-
straightening) from the detected segments and from the ground truth. The presented
results also include the standard deviation. Differences between the key frames are
denoted as direct parameters, as they are computed directly from the data, but not
presented to the user. Based on that, the indirect parameters are computed, which
constitute actual feedback for the fencers.

The accuracy of determining the three indirect parameters is verified: hand timing
(the difference between lunge start and arm-straightening), lunge duration, and lunge
length. The mean absolute difference of these parameters between the detected segments
and their corresponding ground truth segments is provided, along with the standard
deviation. Timing and duration are provided in frames, and the length is given in
centimeters, as the Kinect uses such units for its skeleton data. The actual ground truth
for the length was not acquired, therefore the results for this parameter represent only
how the accuracy of key frame detection corresponds to the length estimation, based
on the Kinect’s position estimation. The accuracy of other parameters provided as
feedback, acceleration and velocity, is not evaluated, as they do not depend on the exact
positions of the key frames and no ground truth was available for them. According to
fencing coaches, the most important of the discussed parameters is hand timing, it was
therefore used as the criteria for marking the best filter length in the qualitative results.

4.3.1 Dataset 1

The results for Kinect-based lunge detection and the analysis for dataset 1 are presented
in Tables 4.1 and 4.2 respectively. For the detection (see Table 4.1), a 100% recall was
obtained for all filters: MA with a length (7;3), Loess with lengths of 17 and 19, pro-
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posed with lengths of 13, 15 and 17. However, only the proposed method provided at the
same time 100% precision, for filter lengths 13 and 17. The number of poorly detected
segments was similar for the Loess and the proposed filter (0 in the best case for both)
and higher for the MA filter (2 in the best case).

The results for the lunge action analysis (see Table. 4.2) show, that in regard to the pa-
rameters computed directly, the start frame was the most difficult to determine precisely
(best accuracy: 1.27 ± 1.03 frames), while the end and arm-straightening frames were
easier to ascertain (best accuracies: 0.62 ± 0.60 and 0.52 ± 0.61 frames, respectively).
The proposed method was superior in detecting the key frames, particularly for the start
frame. As for the indirect parameters, hand timing and lunge duration were detected
with similar accuracy: 1.53 ± 1.03 and 1.64 ± 1.25 frames respectively. Lunge length
accuracy in the best case was 3.73 ± 3.71 centimeters, although this result does not
account for errors in the measurements introduced by the Kinect itself. The proposed
method, with a filter length of 15, provided the best accuracy for all of the indirect
parameters.

Table 4.1: Evaluation of lunge action detection, first dataset, Kinect-based method.
Number of detected segments is given for: all detected action segments (Total); those

classified as lunge (Lunge); true positive (TP); false positive (FP); poorly detected
segments (Poor). Ground truth contains 149 lunge actions.

Filter Number of detected segments Performance (%)

type, length Total Lunge TP FP Poor Recall Precision

MA (5; 3) 207 149 148 1 3 99.33 99.33

MA (7; 3) 205 150 149 1 2 100.00 99.33

MA (7; 5) 205 146 145 1 2 97.32 99.32

MA (9; 5) 204 146 145 1 4 97.32 99.32

MA (9; 7) 201 142 141 1 5 94.63 99.30

MA (11; 7) 199 127 125 2 6 83.89 98.43

Loess (13) 220 146 146 0 2 97.99 100.00

Loess (15) 216 147 147 0 1 98.66 100.00

Loess (17) 210 150 149 1 0 100.00 99.33

Loess (19) 210 150 149 1 0 100.00 99.33

Loess (21) 207 149 148 1 2 99.33 99.33

Loess (23) 204 147 146 1 3 97.99 99.32

Proposed (13) 204 149 149 0 1 100.00 100.00

Proposed (15) 205 150 149 1 0 100.00 99.33

Proposed (17) 201 149 149 0 0 100.00 100.00

Proposed (19) 200 147 146 1 1 97.99 99.32

Proposed (21) 200 149 148 1 2 99.33 99.33

Proposed (23) 200 144 143 1 3 95.97 99.31
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Table 4.2: Evaluation of lunge action analysis, first dataset, Kinect-based method.
Mean value and standard deviation are presented. Direct parameters: accuracy for

detecting start frame, end frame, and arm-straightening, provided in frames. Indirect
parameters (provided as feedback): hand timing and duration, given in frames; length,

provided in centimeters. Filter lengths with best hand timing results are marked.

Filter Direct parameters Indirect parameters

(type, length) Start [f] End [f] Arm strght. [f] Timing [f] Duration [f] Length [cm]

MA (5; 3) 1.92 ± 1.72 0.85 ± 0.82 0.81 ± 0.98 1.77 ± 1.44 2.32 ± 1.95 6.16 ± 6.27

MA (7; 3) 2.00 ± 2.20 0.76 ± 0.71 0.64 ± 0.77 2.07 ± 2.00 2.39 ± 2.43 6.35 ± 7.82

MA (7; 5) 2.17 ± 2.33 0.72 ± 0.69 0.60 ± 0.71 2.37 ± 2.23 2.54 ± 2.55 7.30 ± 8.51

MA (9; 5) 3.17 ± 2.79 0.65 ± 0.64 0.63 ± 0.73 3.30 ± 2.75 3.52 ± 3.05 10.65 ± 9.96

MA (9; 7) 3.73 ± 3.05 0.63 ± 0.60 0.64 ± 0.76 3.81 ± 3.03 4.10 ± 3.30 12.48 ± 10.86

MA (11; 7) 5.64 ± 3.75 0.65 ± 0.65 0.58 ± 0.70 5.64 ± 3.86 6.09 ± 4.02 18.36 ± 12.46

Loess (13) 2.11 ± 1.89 0.80 ± 0.70 0.70 ± 0.85 2.17 ± 1.84 2.44 ± 2.06 6.68 ± 6.51

Loess (15) 1.45 ± 1.27 0.82 ± 0.75 0.61 ± 0.76 1.60 ± 1.26 1.87 ± 1.53 4.61 ± 4.75

Loess (17) 1.42 ± 1.58 0.81 ± 0.78 0.52 ± 0.61 1.62 ± 1.57 1.89 ± 1.81 4.73 ± 5.75

Loess (19) 1.57 ± 1.72 0.77 ± 0.69 0.52 ± 0.61 1.74 ± 1.69 1.99 ± 1.85 5.35 ± 6.40

Loess (21) 2.05 ± 2.17 0.71 ± 0.64 0.57 ± 0.66 2.15 ± 2.18 2.37 ± 2.31 7.04 ± 7.95

Loess (23) 2.47 ± 2.25 0.70 ± 0.58 0.60 ± 0.70 2.57 ± 2.31 2.80 ± 2.42 8.43 ± 7.71

Proposed (13) 1.76 ± 1.48 0.62 ± 0.61 0.69 ± 0.86 1.87 ± 1.43 2.01 ± 1.77 5.18 ± 5.43

Proposed (15) 1.27 ± 1.03 0.64 ± 0.63 0.54 ± 0.66 1.53 ± 1.03 1.64 ± 1.25 3.73 ± 3.71

Proposed (17) 1.44 ± 1.52 0.62 ± 0.60 0.52 ± 0.61 1.68 ± 1.45 1.87 ± 1.66 4.66 ± 5.60

Proposed (19) 1.74 ± 1.98 0.66 ± 0.62 0.52 ± 0.61 1.94 ± 1.92 2.18 ± 2.08 5.73 ± 7.34

Proposed (21) 2.26 ± 2.16 0.66 ± 0.65 0.59 ± 0.71 2.39 ± 2.14 2.63 ± 2.44 7.57 ± 8.36

Proposed (23) 2.60 ± 2.29 0.72 ± 0.64 0.63 ± 0.74 2.73 ± 2.28 3.06 ± 2.57 8.82 ± 7.93

4.3.2 Dataset 2

The results for dataset 2 using the Kinect-based method are presented in Tables 4.3
and 4.4. The detection in the second dataset (see Table 4.3) proved to be slightly less
difficult than the first one, as in several cases it was possible to obtain both 100% recall
and 100% precision at the same time: MA (7;3) and (7;5); Loess 19, proposed 17, 19,
and 21. Also, in the majority of cases there were no poorly detected segments. The
proposed method proved to be the most flexible, as it provided error-free recognition at
3 different filter lengths.

Regarding lunge analysis (see Table 4.4), the best obtained accuracies for the direct
parameters were as follows: start: 1.23 ± 1.12 frames (proposed 17), end: 0.60 ± 0.61
(Loess 19), arm-straightening: 0.60 ± 0.72 (MA (7;5) and proposed 13 and 15). For the
indirect parameters: hand timing 1.45 ± 1.52 frames (proposed 19), duration: 1.40 ±
1.29 frames (Loess 19), length: 3.26 ± 3.29 centimeters (proposed 17). The proposed
method provided superior accuracies for both timing and length, and was slightly worse
than the Loess filter for calculating the duration of the lunge. The obtained accuracies
were similar to the ones in dataset 1, although different filter lengths were optimal
between datasets. The most useful filter seems to be the proposed method with a filter
length of 17, as it provided error-less detection for both datasets, as well as close to the
best accuracies for lunge analysis.
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Table 4.3: Evaluation of lunge action detection, second dataset, Kinect-based method.
Number of detected segments is given for: all detected action segments (Total); those

classified as lunge (Lunge); true positive (TP); false positive (FP); poorly detected
segments (Poor). Ground truth contains 162 lunge actions.

Filter Number of detected segments Performance (%)

type, length Total Lunge TP FP Poor Recall Precision

MA (5; 3) 260 164 161 3 2 99.38 98.17

MA (7; 3) 250 162 162 0 0 100.00 100.00

MA (7; 5) 246 162 162 0 0 100.00 100.00

MA (9; 5) 242 161 160 1 0 98.77 99.38

MA (9; 7) 239 160 160 0 0 98.77 100.00

MA (11; 7) 238 155 155 0 0 95.68 100.00

MA (11; 9) 238 150 150 0 2 92.59 100.00

Loess (13) 268 159 156 3 3 96.30 98.11

Loess (15) 263 162 159 3 0 98.15 98.15

Loess (17) 256 162 160 2 0 98.77 98.77

Loess (19) 255 162 162 0 0 100.00 100.00

Loess (21) 250 163 162 1 0 100.00 99.39

Loess (23) 249 163 162 1 0 100.00 99.39

Proposed (13) 249 163 162 1 0 100.00 99.39

Proposed (15) 246 163 162 1 0 100.00 99.39

Proposed (17) 241 162 162 0 0 100.00 100.00

Proposed (19) 239 162 162 0 0 100.00 100.00

Proposed (21) 239 162 162 0 0 100.00 100.00

Proposed (23) 239 162 161 1 0 99.38 99.38

The results for dataset 2 using the IMU-based method are presented in Tables 4.5 and
4.6. The data from the IMUs were originally acquired at 45 Hz, but then re-sampled
to 30 Hz, to match the Kinect data per-frame. Since the re-sampled IMU data points
correspond to Kinect frames, the results for the IMU-based method are presented in
frames as well. Synchronization was performed by starting and finishing the recordings
from both the Kinect and the IMUs at the same time. Although initially this approach
seemed sufficient, further analysis showed that in some of the recordings the start times
for both devices did not match exactly, due to different initialization times, therefore the
synchronization is not always accurate. This issue is relevant mostly for the evaluation
of the direct parameters of the lunge analysis. The calculation of the indirect parameters
cancels out the time shift between both modalities, as it uses relative frame distances.
Also, synchronization discrepancies are small enough to not impact the performance
evaluation of the lunge action detection process except for the number of poorly detected
segments, which, for this reason, is not presented in this case.
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Table 4.4: Evaluation of lunge action analysis, second dataset, Kinect-based method.
Mean value and standard deviation are presented. Direct parameters: accuracy for
detecting start frame, end frame and arm-straightening, given in frames. Indirect

parameters (provided as feedback): hand timing and duration, given in frames; length,
given in centimeters. Filter lengths with best hand timing results are marked.

Filter Direct parameters Indirect parameters

(type, length) Start [f] End [f] Arm strght. [f] Timing [f] Duration [f] Length [cm]

MA (5; 3) 1.63 ± 1.42 0.67 ± 0.74 0.62 ± 0.73 1.92 ± 1.65 1.70 ± 1.32 4.74 ± 5.40

MA (7; 3) 1.34 ± 1.08 0.60 ± 0.67 0.64 ± 0.79 1.62 ± 1.32 1.42 ± 1.09 3.75 ± 3.35

MA (7; 5) 1.39 ± 1.24 0.61 ± 0.64 0.60 ± 0.72 1.58 ± 1.46 1.56 ± 1.27 3.66 ± 3.70

MA (9; 5) 2.09 ± 2.24 0.66 ± 0.64 0.64 ± 0.78 2.26 ± 2.32 2.28 ± 2.35 6.04 ± 7.11

MA (9; 7) 2.96 ± 3.17 0.65 ± 0.62 0.61 ± 0.72 3.09 ± 3.17 3.21 ± 3.24 8.68 ± 10.29

MA (11; 7) 4.20 ± 3.79 0.67 ± 0.64 0.66 ± 0.77 4.25 ± 3.76 4.50 ± 3.92 12.20 ± 12.34

MA (11; 9) 5.53 ± 4.28 0.71 ± 0.63 0.72 ± 0.77 5.62 ± 4.04 5.87 ± 4.40 16.51 ± 14.06

Loess (13) 1.88 ± 1.60 0.75 ± 0.72 0.61 ± 0.73 2.15 ± 1.89 1.91 ± 1.55 5.82 ± 6.51

Loess (15) 1.48 ± 1.12 0.64 ± 0.71 0.62 ± 0.74 1.73 ± 1.36 1.48 ± 1.14 3.93 ± 3.80

Loess (17) 1.40 ± 1.23 0.64 ± 0.66 0.63 ± 0.78 1.69 ± 1.58 1.52 ± 1.33 3.60 ± 3.58

Loess (19) 1.29 ± 1.21 0.60 ± 0.61 0.63 ± 0.78 1.56 ± 1.51 1.40 ± 1.29 3.39 ± 3.72

Loess (21) 1.40 ± 1.29 0.57 ± 0.60 0.63 ± 0.78 1.64 ± 1.63 1.45 ± 1.45 3.96 ± 3.89

Loess (23) 1.64 ± 1.55 0.55 ± 0.61 0.63 ± 0.78 1.88 ± 1.85 1.70 ± 1.61 4.59 ± 4.78

Proposed (13) 1.40 ± 1.08 0.65 ± 0.63 0.60 ± 0.72 1.69 ± 1.38 1.53 ± 1.08 3.89 ± 3.76

Proposed (15) 1.31 ± 1.08 0.63 ± 0.62 0.60 ± 0.72 1.52 ± 1.34 1.48 ± 1.14 3.44 ± 3.40

Proposed (17) 1.23 ± 1.12 0.65 ± 0.62 0.63 ± 0.78 1.49 ± 1.45 1.52 ± 1.18 3.26 ± 3.29

Proposed (19) 1.23 ± 1.17 0.66 ± 0.65 0.63 ± 0.78 1.45 ± 1.52 1.44 ± 1.21 3.29 ± 3.69

Proposed (21) 1.68 ± 1.80 0.68 ± 0.61 0.63 ± 0.78 1.94 ± 2.09 1.95 ± 1.87 4.83 ± 5.66

Proposed (23) 1.79 ± 1.76 0.70 ± 0.63 0.63 ± 0.78 1.96 ± 2.03 2.09 ± 1.81 5.17 ± 5.48

The best detection performance for the IMU-based method (see Table 4.5) was 99.38%
recall and 98.77% precision. Such results were obtained for all filters at multiple fil-
ter lengths). All detection errors resulted from the method depending on finding the
arm-straightening moment as the basis of lunge segment detection. One actual lunge
action was not detected in any case, due to the fact that the person had the arm in an
already almost straightened position at the start of the recording. At least two false
positives occurred in all cases, due to the person performing arm-straightening without
performing a lunge.

The best lunge analysis accuracies for the IMU-based method (see Table 4.6), obtained
for the direct parameters were: start: 3.13 ± 2.50 frames (Loess 21), end: 2.24 ± 1.59
frames (MA (11;9)), arm straightening: 2.44 ± 1.75 frames (proposed 23). Regarding
indirect params, both best hand timing accuracy, 1.99 ± 2.02 frames, as well as best
duration accuracy, 2.41 ± 2.04 frames, were provided by the proposed filter, with lengths
of 19 and 21, respectively.

Compared to the Kinect-based method, the IMU-based method is slightly less efficient,
in regard to all considered parameters. Nevertheless, even though it was unable to
provide 100% recall or precision, errors occur very rarely, and can be avoided as long
as the practicing person does not perform arm-straightening in actions other than the
lunge. This is a limitation, albeit it is acceptable. The accuracy of lunge action analysis
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is also lower than with the Kinect-based method, particularly for the direct parameters,
although the evaluation of those is slightly hindered by the synchronization which is
not always accurate, as well as the fact that the nature of video and inertial segments
is different - during a dynamic motion, changes in acceleration do not always exactly
match the changes in position. On the other hand, indirect parameters, which are the
most relevant, as only they are provided as feedback to the user, are determined with a
much better accuracy. The best hand timing for the IMU-based method is 1.99 ± 2.02
frames, which is only half a frame worse than the best result obtained with the Kinect-
based method (1.45 ± 1.52 frames). In conclusion, the accuracy difference between the
Kinect-based and IMU-based methods is not significant and should have little impact
on the final usefulness of the system.

Table 4.5: Evaluation of lunge action detection, second dataset, IMU-based method.
Number of detected segments is given for: all detected action segments (Total); those

classified as lunge (Lunge); true positive (TP); false positive (FP). Ground truth
contains 162 lunge actions.

Filter Number of detected segments Performance (%)

type, length Total Lunge TP FP Recall Precision

MA (5; 3) 164 164 158 6 97.53 96.34

MA (7; 3) 163 163 160 3 98.77 98.16

MA (7; 5) 163 163 160 3 98.77 98.16

MA (9; 5) 163 163 161 2 99.38 98.77

MA (9; 7) 163 163 161 2 99.38 98.77

MA (11; 7) 163 163 161 2 99.38 98.77

MA (11; 9) 163 163 161 2 99.38 98.77

Loess (13) 164 164 156 8 96.30 95.12

Loess (15) 164 164 157 7 96.91 95.73

Loess (17) 164 164 158 6 97.53 96.34

Loess (19) 164 164 161 3 99.38 98.17

Loess (21) 164 164 161 3 99.38 98.17

Loess (23) 164 164 161 3 99.38 98.17

Proposed (13) 163 163 160 3 98.77 98.16

Proposed (15) 162 162 158 4 97.53 97.53

Proposed (17) 163 163 161 2 99.38 98.77

Proposed (19) 163 163 161 2 99.38 98.77

Proposed (21) 163 163 161 2 99.38 98.77

Proposed (23) 163 163 161 2 99.38 98.77
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Table 4.6: Evaluation of lunge action analysis, second dataset, IMU-based method.
Mean value and standard deviation are presented. Direct parameters: accuracy for
detecting start frame, end frame and arm-straightening, given in frames. Indirect

parameters (provided as feedback): hand timing and duration, given in frames. Filter
lengths with best hand timing results are marked.

Filter Direct parameters Indirect parameters

(type, length) Start [f] End [f] Arm strght. [f] Timing [f] Duration [f]

MA (5; 3) 4.11 ± 2.71 3.64 ± 2.27 2.77 ± 1.63 3.69 ± 2.58 4.85 ± 3.14

MA (7; 3) 3.55 ± 2.76 3.10 ± 1.93 2.70 ± 1.70 2.73 ± 2.12 3.58 ± 2.34

MA (7; 5) 3.32 ± 2.36 2.84 ± 1.78 2.79 ± 1.70 2.10 ± 1.76 2.87 ± 2.07

MA (9; 5) 3.31 ± 2.51 2.58 ± 1.60 2.72 ± 1.77 2.10 ± 1.80 2.65 ± 2.01

MA (9; 7) 3.55 ± 2.65 2.44 ± 1.57 2.78 ± 1.71 2.03 ± 1.90 2.58 ± 2.20

MA (11; 7) 3.75 ± 2.79 2.36 ± 1.52 2.70 ± 1.73 2.33 ± 2.16 2.76 ± 2.51

MA (11; 9) 3.95 ± 2.81 2.24 ± 1.59 2.78 ± 1.64 2.23 ± 2.05 3.00 ± 2.60

Loess (13) 4.66 ± 2.52 4.15 ± 2.30 2.85 ± 1.72 4.59 ± 2.87 6.25 ± 3.12

Loess (15) 4.03 ± 2.61 3.80 ± 2.01 2.80 ± 1.73 3.64 ± 2.64 4.84 ± 2.87

Loess (17) 3.46 ± 2.51 3.38 ± 2.04 2.76 ± 1.76 2.75 ± 2.12 3.58 ± 2.17

Loess (19) 3.20 ± 2.47 3.11 ± 1.90 2.79 ± 1.75 2.15 ± 1.90 2.87 ± 1.92

Loess (21) 3.13 ± 2.50 2.76 ± 1.72 2.69 ± 1.78 2.00 ± 1.77 2.55 ± 2.03

Loess (23) 3.22 ± 2.48 2.61 ± 1.64 2.71 ± 1.75 2.05 ± 1.81 2.52 ± 1.93

Proposed (13) 3.83 ± 2.36 2.65 ± 1.67 2.69 ± 1.77 3.01 ± 2.21 3.43 ± 2.13

Proposed (15) 3.56 ± 2.52 2.57 ± 1.57 2.63 ± 1.76 2.45 ± 2.08 2.90 ± 2.29

Proposed (17) 3.23 ± 2.51 2.55 ± 1.57 2.55 ± 1.74 2.00 ± 2.04 2.42 ± 2.01

Proposed (19) 3.34 ± 2.63 2.57 ± 1.58 2.49 ± 1.70 1.99 ± 2.02 2.57 ± 2.03

Proposed (21) 3.33 ± 2.48 2.45 ± 1.53 2.43 ± 1.69 2.05 ± 1.88 2.41 ± 2.04

Proposed (23) 3.38 ± 2.51 2.37 ± 1.57 2.44 ± 1.75 2.15 ± 1.95 2.52 ± 2.10

4.3.3 Feedback

One of the main goals for the proposed system was to provide feedback in real-time.
Several aspects contribute to the total time needed to deliver information to the user.
First of all, filtering introduces delay equal to half of filter length. The most efficient
filtering was provided by filter lengths of 17 and 19, which corresponds to almost 300
ms. The average processing time for a single frame is less than 1 ms for both the Kinect
and the IMU-based methods. The time required for the wireless transfer of the feed-
back information to the smartphone is negligible, as only the 7 values of the qualitative
measurements are sent after analysis of the detected lunge. Therefore, the total time
needed for providing feedback is approx. 300 ms, which is small enough to consider the
system as working in real-time [204].

In order to measure the usefulness of the provided feedback, the mean and maximum
values for the evaluated indirect parameters were calculated from both datasets, see
Table 4.7. Since the Kinect provides data at 30 Hz, the duration of a single frame was
approx. 33 milliseconds. Therefore, the values are given in both frames and milliseconds.
The mean error for the hand timing is approx. 1.5 frames (50 ms) for the Kinect-based
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method and approx. 2 frames (66 ms) for the IMU-based method, which is 6% and
8% of the maximum value for this parameter respectively. This indicates that both
methods provide useful feedback in case of badly executed actions. Compared to the
mean value, the errors constitute 34% and 45% respectively, which indicates that in a
typical execution of an action, the feedback should be sufficient to determine if the arm
was straightened before the forward motion, which was the main objective, although
it is not accurate enough to allow for perfecting the hand timing. The mean error for
duration is approx. 1.5 frames (50 ms) for the Kinect-based method and 2.5 frames
(82 ms) for the IMU-based method, which is 7% and 12% of the mean value of this
parameter respectively. This is sufficient for improving this parameter in the typical
execution of the action, based on the provided feedback. The mean error for length
(Kinect-based method only) is approx. 3.5 cm, which constitutes 4% of the mean value
of this parameter, which allows for useful feedback, although, as stated before, this
evaluation does not include errors introduced by the Kinect itself.

Table 4.7: Mean and maximum values for the indirect parameters, calculated jointly
from both datasets.

Mean Maximum

Timing 4.44 fr. / 146 ms 24.00 fr. / 792 ms

Duration 20.21 fr. / 667 ms 34.00 fr. / 1122 ms

Length 83.82 cm 174.33 cm

Finally, the proposed system was evaluated by fencing coaches, who were satisfied with
the provided feedback. The features of the system which were positively assessed in-
clude: real-time performance, qualitative measures for lunge actions, ability to get rele-
vant feedback without a coach present. Another important aspect was that the system
was competitive, therefore encouraging more practice in order to achieve better results.
Expected improvements included wireless sensors and a smaller device for providing
feedback (such as a smartwatch).

4.4 Summary

This chapter addressed the problem of the detection and analysis of actions in continu-
ous, non-cyclic sport motion. Two dedicated datasets with continuous fencing footwork
practice were recorded, the first one by using the Kinect and the second one by using
both the Kinect and a custom system with two IMUs. Methods for detecting and ana-
lyzing lunge actions were developed, based on a velocity signal derived from the skeleton
data provided by the Kinect, as well as the magnetic and inertial data provided by the
IMUs. A novel model-based filter was proposed, which outperformed state-of-the-art
filtering algorithms. The proposed system is able to accurately detect lunge actions
and provides a number of related qualitative parameters, such as hand timing, lunge
duration, lunge length, mean and maximum acceleration and speed. The signals are
processed in real-time, therefore the feedback is instantaneous. Extensive experiments
were conducted in order to verify the usability of the proposed solution. The evaluation
was based on both a manually-prepared ground truth as well as the opinions of fencing
coaches. The results indicate that the proposed system may be a valuable tool for use
in training.
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The initial results for the presented methods were presented during the 40th Interna-
tional Conference on Telecommunications and Signal Processing (TSP) held in Barcelona
in July 2017 [175]. The publication of the proceedings resulted in the author being
contacted by Dr Zoran Djurisic, main coach at Delta Fencing Center [67], Stockton,
California, USA, who is conducting similar research by using inertial sensors to evaluate
the fencers’ performance. A collaboration with Delta Fencing Center was established,
and new methods for motion analysis in fencing are being developed jointly.
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Chapter 5

Immersive feedback for bladework
practice in fencing using augmented
reality

This chapter is devoted to providing real-time, immersive feedback for fencers practicing
weapon techniques. A method for blade tracking in 3D is proposed, based on a single
RGB camera and active markers. Model trajectories of weapon actions are recorded
with fencing coaches and used for evaluation of fencing practice. Virtually generated
trajectories are overlayed over the real-world view on augmented reality glasses. It is
an innovative manner of providing real-time, immersive feedback, not used in sports
before.

The problem of providing a real-time motion analysis and feedback in sports is rarely
addressed in the literature. In [11] various types of visualisations were provided for
rowing, table tennis and biathlon, based on the inertial and visual signals captured in
real-time. The timing of the motion cycles in a gymnast training routine was measured
and plotted in real-time in [226]. In regard to the fencing bladework, classification of the
weapon actions was performed in [182] by employing a high-end motion-capture system,
although no qualitative parameters were computed. The analysis of the upper limb
biomechanics was conducted in [86] using both a motion-capture system and the EMG
data. The authors focused on the arm-extension timing and its influence on the fencers’
performance, therefore the weapon actions were not considered. The authors of [31]
employ neural networks to distinguish between good and poor executions of the weapon
actions, based on the inertial sensor readings, although no qualitative parameters are ex-
plicitly defined, which would be useful for correcting the actions during practice. There
are no works in the literature regarding providing real-time, meaningful feedback, based
on the qualitative analysis of the bladework.

The bladework analysis is a challenging problem due to several reasons. Firstly, the
blade is difficult to track. It is thin, made of steel, which is a light-reflecting material,
and moves very fast, which makes it hard to track with visual sensors. The high dy-
namics of the motion, including the frequent, rapid change of direction, result in noisy
data when using IMUs. Moreover, it is difficult to capture the relevant qualitative pa-
rameters of the performed weapon actions. While the speed and range of the motion are
important, the hand and weapon positioning during the action is crucial, but also more
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difficult to evaluate. Providing real-time feedback in an efficient manner is another issue,
since presenting the numerical parameters for the analyzed action may not be sufficient
to support correcting the performed movement.

In this work, an efficient weapon tracking is realized with a single RGB camera and
active markers. This approach enables reconstructing the trajectory of the blade during
an action. The trajectories recorded with a coach are employed for building a model
of an action, which is used for evaluation during practice. Visual cues and feedback
are provided by presenting the expected and the actual trajectories of the performed
actions on augmented reality (AR) glasses. The glasses are semi-transparent which al-
lows mixing the real and virtual views, and therefore provide immersive feedback in an
innovative manner [170]. The proposed methods for the blade tracking and learning
action models were published in [171].

This chapter is organized as follows. Section 5.1 provides an overview of the proposed
system. Section 5.2 presents the methods for the blade tracking, learning and evaluating
weapon actions, and finally providing feedback with the AR glasses. The evaluation of
the proposed methods is discussed in Section 5.3 and a summary is given in Section 5.4.

5.1 Overview

There are two types of the weapons used in fencing - thrusting and cutting (see Section
2.3.5). With the former only the thrusts score points, while with the latter both the cuts
and thrusts can score points. The thrusting weapons require more precision, as even
slight differences in the positioning or rotation of the blade can result in a weapon action
being successful or not. For this reason, automatic training support is most beneficial
for the thrusting weapons, and therefore this type of weapons is considered in this work.

There are several stages in practicing the weapon actions. At first, the novice fencers
simply try to repeat the motion presented by a coach. Next, an action is practiced with
a partner, who provides interaction, for instance by performing attacks in order for the
first person to practice parries. Then, sequences of actions are performed, in which both
persons are practicing, for example, attack - parry - counter-attack. Once the exercise
is performed well-enough, the footwork is added, which increases difficulty due to the
varying timing and distance. Finally, the actions are practiced during sparrings. The
goal of the system presented in this work is to provide a support mainly for the initial
stages of weapon action practice, as the process of reaching at least a medium level in
weapon handling is very time-consuming and toilsome for the novice fencers.

Trajectories are an intuitive manner of understanding how a weapon action should be
performed. When the novice fencers observe the weapon motion presented by a coach,
they try to remember the trajectory of the tip of the blade. During practice they try to
repeat it, although without constant supervision from the coach, who usually needs to
share their attention between multiple students, they lack the feedback needed to correct
their performance of the action. The goal of the system presented in this chapter is to
provide them with a real-time trajectory-based feedback and enable efficient training in
the absence of the coach.

Augmented reality enriches the perception of the real world with the virtually added
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information. A popular approach to employing the AR is to display the virtual objects
on the camera feed of the real-world, e.g. on a smartphone [301]. A significantly more
immersive experience is provided by the AR glasses which are semi-transparent, and
therefore allow to overlay the virtual objects not on the camera feed, but directly in
the user’s field of view. When looking trough the AR glasses, one can see the computer
generated objects as if they were part of the surrounding environment. In this work,
the AR glasses are employed to display the trajectories of the weapon actions in front
of the practicing fencer. The coordinate mapping between the virtual and real world
is performed, therefore during the weapon movement the trajectory is drawn along the
tip of the blade, providing an accurate visualization of the motion. Mixing virtual and
real environments in an interactive manner is sometimes referred to as mixed reality
(MR) [80], although other authors consider AR to be a part of MR [267], therefore only
the term augmented reality is used in this work.

Due to employing the AR glasses with the real-virtual coordinate mapping, it is possible
to create the following practice routine. First, the coach performs multiple repetitions
of an action which are used to build a model trajectory. Then, with the AR glasses,
the model trajectory is displayed in front of the practicing fencer, who follows the dis-
played trajectory with the tip of the blade. The evaluation of the action is performed
based on the difference between the model and current trajectories. In order to obtain
the trajectories of the weapon actions, a reliable tracking of the blade is required. The
AR glasses are equipped with a built-in camera, which provides a first-person perspec-
tive view. However, the quality of the video stream is not sufficient to employ object
tracking algorithms based on the spatio-temporal interest points, such as SIFT [161] or
SURF [14]. Therefore, LED markers are used, as they can be relatively easily detected.

The architecture of the proposed system is based on employing the following devices: a
double-LED marker, placed near the tip of the blade, the AR glasses for the practicing
fencer, and a laptop, connected wirelessly to the glasses (see Fig. 5.1). The camera in
the AR glasses is used for detecting the marker in real-time, which enables tracking the
trajectories of the practiced weapon actions. The laptop provides a graphical user control
interface (GUI) during the calibration and model recording procedures. Employing a
laptop facilitated experiments with the prototype system implemented in this work,
however, it would be possible for the system to operate without a laptop - this would
require implementing the control interface on the glasses themselves or on a mobile
device. An additional benefit of using a laptop is that is allows to preview the tracked
trajectories on the screen, and therefore provides feedback for a coach as well.

Double-LED 
marker

AR glasses
with built-in camera

Laptop
(control interface)

Fig. 5.1: Architecture of the proposed system (graphics from: [85, 290]).
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5.2 Methods

This section discusses methods used for the blade tracking, learning models of the
weapon actions, evaluating bladework practice and providing immersive feedback with
the augmented reality.

5.2.1 Blade tracking

Based on consultations with fencing experts, there are three parameters that describe
the motion during the weapon actions: the trajectory of the tip of the blade, the tra-
jectory of the base of the blade, and the rotation of the blade. The first one is most
relevant for the offensive actions, in terms of evading the opponent’s blade and hitting
the intended target area. The second and the third are most relevant for the defensive
actions, where the proper positioning and rotation of the blade is required for the parry
actions to be effective. All three parameters are important during action sequences,
when the fencers quickly and constantly change between the offensive and defensive ac-
tions, or even perform offensive-defensive actions.

In this work, two of these parameters are tracked during fencers’ practice, due to the
limitation of the employed devices. Although the camera built in the AR glasses has
wide angle lens, the view it provides is not sufficient for the reliable tracking of the base
of the blade, as during weapon practice, the base of the blade is often outside the cam-
era’s view area. Therefore, only the tip of the blade and the rotation are tracked. While
this is a considerable limitation, the visual cues and feedback provided by the proposed
system are still useful for the bladework training support. Also, this limitation results
strictly from capabilities of the used device and not from the proposed method itself.
Having a camera with a wider angle, it would be possible to implement tracking of an
additional marker and visualization of another trajectory.

The relatively low quality of the video stream provided by the built-in camera makes
the tracking of the weapon blade difficult. The fast motion results in blurred images,
particularly in poor lighting conditions (which are typical for training halls), due to the
relatively long exposure times required by the light-sensitive matrix to capture a video
frame. For this reason, the algorithms which are based on detecting the spatio-temporal
interest points, such as SIFT [161] or SURF [14], are not applicable in this case. Instead,
LED markers are mounted on the blade and the camera is set to low exposition, which
results in the captured image being dark, except for the light sources. Therefore, the
LED markers are easily detectable by finding the brightest pixels in the image, as long
as there are no other light sources in the camera’s view. Additionally, due to the low
exposition setting, the exposure times are shorter and consequently the images are less
blurred.

Since only a single point is tracked - the tip of the blade - a single LED marker is
sufficient to find this point in an image. However, it would only provide 2D tracking.
Instead, a double-LED marker is used, which enables the depth and rotation tracking as
well. The marker, mounted on the tip of the blade, has two LEDs, approx. 5 cm from
each other, which are placed perpendicularly to the blade (see Fig. 5.2). Based on the
relative position of the LEDs in the captured image it is possible to estimate both the
depth and rotation, as will be explained further in this section. The drawback of this
approach is that not all weapon actions can be practiced, i.e. those requiring contact
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between the tip of the blade and the partner’s blade cannot be performed. In exercises
without a partner this limitation does not apply. The marker itself is very simple and
low cost, as it contains two LEDs soldered to a CR2032 battery case (see Fig. 5.2).

Fig. 5.2: Double-LED marker (left) mounted on the tip of the blade (middle) and the
entire weapon view (right).

The detection of the LEDs in the captured images is performed in two steps. Firstly,
the image is converted to grayscale, and a threshold operation is applied, that creates
a binary image, in which all the pixels above the threshold are white and all other are
black (see Fig. 5.3). The threshold is selected automatically during a short calibration
procedure. The user puts the marker in the camera view and starts the calibration from
the control interface. An image is captured and then the lowest and highest thresholds
are found, for which the number of the detected LEDs is correct. The final threshold is
set as the lowest threshold plus 1/10 of the difference between the highest and the lowest
threshold. This allows to avoid other objects in the image being above the threshold,
but also to capture the marker during fast motion, when the LEDs are blurred in the
image and therefore appear to be less bright. The computations for this procedure last
less than 1 second. Alternatively, the threshold can be set manually, in a dedicated
display mode, where all the pixels which are above the threshold are shown.

The second step of the LEDs detection consists in a clustering. Once the binary image
is created, clusters of white pixels are found, which correspond to the markers. The
algorithm runs through all pixels in the image and for each found white pixel it marks
it as a new cluster and performs the region growing operation [2] using this pixel as a
seed point. All white neighboring pixels are added to the cluster, changed to black, and
then the algorithm is run recursively on their 8 neighbors. This methods assumes, that
all pixels in a cluster are connected and the separate clusters are not connected. Based
on the conducted experiments, in the considered scenario this is almost always the case.
The other cases are handled as follows. When more than two clusters are found, only
the largest two are considered, therefore discarding the additional small clusters corre-
sponding to separate pixels, which are not connected to the main two clusters. When
less than one cluster is found, the frame is discarded.

The proposed tracking method is based solely on detection, therefore spatio-temporal
dependencies between consecutive frames are not considered. As discussed in Section
5.3.1 this approach is sufficient, when no other light sources are present in the camera’s
field of view. However, in order to handle other light sources and reflections, such de-
pendencies may used, e.g. by employing particle filters [144].
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The centers of the detected clusters are referred to as keypoints, each corresponding to
a single LED (see Fig. 5.3). In the current setup, two keypoints corresponding to the
double-LED marker are detected, although in general, more keypoints could be found
with the proposed method. The 2D position of the tip of the blade is calculated as the
middle point between the two keypoints. The depth and rotation are calculated based
on the relative positions of the keypoints. The closer the tip of the blade to the camera
is, the greater the pixel distance between the keypoints (see Fig. 5.4). By performing
a one-time calibration it is possible to map the pixel distance between the keypoints
to the real distance between the marker and the camera. In a limited depth range the
relation is approximately proportional, therefore it is sufficient to record several images
with known marker-camera distances and measure the keypoints’ relative pixel distance
in each image, in order to find the parameters for a linear equation describing their
dependency. The rotation is given by the angle between the line connecting the two
keypoints and the horizontal axis of the camera (see Fig. 5.4). Due to the view angle
of the camera this is not exactly the same as the rotation measured relatively to the
ground. However, since both the model learning and the practice evaluation depend on
the rotation measured with this method, the perceived rotation is more relevant than
the rotation relative to the ground.

Fig. 5.3: Marker detection. The camera is set to the low exposition setting (left), the
thresholding operation is applied (middle) and the LED positions (keypoints) are

detected after clustering (right).

Distance: 39 px
Rotation: -20 deg

Distance: 28 px
Rotation: 5 deg

Fig. 5.4: Depth and rotation estimation based on the detection of the relative
positions of the two LEDs. The pixel distance between the LEDs corresponds to the

depth - smaller distance (left) indicates that the tip of the blade is further away.
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It is worth noting, that other methods for determining the depth and rotation were
considered as well. The recent models of AR glasses include depth sensors, which would
be an obvious choice for the depth estimation. However, the initial experiments with
the Kinect showed, that the detection of the thin, light-reflective blade was very poor,
as in most frames it was not visible on the depth map. The rotation could be tracked
by attaching an inertial sensor to the base of the weapon, although this would made
the system both more complex to use and more expensive. Also, inertial sensors do
not provide distance information, therefore employing IMU would not be sufficient to
eliminate the need for a double-LED marker.

5.2.2 Action models

Due to the fast motion of the blade and the camera acquisition rate equal to 30 Hz, the
detection of the double-LED marker provides only sparse sampling of the blade tip’s
trajectory (see Fig. 5.5 left). The distances between the consecutive points depend on
the changes in the speed of the performed action and the overall length of the trajectory
depends on the time of execution. For both the visualization and evaluation purposes,
dense trajectories with a common length are required. Therefore, the cubic spline inter-
polation [65] is applied, which provides densely sampled trajectories, with a constant,
arbitrary chosen number of points (see Fig. 5.5 right).

Fig. 5.5: Tracking of the tip of the blade: the detected marker positions (left) and the
interpolated trajectory (right).

The use of the interpolated trajectories allows to calculate a model trajectory for an
action, and employ a point-by-point comparison with the trajectories recorded during
bladework practice. However, a common start point is required as well. For this reason,
building a model of an action starts with defining the start point. The fencer simply
puts the tip of the blade in the desired position and saves the start point using the
control interface. Each repetition of the action, during both the model learning and
practice evaluation, begins with moving the tip of the blade to the start point displayed
on the AR glasses.

In order to facilitate using the system, the action repetitions are detected automatically.
A finite state machine (FSM) is employed (see Fig. 5.6). The initial state is detection, in
which the tip of the blade is detected, but the trajectories are not recorded. Once the tip
of the blade is moved to the displayed start point, the state changes to in position, and a
timer is started which after 1 second changes the state to ready. Then, the system waits
for the blade movement to start, which triggers the transition to the recording state.
Each state is indicated to the user by changing the color of the virtual start point marker.

The in position and ready states create a time buffer between moving the tip of the
blade to the start point and the beginning of the action, which makes the system more
convenient to use. In the recording state, in each frame, the position of the detected tip
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of the blade is added to the list of the tracked points. While the action is performed, a
simplified trajectory is displayed on the AR glasses, by connecting the detected points
with straight lines. The action recording finishes when the fencer stops moving the
blade. Then, the interpolation is performed and the interpolated trajectory is displayed
instead of the simplified one. The next repetition of the action begins when the tip of
the blade is moved again to the start point.

Detection

In position

Timer 
1 second

The tip of the blade 
movement stops

Recording

The tip of the blade 
at the start point

Ready

The tip of the blade 
movement starts

Fig. 5.6: Finite state machine used to automatically detect action repetitions.

Detection of the blade movement is performed as follows. The tip of the blade is consid-
ered to start moving, when the average displacement of the detected points in the last 20
frames is above a pre-defined threshold. The threshold for detecting the movement was
chosen experimentally, taking into account that even when the weapon is not moved
voluntarily, the tip of the blade is not perfectly still. Two users were asked to hold
the weapon in place for 10 seconds and then to perform small movements for another
10 seconds. The displacement of the detected marker corresponded, equally, to both
intentional and unintentional movements, therefore average displacement was used as
the threshold. The stop of the movement is detected when the average displacement in
the last 20 frames is below the threshold.

There are two modes of using the proposed system, model learning and practice evalu-
ation. The first one is dedicated to building action models based on the input provided
by the fencing coaches. The coach selects a start point and then performs multiple
repetitions of the chosen action. The mean trajectory is calculated point-wise, based on
all repetitions. Given: N - number of the recorded trajectories (action repetitions), L -
length of an interpolated trajectory, pi,k - i-th point of the k-th trajectory, points mi of
the mean trajectory are computed as follows:

∀i ∈ 1...L,mi =

∑N
k=1 pi,k
N

(5.1)

The standard deviations si are computed in each point as well, based on the Euclidean
distance between the points in the mean trajectory and each recorded repetition of the
action:

∀i ∈ 1...L, si =

√∑N
k=1(pi,k −mi)2

N
(5.2)

In the practice evaluation mode, the recorded model of an action is loaded, the mean
trajectory is displayed, and the fencer tries to repeat it. Both the current and the
model trajectories are visible, therefore an instant visual feedback is provided. Once a
repetition of the practiced action is finished, the trajectories are compared numerically.
For each point of the current interpolated trajectory, its distance to the corresponding
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point in the model trajectory is calculated. The accuracy in each point is proportional to
the ratio between the calculated distance to the model point and the standard deviation
for this point, which is also stored in the model. The edge values are a 100% when the
distance is lower than the standard deviation, and a 0% when the distance is higher
than twice the standard deviation. Given: ci - i-th point in the current trajectory, the
accuracy ai of this point is computed as follows:

∀i ∈ 1...L, ai = 100− ((min(max(
mi − ci
si

, 1), 2)− 1) ∗ 100) (5.3)

The accuracy for the entire trajectory is computed as the mean from all points. Both
2D and 3D distances were considered for the point-wise trajectory comparison. Since
the depth in the AR glasses was not perceived by the users well enough, 2D Euclidean
distances in xy plane were eventually employed. The rotation is evaluated in a similar
manner. The mean value and standard deviation for the rotation angle is stored for each
point of the model trajectory and point-by-point comparison is performed in the practice
mode. Separate values for the trajectory and the rotation accuracies are displayed. For
the purpose of visualization the rotation is also color-coded.

5.2.3 Augmented reality

In the proposed system, visual cues and feedback are provided to the practicing fencers
by employing AR glasses. The Epson Moverio BT-300 device was used in this work [78].
It includes light-weight AR glasses connected with a wire to a small, Android-based
processing unit, which is also used for control (see Fig. 5.7). The glasses have a semi-
transparent display for each eye - the user can see both the surrounding environment
and the displayed content. The black color in the generated image is transparent on the
glasses, therefore seamless mixing of the real and virtual views is possible. The glasses
operate with 1280 x 720 resolution, 30 Hz refresh rate and provide the field of view of 23
degrees. A 5 megapixel camera is built in the glasses, on the right side. The processing
unit has 1.44 GHz quad core Intel Atom processor, 2 GB RAM and 16 GB of internal
memory. It is also equipped with a touchpad and several control keys, acting as the user
interface. Additionally, both the glasses and the processing unit have built-in inertial
sensors, although these were not used in this work.

Fig. 5.7: Epson Moverio BT-300 AR device includes control and processing unit (left)
and semi-transparent AR glasses (right).

The glasses can operate in two modes - either by displaying the same or different images
for each eye. In the first case, users see a flat screen floating in front of them. The second
mode has the capability of stimulating 3D perception of the generated objects. Humans
perceive depth that is determined on the basis of stereo vision. Since each eye looks from
a slightly different point, they receive slightly different images. The depth of the seen
objects is estimated based on the disparity in the left and right images (see Fig. 5.8).
This mechanism can be used to generate 3D virtual scenes, by displaying for each eye
an image of the scene generated from a shifted viewpoint [55]. In the proposed system,
this was implemented with the OpenGL ES [209], which is a dedicated 3D library for
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the Android system. In the OpenGL ES the scene view is generated by specifying the
position and direction of a virtual camera. Therefore, it is sufficient to slightly reposition
the virtual camera when generating the images for the left and the right eye in order to
provide depth perception for the generated objects.

Left eye view

Right eye view

d1 d2

Left eye Right eye

Fig. 5.8: Depth perception in stereo vision. The image disparity between the left and
right eye is greater for the house (d1), than for the tree (d2), which indicates that the

house is closer than the tree.

The main difficulty in creating a mixed real-virtual view with the AR glasses is to
generate the virtual objects in the proper positions relatively to the real environment.
A simple case would be to generate an object, that would appear to float over a flat
surface. In order to do that, a translation between the real-world and virtual-world
coordinate systems must be provided. In the proposed system, the virtually generated
trajectories are supposed to follow the double-LED marker placed on the tip of the blade.
Therefore, the system needs to calculate the 3D position of each point in the virtual
trajectory, based on the marker position provided by the camera, in such a manner, that
they would both appear to the fencer to be in the same location in the mixed real-virtual
view (see Fig. 5.9). In order to make this possible, a dedicated calibration procedure is
proposed.

Fig. 5.9: Expected mixed real-virtual view. The virtually generated trajectory should
match the motion of the tip of the blade in the real-world view.

The 3D position of the marker (corresponding to the tip of the blade) seen by the cam-
era is defined by x and y coordinates of the middle point between the two keypoints
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detected in the image, as well as the pixel-distance between them, which corresponds to
the depth (see Section 5.2.1). The virtual object coordinates are given to the OpenGL
ES visualization engine in an arbitrary defined coordinate system. Based on the position
of the virtual camera the engine calculates the projection of the object in the images
displayed for the left and the right eye. In order to create the mapping between the
two coordinate systems, the user manually matches the real and the virtual objects in
several points in space during the calibration procedure. The collected data is used
to calculate the coordinate mapping parameters. For each calibration point, an object
(a small triangle) is displayed on the AR glasses and the user is asked to move the
tip of the blade to this position, and then click a button in the control interface, that
saves the calibration data for this point, which include both virtual and real coordinates.

In order to calculate all the required parameters, ten points in space are used in the
calibration process. In perspective vision, the field of view for close objects is smaller
than the field of view for distant objects, e.g. a hand held close to the face occupies
more of the field of view than a human seen in a distance. Similarly, translation of the
coordinates from the real to virtual world in the xy plane depends on the z distance of
the real object. Therefore, the calibration starts with the depth. The virtual marker
is displayed in the middle of the screen, in a close distance, for the first calibration
point, and in a far distance for the second calibration point. These distances correspond
roughly to the typical distance of the tip of the blade before and after the arm extension,
which is approx. 130 cm and 170 cm respectively (although exact values depend on the
fencer). Two calibration points allow to find the parameters for the linear equation
describing the relation between the virtual and real depth coordinates. Given zrc -
depth in the real-world coordinate system for the close distance, zrf - depth in the real-
world coordinate system for the far distance, zvc - depth in the virtual-world coordinate
system for the close distance, zvf - depth in the virtual-world coordinate system for the
far distance, the parameters az and bz are computed from the pair of equations:

zvc = az ∗ zrc + bz (5.4)

zvf = az ∗ zrf + bz (5.5)

The general equation for computing the virtual depth zv based on the real depth zr is
as follows:

zv = az ∗ zr + bz (5.6)

Next, four calibration points are gathered for the close distance and another four for
the far distance. The four points are in the middle of the left, right, top and bottom
edges of the displayed area (see Fig. 5.10). Therefore, four sets of parameters for linear
equations are calculated corresponding to the horizontal and the vertical coordinates in
the close and the far distances: (axc, bxc), (ayc, byc), (axf , bxf ), (ayf , byf ). Given xrc,
yrc, xrf , yrf - x and y real-world coordinates in the close and far distances, xvc, yvc,
xvf , yvf - x and y virtual-world coordinates in the close and far distances, the resulting
equations are as follows:

xvc = axc ∗ xrc + bxc (5.7)

yvc = ayc ∗ yrc + byc (5.8)

xvf = axf ∗ xrf + bxf (5.9)

yvf = ayf ∗ yrf + byf (5.10)
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Equations 5.7, 5.8, 5.9, 5.10 allow to compute x and y virtual coordinates in the close or
far distance only (see Fig. 5.10). General equations for computing xv and yv coordinates
at any distance can be expressed as follows:

xv = ax ∗ xr + bx (5.11)

yv = ay ∗ yr + by (5.12)

where:

w = (zv − zvc)/(zvf − zvc) (5.13)

ax = axc ∗ (w − 1) + axf ∗ w (5.14)

ay = ayc ∗ (w − 1) + ayf ∗ w (5.15)

bx = bxc ∗ (w − 1) + bxf ∗ w (5.16)

by = byc ∗ (w − 1) + byf ∗ w (5.17)

Once the calibration procedure is finished, the coordinate mapping can be performed
as follows. Firstly, the virtual depth is calculated with the depth equation (Eq. 5.6).
Then, based on the depth weight (Eq. 5.13), the parameters for the horizontal and
vertical equations are determined (Eq. 5.14, 5.15, 5.16, 5.17). Finally, the virtual x and
y coordinates are computed (Eq. 5.11 and 5.12).

With the obtained coordination mapping, calculated during the calibration procedure,
it is possible to display virtually generated trajectory which follows the tip of the blade.
During training, the fencers see the model trajectory of the practiced action, which
constitutes a visual cue to how to perform it correctly, as well as the current trajectory
of their execution of the action, which provides instant, immersive feedback. Once the
fencer finishes the action, the system compares the current trajectory with the model
(see Section 5.2.2) and displays a numerical evaluation score, for both the trajectory and
rotation. The rotation is additionally color-coded: 45 degrees to the right is pure green,
45 degrees to the left is pure blue, and the colors are mixed in between. Edge rotation
values were chosen based on the recommendation from the fencing coaches, who stated
that in the majority of actions the blade’s rotation should be between these values.

close distance (approx. 130 cm)

far distance (approx. 170 cm)

virtual 
markers

user

x

y

z

Fig. 5.10: Calibration points are gathered in two distances (close and far) by
displaying virtual markers in 10 different positions, which the user has to match with

the physical weapon.
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5.3 Experiments and results

In this section the proposed methods for the blade tracking, model learning, practice
evaluation and providing feedback are verified in experiments. The results are discussed,
including the opinions from fencing coaches, fencers and non-fencers who helped to
evaluate the proposed system.

5.3.1 Blade tracking

In order to verify the proposed blade tracking method, short recordings of bladework
were acquired at three different locations: a university laboratory and two different
training halls. The recordings, each lasting approx. 10 seconds, included typical weapon
actions performed with a weapon equipped with the double-LED marker, and were cap-
tured with the camera built in the AR glasses, with the resolution set to 640 x 480. At
each location, a place for the experiments was chosen, such that there would be no other
light sources or reflections present in the camera’s view. In all video frames the positions
of the LEDs were manually labeled, in order to provide the ground truth. The threshold
for the automatic detection was set automatically with the proposed calibration proce-
dure (see Section 5.2.1). The position of the tip of the blade, the pixel distance between
the LEDs, and the rotation were computed for both manually labeled and automatically
detected LED positions. The average differences between the automatic detection and
the ground truth, including the standard deviation, are presented in Table 5.1. The
detection rate is presented as well, computed as the percentage of the frames in which
both LEDs were detected correctly. A LED is considered to be detected correctly when
the difference between the automatically found position and the ground truth is smaller
than half of the distance between the two LEDs in the ground truth.

Table 5.1: Blade tracking results computed for recordings from 3 different locations.
The detection rate indicates the percentage of the frames for which both LEDs were

correctly found. For the tip position, the distance between the LEDs and the rotation,
average differences between the automatic detection and the ground truth are given,

including the standard deviation.

Parameter Location 1 Location 2 Location 3 Average

(University lab.) (Training hall A) (Training hall B)

Nb. of frames 307 214 294 272

Detection [%] 100 100 97.96 99.32

Tip [px] 1.07 ± 0.29 1.22 ± 0.45 1.21 ± 0.51 1.17 ± 0.42

Distance [px] 0.45 ± 0.27 0.62 ± 0.31 0.85 ± 2.39 0.64 ± 0.99

Rotation [deg] 0.84 ± 0.76 1.03 ± 0.93 0.90 ± 1.19 0.92 ± 0.96

The average error in finding the tip of the blade was slightly above 1 pixel, in all record-
ings. The distance between the LEDs was estimated with the average error a little
above half pixel. For reference, the image size was 640 x 480 and the pixel distance be-
tween the LEDs was typically between 20 to 30 pixels. The average rotation value error
was smaller than 1 degree. The results indicate, that the proposed detection method
provides high accuracy. In regard to the detection rate, there were only a few frames,
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in which the LEDs were not found correctly. The detailed analysis revealed, that in
those frames the motion was very fast, resulting in a very blurred images and therefore
the LEDs appearing much darker. Typically, during practice, weapon actions are not
performed with maximum speed, therefore this issue occurs rarely.

Other possible issues were identified as well. Firstly, when the weapon is moving very
fast, causing blurred images, and the rotation of the blade matches its direction, both
LEDs may form a single cluster of white pixels in the image. Such cases could be han-
dled by analyzing the shape of the cluster, although they occur very rarely, therefore
this was not addressed. Secondly, reflections on the blade may occur and could be rec-
ognized as other LEDs. In the conducted experiments it was sufficient to choose a place
away from the light sources, so that the reflections did not occur, although it may not
always be possible. In most weapon actions such reflections can be handled by simply
ignoring all the white-pixel clusters found in the image, except for the two nearest to
the top edge of the image, as the tip of the blade is almost always closer to the top edge
of the image, than the rest of the blade. Using very bright LEDs could also allow to
distinguish between the LEDs and the reflections, based on the brightness difference,
although too bright LEDs can be inconvenient for the practicing fencer. Another sim-
ple solution would be to cover the blade with a non-reflective tape. A relevant issue
are also additional light sources or reflective objects. None can be present in the field
of view of the camera, which may by a limitation when using the system during trainings.

The proposed method for the depth estimation, which is based on the pixel distance
between the LEDs in the captured image, was verified in the following manner. The AR
glasses were set to look at a measuring tape placed on the floor and the weapon with the
double-LED marker was moved along the tape, with 10 cm intervals (see Fig. 5.11). The
pixel distance between the LEDs in the captured images was computed automatically
using the proposed detection method. Figure 5.12 presents the LEDs’ relative pixel
distance plotted against their actual distance from the camera. In the measured range,
which was 50 to 170 cm, the dependency is non-linear, due to the wide angle lens in
the AR glasses’ camera (see Fig. 5.12 left). However, during bladework practice the
tip of the blade is typically between 130 and 170 cm, and for such smaller range, the
dependency can be approximated with a linear function (see Fig. 5.12 right), which
indicates, that the proposed depth estimation method is appropriate for the considered
scenario.

Fig. 5.11: Setup for the depth estimation experiments.
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The proof-of-concept implementation of the proposed system is able to operate in real-
time. With the camera resolution set to 640 x 480 the average processing time for a
single frame is 36 ms, which provides an almost smooth operation. With the camera
resolution set to 320 x 240 the average processing time for a single frame is 13 ms, which
results in a completely smooth operation. It is worth noting, the even with the lower
resolution, the user perception of the accuracy of the blade tracking is similar as with
the higher resolution, therefore the lower resolution is sufficient.
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Fig. 5.12: Relative pixel distance of the detected LEDs plotted against their actual
distance from the camera. The full measured range (left) and the range typical for

bladework practice (right).

5.3.2 Action models

The purpose of the action models is to provide visual cues, as well as to allow for the
numerical evaluation of the bladework practice. The goal of the numerical evaluation
is to provide high scores when the performed trajectory is similar to the model tra-
jectory, and low scores otherwise. The ground truth for the similarity is difficult to
define. In the bladework practice it comes down to human perception. Since the system
is supposed to provide similar feedback as a coach, it should consider the trajectories
to be similar in those cases, in which a coach would consider them to be. Therefore,
in order to verify the proposed method for the action evaluation, a dedicated tool was
implemented, which allows to simulate actions by drawing with a mouse on a computer
screen. The sixth-to-forth parry action was chosen for the evaluation, as it is one of the
most commonly used weapon actions and it can be performed without forward motion,
therefore the trajectory can be evaluated in 2D. The model for the action was created
based on 20 repetitions of drawing with the mouse. The mean trajectory is presented
in Fig. 5.13 in red, with the standard deviation indicated by the circles drawn around
selected points. Several correct and incorrect actions were drawn and compared to the
model trajectory, as presented in Fig. 5.13. Based on this experiment, it was concluded,
that the automatic estimation of the trajectory similarity corresponds to the human
assessment. It is worth noting, that the proposed method considers both shape and
range of the trajectory, as both are important in bladework practice.

The FSM for the automatic detection of the start and stop of an action repetition
was evaluated based on the users opinions. Although the users required a few action
repetitions to get used to it, the final conclusion was that it is rather convenient and easy
to use, and allows to practice without any additional control interface. Based on the
experiments with the fencers, one other feature was added to the system, namely model
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editor, which allows to choose which of the recorded repetitions should be included in
the final model. This was required, because sometimes an incorrect repetition of an
action was performed during the model learning.

Fig. 5.13: Verification of the automatic evaluation of the similarity of the trajectories.
The red lines indicate the model trajectory, and the red circles indicate the standard

deviation. The blue lines indicate the trajectories of the practiced actions. The
average percentage similarity is provided.

5.3.3 Augmented reality

The purpose of employing the augmented reality was to provide an immersive feedback
for the practicing fencers, by creating a mixed virtual-real view, with the virtually
generated trajectories properly aligned with the real-world weapon. The mixed view,
captured with a camera looking trough the AR glasses is presented in Fig. 5.14. The
evaluation presented in this section is based on user opinions, regarding the perception
of the mixed view, as well as the usefulness of the system for supporting bladework
practice. Three fencing coaches, four advanced fencers and four people, who had no
prior experience with fencing, participated in the experiments. The advanced fencers
and the non-fencers participated as the test subjects in evaluating the bladework practice
mode of the system. The coaches provided input for recording the action models and
evaluated the performance of the persons practicing weapon actions with the support
of the proposed system.

Fig. 5.14: Actual mixed real-virtual view displayed on the AR glasses. The virtually
generated trajectory is overlayed on the real-world view.
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The calibration procedure for the coordinate mapping was performed with three per-
sons. Each of these persons was then asked to assess the accuracy of the blade tracking
using each of the three calibrated coordinate mappings. All three persons chose the
same coordinate mapping as the most accurate. This indicates, that the calibration
process is not user-specific. By repeating the calibration procedure several times, it was
revealed that the most important factor in the calibration is the precise matching of the
tip of the blade with the virtual marker. Therefore, it may be beneficial to gather more
calibration points, in order to minimize the influence of the matching errors. A manual
fine-tuning of the coordinate mappings could be useful as well.

The selected coordinate mapping was employed in the subsequent experiments. All
participants were asked to assess the accuracy of the tracking of the tip of the blade,
first in the static positions and then during the movement. A virtual marker, namely
a small triangle, was displayed in the estimated position of the tip of the blade. For
the horizontal direction in the static positions the virtual triangle was always present
between the LEDs, mostly in the middle, and sometimes closer to one of the LEDs. In
the vertical direction, the accuracy of the tracking was similar. The depth was estimated
less accurately, as the object appeared sometimes slightly too close or too far. Also, the
depth tracking was less stable, as the virtual marker slightly oscillated, even when the
blade was not moving. This was due to the slight differences in the keypoint positions
estimation between frames, which result from the noise in the camera video stream. In
a test recording lasting 30 seconds, in which the blade was stationary, the variance of
the estimated keypoints distance was approx. 1 pixel, which corresponds to 5 cm.

In regard to the trajectories drawn during the motion, all users stated, that they cor-
respond very well to the performed motion. The accuracy of the depth estimation was
not an issue in this case, as small differences in the depth are unnoticeable in the gen-
erated trajectories. The system provided smooth operation, although a time delay was
occurring between the movement of the real weapon and the following virtual object
(the marker or the trajectory, depending on the mode of operation). The marker, or the
last point of the trajectory, were displayed in the position, in which the tip of the blade
was a moment earlier. Detailed profiling revealed, that this was caused by the camera,
which delivers the images with delay.

The next step of the evaluation of the proposed system was to verify, if the visual clues
and feedback result in performing the bladework practice more correctly. Three weapon
action models were recorded with the fencing coaches: 6th-to-4th parry 5.15, 4th-to-6th
parry, 6th-to-4th parry with a riposte. The first two included a semi-circular, horizontal
motion and a small forward motion, while the last one included additional significant
forward motion. The initial experiments showed, that the human depth perception of
the displayed trajectories is very limited, as they are flat and therefore provide little 3D
context. The stereo vision itself is not sufficient to provide relevant depth perception in
this case. For this reason, the trajectories were compared only in 2D and, separately,
with regard to the rotation. Therefore, the last action, 6th-to-4th parry with riposte,
was not used in the experiments. It was suggested by one of the coaches, that the depth
could be color-coded, similarly as the rotation, only with different colors, e.g. red and
yellow. This will be investigated in the future work.

The advanced fencers were asked to practice the two selected weapon actions with the
support of the proposed system. A few minutes were needed for each person, to get used
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to the system. After several repetitions, the fencers were able to repeat the trajectories
and rotations, with relatively high average score, ranging from 70% to 90%. This indi-
cates, that the system is able to evaluate the fencer’s performance relatively well. Then,
the system was introduced to the non-fencers and they were asked to perform weapon
practice as well. The average score varied significantly between the persons, ranging
from 20% to 90%. Since the non-fencers did not have any fencing skills, their scores
corresponded to their general manual skills, which explains the varied results.

Fig. 5.15: 6th-to-4th parry action in fencing (graphics from: [292]).

The weapon practice performed by the non-fencers was also evaluated by the coaches.
The most important observation was that all persons performed the actions more cor-
rectly than typical novice fencers. The novice fencers tend to perform the parry motion
too widely and with significantly too little or too much rotation. The visual cues to
the rotation and the movement range, provided by the proposed system, largely prevent
such errors. However, the motion of the base of the blade required corrections from the
coach. As discussed in Section 5.2.1, the motion of the base of the blade is one of the key
factors in the weapon action performance, however it is not considered by the proposed
system, due to the hardware limitations.

In regard to the general assessment of the proposed system, a few issues were indicated
by the participants of the experiments. First of all, the field of view in which the virtual
objects can be displayed is very limited and therefore does not allow to perform the
bladework actions in a full range. This problem can be addressed only by employing
different AR glasses, with a larger display. It is worth noting, that this is an expected
direction of the development for such devices. It was also pointed out, that with the
double-LED marker on the tip of the blade it is not possible to practice some of the
weapon actions with a partner. This problem could also be addressed by employing a
better AR device, capable of capturing the video stream with a wider angle, which would
allow to mount the two LEDs on the weapon’s guard and only a single LED on the tip of
the blade. A potential issue was the lack of compensation for the head movement, which
can introduce apparent motion of the blade. However, no head movement is typically
present during bladework practice, and no such problems occurred.

Two additional benefits of using the proposed system were observed in the experiments.
Firstly, some of the participants were greatly motivated by the displayed evaluation
score, which indicates that the system encourages perfecting the weapon actions. Sec-
ondly, the trajectory visualization on the laptop proved to be interesting for the coaches,
who stated that recording the weapon actions with the fencers would make it possible
to evaluate and compare their techniques.
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5.4 Summary

This chapter was devoted to providing real-time, immersive feedback in fencing blade-
work practice. In order to obtain this goal, several novel methods were introduced, in
regard to the tracking of the 3D position of the tip of the blade, as well as the blade ro-
tation, learning weapon action models, evaluating bladework performance based on the
learned models, and finally providing fencers with a mixed virtual-real view, with the
use of the AR glasses. The proposed methods were implemented with a proof-of-concept
system, which operates in real-time. The system was evaluated in several experiments,
which included participation of fencing coaches, fencers, and non-fencers. The proposed
methods proved to be suitable for aiding the bladework practice. It is worth noting, that
employing the AR glasses for providing immersive feedback is an innovative approach
for supporting sport training.
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Chapter 6

Conclusions

This chapter concludes the dissertation by providing a summary of the conducted re-
search, the verification of the thesis statement, and a discussion of advantages and
limitations of the proposed methods. Additionally, possible directions for future work
are presented.

As a result of this dissertation, novel methods were introduced for the automatic analysis
of sports motion, which allow for feedback useful for improving sports skills. Three
relevant research subjects were investigated: recognition of similar sports actions based
on dynamics; temporal segmentation and qualitative analysis of actions in continuous
sports practice; and providing immersive feedback by employing augmented reality and
action model learning on the basis of object tracking. All proposed algorithms were
evaluated in an extensive set of experiments. The proposed methods are intended for a
single sports discipline, namely fencing, although they can be adapted or can constitute
a starting point for developing methods for handling similar issues in other disciplines
as well.

6.1 Thesis statement verification

The thesis of the dissertation, formulated in Chapter 1, states that automatic analysis
of techniques and body motion patterns in sports can result in feedback, which would
allow for improving sports skills. An extensive survey of state-of-the-art motion and
sports analysis methods revealed a number of challenges in this area, which so far have
not been properly tackled. The methods devised in this work, targeted specifically at
sports actions, address these challenges in order to verify the proposed thesis statement.

The first challenge was the recognition of sports-specific motion. This issue is investi-
gated in Chapter 3, which concerns fencing lunge action classification. It is shown, that
by using the proposed methods, which are based on dynamics analysis, it is possible
to effectively distinguish between different types of a lunge, even though the motion is
very similar. The ability to automatically classify similar sports actions could be used
in training for the practicing person to learn how to correctly perform all variations of
an action, as well as in tactical analysis, with respect to the choice of an action variation
in different situations.
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The second challenge concerned the temporal segmentation of the body motion patterns
in sports and qualitative analysis of sports actions. This is addressed in Chapter 4, by
proposing novel methods for the detection and analysis of a lunge action in a contin-
uous fencing footwork training routine. As verified by the conducted experiments, the
proposed algorithms allow for effective detection of the lunge action segments in both
depth and inertial data, as well as provide a number of relevant qualitative parameters.
Moreover, the feedback is delivered to the athlete in real-time, and can therefore be used
for improving sports skills continuously during training.

The final challenge was providing immersive, real-time feedback which would constitute
an innovative manner of supporting sports training. In Chapter 5, augmented reality
glasses are employed for creating a mixed real-virtual view, in which visual cues for the
correct weapon action execution are presented in the form of virtually generated trajec-
tories. With the proposed methods for blade tracking, model learning, and real-virtual
coordinate mapping, all operating in real-time, it is possible to accurately integrate the
virtual objects and the real-world environment in the mixed view in the augmented
reality glasses. Therefore, immersive feedback is provided, which supports bladework
practice in a very intuitive manner.

The results presented in the thesis provide evidence that the goal of the dissertation was
achieved, i.e. it was confirmed that automatic analysis of motion in sports can result in
feedback relevant for improving sports skills.

6.2 Contributions and limitations

The main contribution of this thesis is the introduction of methods for sports motion
analysis, which allow for providing useful feedback during sports practice. The proposed
methods address several different issues.

The recognition of sports-specific motion is addressed in Chapter 3. While the classifi-
cation of general actions usually concerns significantly different actions, in sports, even
minor differences in motion can constitute the basis for distinguishing between the per-
formed techniques. Therefore, new recognition methods based on action dynamics were
proposed. Several novel feature extraction algorithms were introduced, for both visual
and inertial data. Additionally, new approaches to feature selection and fusion were
presented. In an extensive evaluation, based on a dedicated fencing footwork dataset, it
was shown that the proposed methods provide efficient recognition of sports actions, de-
spite state-of-the-art general action classification methods failing to do so. The proposed
methods provided also superior results on a publicly available UTD-MHAD dataset. An
additional contribution is the fencing footwork dataset, recorded specifically for this
work, and made publicly available for other researchers [166]. The proposed methods
were described in three papers [174, 176, 177].

Another discussed issue was temporal segmentation. State-of-the-art motion analysis
methods consider, almost exclusively, pre-segmented actions, while the process of seg-
mentation itself is rarely addressed. The methods proposed in Chapter 4 provide highly
efficient detection of relevant actions in continuous fencing footwork practice. In the
same chapter, a qualitative analysis of the actions is performed. While general motion
analysis focuses on the recognition of actions, in sports measuring the motion execution
performance is crucial. In this work, the parameters relevant for the detected fencing
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footwork actions are identified and measured with high accuracy. Real-time feedback
is delivered wirelessly to a smartphone, making it available during the training. The
proposed methods were published in [175].

Finally, an innovative manner of providing real-time, immersive feedback is introduced
for supporting bladework practice. The proposed methods allow to accurately track the
blade in 3D with a single RGB camera in order to record weapon action models and
evaluate weapon practice by comparing it with the models. The feedback is provided
by creating a mixed real-virtual view on the AR glasses. By employing the proposed
calibration procedure for the real-virtual coordinate mapping, virtually generated tra-
jectories are aligned with the weapon seen in the actual environment. To the best of the
author’s knowledge, this is the first attempt at employing AR with mixed, real-virtual
view for sports training support. The proposed methods for the blade tracking and
learning action models were published in [171].

The proposed methods are not without limitations. The recognition accuracy for similar
actions indicates that there is still room for improvement. The temporal segmentation is
currently limited to detecting a single action. The augmented reality-based system would
benefit from having a greater field of view and a better camera, which could result in the
system being useful in a wider range of weapon action exercises. The proof-of-concept
implementations require further work in order to make them more convenient for use
in day-to-day training sessions. Nevertheless, the current methods provide meaningful
feedback for the fencers, which is a considerable achievement.

6.3 Future work

There are several possible directions of conducting further research related to the dis-
cussed subject. First of all, the prototype of the system for the detection and analysis
of fencing footwork actions, presented in Chapter 4, can be developed further, in order
to make it more convenient to use during training and possibly also in competitions.
This would not only provide a useful tool for fencing footwork training, but also allow to
easily gather more data which could be used for further development of action analysis
methods. The detection of other actions and the analysis of their performance would
be interesting. It is worth noting, that joint research in this area is currently being
conducted with the Delta Fencing Center, located in California, USA [67].

Alternative means of providing feedback are also worth consideration. As stated in
Chapter 4, smartwatches have great potential in this matter, since they are small, light,
have built-in inertial sensors, provide a good quality display, allow for wireless connec-
tion, and are easily available. Also, they are becoming more and more popular. Another
interesting manner of providing feedback would be virtual reality (VR). By tracking the
athletes’ motion, virtual exercises could be possible, maybe even including virtual oppo-
nents, controlled by artificial intelligence algorithms. The visual cues and feedback for
bladework practice could be presented by using VR as well. The main advantage in this
case would be a much lower cost - while AR glasses are expensive, VR can be achieved
with a simple low-cost cardboard adapter used with a smartphone [93].

Finally, it would be beneficial to adapt the results of this research to other sports
disciplines. Since similar problems occur in other sports as well, it should be possible to
develop dedicated motion analysis methods based on the ones proposed in this work.
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[6] Altun K., Barshan B., Tunçel O.: Comparative study on classifying human ac-
tivities with miniature inertial and magnetic sensors. In: Pattern Recognition,
vol. 43(10), pp. 3605–3620, 2010.

[7] Amaro J.P., Patrão S.: A survey of sensor fusion algorithms for sport and health
monitoring applications. In: 42nd Annual Conf. of the IEEE Industrial Electronics
Society (IECON), pp. 5171–5176. IEEE, 2016.

[8] Annadani Y., Rakshith D., Biswas S.: Sliding dictionary based sparse representa-
tion for action recognition. In: arXiv preprint arXiv:1611.00218, 2016.

[9] Aramis Fencing School. https://aramis.pl/. Last access on Jan 2019.

[10] Avci A., Bosch S., Marin-Perianu M., Marin-Perianu R., Havinga P.: Activity
recognition using inertial sensing for healthcare, wellbeing and sports applications:
A survey. In: 23rd Int. Conf. on Architecture of Computing Systems (ARCS), pp.
1–10. VDE, 2010.

[11] Baca A., Kornfeind P.: Rapid feedback systems for elite sports training. In: IEEE
Pervasive Computing, vol. 5(4), pp. 70–76, 2006.

98

https://aramis.pl/


Bibliography

[12] Baccouche M., Mamalet F., Wolf C., Garcia C., Baskurt A.: Sequential deep
learning for human action recognition. In: Int. Workshop on Human Behavior
Understanding, pp. 29–39. Springer, 2011.

[13] Bao L., Intille S.: Activity recognition from user-annotated acceleration data. In:
Pervasive Computing, pp. 1–17, 2004.

[14] Bay H., Ess A., Tuytelaars T., Van Gool L.: Speeded-up robust features (SURF).
In: Computer Vision and Image Understanding, vol. 110(3), pp. 346–359, 2008.

[15] Beauchemin S.S., Barron J.L.: The computation of optical flow. In: ACM Com-
puting Surveys (CSUR), vol. 27(3), pp. 433–466, 1995.

[16] Belongie S., Malik J., Puzicha J.: Shape matching and object recognition using
shape contexts. In: IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 24(4), pp. 509–522, 2002.

[17] Bengio Y., Simard P., Frasconi P.: Learning long-term dependencies with gradient
descent is difficult. In: IEEE Trans. on Neural Networks, vol. 5(2), pp. 157–166,
1994.

[18] Berndt D.J., Clifford J.: Using dynamic time warping to find patterns in time
series. In: 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD),
vol. 10(16), pp. 359–370, 1994.

[19] Blank M., Gorelick L., Shechtman E., Irani M., Basri R.: Actions as space-time
shapes. In: 10th IEEE Int. Conf. on Computer Vision (ICCV), vol. 2, pp. 1395–
1402. IEEE, 2005.

[20] Blanz V., Vetter T.: Face recognition based on fitting a 3D morphable model.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25(9), pp.
1063–1074, 2003.

[21] Bloom V., Makris D., Argyriou V.: G3D: A gaming action dataset and real time
action recognition evaluation framework. In: IEEE Conf. on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops), pp. 7–12. IEEE, 2012.

[22] Bober T., Rutkowska-Kucharska A., Jaroszczuk S., Barabasz M., Woźnica W.:
Kinematic characterisation of the lunge and the fleche in epee fencing: two case
studies. In: Polish J. of Sport and Tourism, vol. 23(4), pp. 181–185, 2016.

[23] Bobick A.F., Davis J.W.: The recognition of human movement using tempo-
ral templates. In: IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 23(3), pp. 257–267, 2001.

[24] Borges P.V., Conci N., Cavallaro A.: Video-based human behavior understand-
ing: A survey. In: IEEE Trans. on Circuits and Systems for Video Technology,
vol. 23(11), pp. 1993–2008, 2013.

[25] Bortz J.E.: A new mathematical formulation for strapdown inertial navigation.
In: IEEE Trans. on Aerospace and Electronic Systems, vol. AES-7(1), pp. 61–66,
1971.

[26] Borysiuk Z., Piechota K., Minkiewicz T.: Analysis of performance of the fencing
lunge with regard to the difficulty level of a technical-tactical task. In: J. of
Combat Sports and Martial Arts, vol. 4(2), pp. 135–139, 2013.

99



Bibliography

[27] Bottoms L., Greenhalgh A., Sinclair J.: Kinematic determinants of weapon veloc-
ity during the fencing lunge in experienced épée fencers. In: Acta of Iboengineering
and Biomechanics, vol. 15(4), pp. 109–113, 2013.

[28] Boyle M., Edwards C., Greenberg S.: The effects of filtered video on awareness
and privacy. In: ACM Conf. on Computer Supported Cooperative Work, pp. 1–10.
ACM, 2000.

[29] Bulbul M.F., Jiang Y., Ma J.: DMMs-based multiple features fusion for human
action recognition. In: Int. J. of Multimedia Data Engineering and Management,
vol. 6(4), pp. 23–39, 2015.

[30] Cahill-Rowley K., Rose J.: Temporal-spatial reach parameters derived from iner-
tial sensors: Comparison to 3D marker-based motion capture. In: J. of Biome-
chanics, vol. 52, pp. 11–16, 2017.
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[285] Weinland D., Özuysal M., Fua P.: Making action recognition robust to occlusions
and viewpoint changes. In: European Conf. on Computer Vision (ECCV), pp.
635–648. Springer, 2010.

[286] Weinland D., Ronfard R., Boyer E.: Motion history volumes for free viewpoint
action recognition. In: Workshop on Modeling People and Human Interaction
(PHI). 2005.

[287] Weinland D., Ronfard R., Boyer E.: A survey of vision-based methods for action
representation, segmentation and recognition. In: Computer Vision and Image
Understanding, vol. 115(2), pp. 224–241, 2011.

[288] Weiss G.M., Timko J.L., Gallagher C.M., Yoneda K., Schreiber A.J.: Smartwatch-
based activity recognition: A machine learning approach. In: IEEE-EMBS Int.
Conf. on Biomedical and Health Informatics (BHI), pp. 426–429. IEEE, 2016.

[289] Weka Data Mining Software. https://www.cs.waikato.ac.nz/ml/weka/. Last
access on Jan 2019.

[290] Wikipedia: Fencing foil valid surfaces. https://commons.wikimedia.org/wiki/
File:Fencing_foil_valid_surfaces_2009.svg/. Last access on Jan 2019.

[291] Wikipedia: Small sword. https://en.wikipedia.org/wiki/Small_sword. Last
access on Jan 2019.

[292] Wikipedia: The lines in fencing. https://commons.wikimedia.org/wiki/File:
The_lines_in_Fencing.png?uselang=en. Last access on Jan 2019.

117

https://www.cs.waikato.ac.nz/ml/weka/
https://commons.wikimedia.org/wiki/File:Fencing_foil_valid_surfaces_2009.svg/
https://commons.wikimedia.org/wiki/File:Fencing_foil_valid_surfaces_2009.svg/
https://en.wikipedia.org/wiki/Small_sword
https://commons.wikimedia.org/wiki/File:The_lines_in_Fencing.png?uselang=en
https://commons.wikimedia.org/wiki/File:The_lines_in_Fencing.png?uselang=en


Bibliography

[293] Willems G., Tuytelaars T., Van Gool L.: An efficient dense and scale-invariant
spatio-temporal interest point detector. In: European Conf. on Computer Vision
(ECCV), pp. 650–663, 2008.

[294] Williams L., Walmsley A.: Response timing and muscular coordination in fencing:
A comparison of elite and novice fencers. In: J. of Science and Medicine in Sport,
vol. 3(4), pp. 460–475, 2000.

[295] Windridge D., Kittler J., De Campos T., Yan F., Christmas W., Khan A.: A novel
Markov logic rule induction strategy for characterizing sports video footage. In:
IEEE Multimedia, vol. 22(2), pp. 24–35, 2015.

[296] Worsey M.T., Espinosa H.G., Shepherd J.B., Thiel D.V.: Inertial sensors for
performance analysis in combat sports: A systematic review. In: Sports, vol. 7(1),
p. 28, 2019.

[297] Wu J., Sun L., Jafari R.: A wearable system for recognizing American sign lan-
guage in real-time using IMU and surface EMG sensors. In: IEEE J. of Biomedical
and Health Informatics, vol. 20(5), pp. 1281–1290, 2016.

[298] Xia L., Chen C.C., Aggarwal J.: View invariant human action recognition us-
ing histograms of 3D joints. In: IEEE Conf. on Computer Vision and Pattern
Recognition Workshops (CVPR Workshops), pp. 20–27. IEEE, 2012.

[299] Yang X., Tian Y.: Effective 3D action recognition using EigenJoints. In: J. of
Visual Communication and Image Representation, vol. 25(1), pp. 2–11, 2014.

[300] Ye M., Zhang Q., Wang L., Zhu J., Yang R., Gall J.: A survey on human mo-
tion analysis from depth data. In: Time-of-Flight and Depth Imaging. Sensors,
Algorithms, and Applications, pp. 149–187. Springer, 2013.

[301] Yovcheva Z., Buhalis D., Gatzidis C., van Elzakker C.P.: Empirical evaluation of
smartphone augmented reality browsers in an urban tourism destination context.
In: Int. J. of Mobile Human Computer Interaction (IJMHCI), vol. 6(2), pp. 10–31,
2014.

[302] Yue-Hei Ng J., Hausknecht M., Vijayanarasimhan S., Vinyals O., Monga R.,
Toderici G.: Beyond short snippets: Deep networks for video classification. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 4694–
4702. 2015.

[303] Yun K., Honorio J., Chattopadhyay D., Berg T.L., Samaras D.: Two-person in-
teraction detection using body-pose features and multiple instance learning. In:
IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPR
Workshops), pp. 28–35. IEEE, 2012.

[304] Zeng R., Lakemond R., Denman S., Sridharan S., Fookes C., Morgan S.: Ver-
tical axis detection for sport video analytics. In: Int. Conf. on Digital Image
Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE, 2016.

[305] Zhang C., Tian Y., Guo X., Liu J.: DAAL: Deep activation-based attribute learn-
ing for action recognition in depth videos. In: Computer Vision and Image Un-
derstanding, vol. 167, pp. 37–49, 2018.

118



Bibliography

[306] Zhang C., Yang F., Li G., Zhai Q., Jiang Y., Xuan D.: MV-Sports: A motion
and vision sensor integration-based sports analysis system. In: IEEE Conf. on
Computer Communications (INFOCOM), pp. 1070–1078. IEEE, 2018.

[307] Zhang H., Parker L.E.: 4-dimensional local spatio-temporal features for human
activity recognition. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pp. 2044–2049. IEEE, 2011.

[308] Zhang H., Zhong P., He J., Xia C.: Combining depth-skeleton feature with sparse
coding for action recognition. In: Neurocomputing, vol. 230, pp. 417–426, 2017.

[309] Zhang J., Li W., Ogunbona P.O., Wang P., Tang C.: RGB-D-based action recog-
nition datasets: A survey. In: Pattern Recognition, vol. 60, pp. 86–105, 2016.

[310] Zhang L., Hsieh J.C., Ting T.T., Huang Y.C., Ho Y.C., Ku L.K.: A Kinect based
golf swing score and grade system using GMM and SVM. In: 5th Int. Congress
on Image and Signal Processing (CISP), pp. 711–715. IEEE, 2012.

[311] Zhang Z., Hu Y., Chan S., Chia L.T.: Motion context: A new representation for
human action recognition. In: European Conf. on Computer Vision (ECCV), pp.
817–829, 2008.

[312] Zhu F., Shao L., Xie J., Fang Y.: From handcrafted to learned representations for
human action recognition: A survey. In: Image and Vision Computing, vol. 55,
pp. 42–52, 2016.

[313] Zhu G., Huang Q., Xu C., Rui Y., Jiang S., Gao W., Yao H.: Trajectory based
event tactics analysis in broadcast sports video. In: 15th ACM Int. Conf. on
Multimedia, pp. 58–67. ACM, 2007.

[314] Zhu R., Zhou Z.: A real-time articulated human motion tracking using tri-axis
inertial/magnetic sensors package. In: IEEE Trans. on Neural Systems and Re-
habilitation Engineering, vol. 12(2), pp. 295–302, 2004.

119


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Sports motion analysis
	1.2 Thesis statement
	1.3 Research contribution
	1.4 Dissertation structure

	2 Background and related work
	2.1 Motion analysis in sports
	2.1.1 Sports skills
	2.1.2 Performance assessment

	2.2 Automatic analysis of human motion
	2.2.1 Actions
	2.2.2 Challenges
	2.2.3 Methods overview
	2.2.4 Body-based methods
	2.2.5 Spatio-temporal interest points
	2.2.6 Grid-based local descriptors
	2.2.7 Deep learning
	2.2.8 Depth-based methods
	2.2.9 IMU-based methods
	2.2.10 Multi-sensor systems

	2.3 Automatic motion analysis in sports
	2.3.1 Overview
	2.3.2 Team sports
	2.3.3 Individual sports
	2.3.4 Datasets
	2.3.5 Fencing as a discipline of interest
	2.3.6 Automatic fencing analysis - related work
	2.3.7 Research objectives
	2.3.8 Summary


	3 Recognition of action dynamics in fencing footwork
	3.1 Fencing footwork dataset
	3.1.1 Fencing footwork
	3.1.2 Proposed dataset

	3.2 Methods
	3.2.1 Accelerometric features
	3.2.2 Joint dynamics
	3.2.3 Local trace images
	3.2.4 Joint motion history context
	3.2.5 Feature selection
	3.2.6 Fusion and classification

	3.3 Experiments and results
	3.3.1 Datasets
	3.3.2 Results on FFD dataset
	3.3.3 Results on UTD-MHAD dataset

	3.4 Summary

	4 Real-time detection and analysis of actions in fencing footwork
	4.1 Data acquisition
	4.2 Methods
	4.2.1 Action detection
	4.2.2 Action classification
	4.2.3 Qualitative analysis
	4.2.4 Feedback
	4.2.5 IMU-based methods

	4.3 Experiments and results
	4.3.1 Dataset 1
	4.3.2 Dataset 2
	4.3.3 Feedback

	4.4 Summary

	5 Immersive feedback for bladework practice in fencing using augmented reality
	5.1 Overview
	5.2 Methods
	5.2.1 Blade tracking
	5.2.2 Action models
	5.2.3 Augmented reality

	5.3 Experiments and results
	5.3.1 Blade tracking
	5.3.2 Action models
	5.3.3 Augmented reality

	5.4 Summary

	6 Conclusions
	6.1 Thesis statement verification
	6.2 Contributions and limitations
	6.3 Future work


