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Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecu
parity symmetry, and broken-symmetry states
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We study electron systems confined in anisotropic quantum dots at high magnetic fields using the
configuration-interaction scheme with a multicenter basis of single-electron functions centered around different
sites. Elliptical, triangular, and square quantum dots are investigated. We study the relation between the
quantum and classical charge density and conclude that at high magnetic field the quantum charge density
reproduces all the equivalent lowest-energy configurations of classical point charges. Quantum systems with a
classical counterpart of a unique lowest-energy configuration exhibit a smooth convergence of the charge
density to the classical limit at high magnetic field. In quantum systems with several equivalent classical
configurations the magnetic field induces discontinuous transformations of the ground-state symmetry associ-
ated with crossings of the corresponding few-electron energy levels. A linear combination of states with the
crossing levels yields a semiclassical charge density with a broken symmetry. At the magnetic field corre-
sponding to the level crossing this combination is an exact eigenstate of the Hamiltonian. For circular dots the
present findings give an additional insight into the properties of the magic-angular-momenta states and into the
physics behind the broken-symmetry mean-field solutions.

DOI: 10.1103/PhysRevB.69.125344 PACS number~s!: 73.21.2b, 73.22.Gk
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I. INTRODUCTION

Quantum dots1 provide a convenient testing grou
studying electron localization in potentials which can
certain extent, formed at will by proper etching techni
chosen geometry of the applied gate electrodes. On
most interesting problems in this field is the Wigner
lization of the electron system induced by a high m
field. The problem of Wigner crystallization in cylin
quantum dots2–4 has been widely discussed and at
seems to be well understood both quantum mechani
classically.5 Wigner crystallization, i.e., the separat
electrons, in cylindrically symmetric potential appear
inner coordinates of the system and the charges of
electrons are not distinguishable in the rotationally in
electron density. Therefore, in cylindrical quantum
methods6 based on charge-density measurements ar
propriate for the observation of Wigner crystallization
ever, such an approach is possible in structures of low
metry. Previous exact diagonalization studies of a
electron system in a triangular quantum dot7 and of a sy
of six electrons in an elliptical quantum dot8 showed
Wigner crystallization can be observed in the charge
distribution of the electrons in the laboratory frame.
over, an exact study of the two-electron system h
presented9 for triangular, square, and hexagonal q
dots in the absence of a magnetic field and in an ellip
at zero magnetic field.10 Wigner crystallization of
electron systems in large polygonal quantum dots in
sence of an external magnetic field was studie
density-functional theory.11–13 This theory was also ap
to evaluate the addition spectra in elliptical quantum
The addition spectra of elliptical dots have been stud
Hartree-Fock method15 as well. The effect of pinning o
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praca 5A 68
for
, to a
es or
of the

ystal-
gnetic
rical
esent
lly and
n of
in the
eparate
ariant
dots

not ap-
ow-

r sym-
three-
em
at
ensity
ore-
been

ntum
al dot
w-
he ab-
using

lied
ots.14

d with
the

Wigner molecule by a Gaussian impurity perturbatio
isotropic confinement potential was recently studied
quantum Monte Carlo approach.16,17

In this paper we perform a detailed study of the
density of two-, three-, and four-electron systems con
anisotropic potentials using an exact diagonalizat
proach. We consider elliptical, square, and triangular
quantum dots and investigate the magnetic-field-
Wigner crystallization. A relation between the quantu
classical charge distributions in anisotropic structu18

found. In particular we discuss the high-magnetic-fi
havior of quantum systems whose classical counterp
sess several equivalent lowest-energy configurations

A lot of attention was paid2,3 to the problem of the
quence of the ground-state angular momenta after t
mum density droplet19 ~MDD! breakdown in cylind
quantum dots. The magnetic field increases the
value of the angular momentum of the confined elect
tem, but only certain angular momenta with magic q
numbers2,3,20–22are realized. For the magic angular mo
the classical symmetry is reproduced in the inner coo
of the quantum system2 and the electron-electron inter
energy as a function of the angular momentum prese
minima.23 At the end of this paper we point out a re
between the magic angular momenta and the charg
in the laboratory frame. We also consider the magne
induced parity transformations in elliptical dots whi
less thoroughly studied counterparts of the a
momentum transitions appearing in circular dots.

To discuss the charge-density distribution the app
of an exact diagonalization method is crucial since
field approaches may lead to an artifactal breaking
symmetry of the confinement potential.3 The brok
symmetry solutions present a semiclassical type of
tion. On the other hand we found24 recently that in
©2004 The American Physical Society125344-1
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tly infinite magnetic-field limit the energy of the broken-
metry solution with semiclassical localization becomes
al to the energy of the exact solution. In this paper we
y the realistic case of high but finite magnetic fields and
nd our previous work to anisotropic confinement poten-
. In particular, we reconsider the problem of the symme-
breaking at the exact diagonalization level and demon-
te that a construction of the exact broken-symmetry
tion of the few-electron Schro¨dinger equation is possible

certain values of the magnetic field.
ome of the previous studies of Wigner crystals25–27 and
ner molecules23,24,28,29used a multicenter basis of the
le-electron lowest-Landau-level functions. However,
e calculations23–29 used Hartree-Fock or similar ap-
ches. In the present paper, we use the single-electron

ticenter basis for the construction of the configuration-
raction approach which allows for an exact solution of
Schro¨dinger equation for few-electron systems confined
otentials of arbitrary symmetry. This approach is a gen-
ization of the single-configurational multicenter Hartee-
k ~MCHF! method24,29 which we elaborated previously.
he paper is organized as follows. The second section
cribes the multicenter-configuration-interaction method as
lied in this paper as well as presents test calculations for
ular dots. Sections III, IV, and V contain discussion of
lts obtained for elliptical, square, and triangular dots, re-

ctively. The conclusions reached for lower-symmetry
ctures are discussed in the context of circular dots in Sec.
Summary and conclusions are given in Sec. VII.

ULTICENTER-CONFIGURATION-INTERACTION
METHOD

e considerN electrons confined in a two-dimensional
-plane!quantum dot subject to a strong external mag-
c field oriented parallel to thez axis. We solve the
lectron Schro¨dinger equation with the Hamiltonian

H5(
i 51

N

hi1(
i 51

N

(
j . i

N
k

r i j
1BSzg* mB , ~1!

reh stands for the single-electron Hamiltonian,

h5
1

2m*
~2 i\“1eA!21V~x,y!, ~2!

is the effective Lande´ factor, Sz the z component of the
l spin,B the magnetic field,mB stands for the Bohr mag-
n,k5e2/4pe0e, e is the dielectric constant andm* the
tron effective mass. We use the Landau gaugeA
By,0,0) and adopt material parameters for GaAs, i.e.,

m050.067,e512.9, andg* 520.44.
e assume complete spin polarization of the electron sys-
by the external magnetic field. The multicenter-

figuration-interaction~MCI! scheme is constructed in the
wing way. First we diagonalize the single-electron
iltonian~2! in a multicenter basis
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Cm~r !5(
i 51

M

ci
mcRi

~r !, ~3!

R~r !5A a

2p
expH 2

a

4
~r2 R!21

ib

2
~x2X!~y1Y!J ,

~4!

reM>N is the number of centersR5(X,Y). Next, the
lectron Hamiltonian~1! is diagonalized in a basis of
N!( M2N)! Slater determinants constructed from the
le-electron orthonormal eigenvectorsCm ~3! with m
. . . ,M . The position of the centersRi , a, and b are

linear variational parameters optimized for the total en-
of theN-electron system. For three or more centers per

tron the optimal value of the parameterb tends toeB/\.
igh magnetic field the parametera also takes this value
pendently ofM. For a5b5eB/\ the wave function~4!
e lowest-Landau-level eigenfunction.
he flexibility of the single-electron basis was verified for
isotropic parabolic potentialV(x,y)5m* v2(x21y2)/2,
\v53 meV. Solid lines in Fig. 1 show the magnetic-
dependence of the single-electron spectrum calculated
the trial wave function~3! with ten centers located at

circumference of a circle with equal angular spacings and
11th center located at the origin. The radius of the circle

optimized variationally. The dots in Fig. 1 show the
ct Fock-Darwin energy levels corresponding to the lowest
d which at high magnetic field converges to the lowest
dau level. The crosses mark the energies of the higher
k-Darwin bands. The present calculations with wave
tion ~3! reproduce the exact single-electron spectrum

IG. 1. The single-electron spectrum calculated with the trial
e function~3! for an isotropic quantum dot with\v53 meV
d lines!. Eleven centers have been used, one located at the
n and the others at the circumference of a circle with variation-
optimized radius. Symbols show the exact Fock-Darwin energy
ls corresponding to the lowest~dots! and higher bands
sses!. The dotted line shows the estimate for the ground-state
gy obtained when the center located at the origin is excluded
the basis.
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344~2004!
with a high precision. It is interesting to note that th
~3! constructed of the displaced lowest-Landau-lev
functions ~4! reproduces also higher Fock-Darwin
Since we are using the Landau gauge the single
wave functions~3! are not eigenfunctions of the an
momentum operator. However, for all the plots pres
Fig. 1, the expectation values of the angular momen
culated for the wave functions~3! reproduce exactly the
rect eigenvalues.

The exact ground Fock-Darwin state wave functi
sesses the form~4! with X5Y50. The dotted line in F
shows the variational estimate of the ground-state en
tained when the center at the origin is excluded fr
basis. The related overestimation of the ground-stat
is nonzero only at low magnetic field (B&2.2 T). We h
found that the center located at the origin has no influ
the energy estimates for the single-electron states w
zero angular momentum. Its contribution to the energ
exciteds states tends to zero at higher magnetic fie
larly as for the ground state.

We have performed further tests for the isotrop
monic confinement potential in order to verify the rel
of the present configuration-interaction approach to
particle states at high magnetic field. The results we
pared with the standard exact diagonalization metho
basis constructed from the Fock-Darwin states of
angular momentum.24,30 The reference method24,30 assu
neither spin polarization nor the occupation of the
Landau level and forN<4 allows for nearly exact evalu
of the total energy.

Figure 2~a!shows the comparison of the exact tota
lar momentum of the three-electron system and the
tion values obtained with the MCI wave function for v
number of centers placed on a circumference of a cir
equal angular spacings. The plot starts forB53 T for wh
the ground state is the spin-polarized MDD.19 The M
decays atB54.6 T @cf. black dots in Fig. 2~a!#to a non
larized state with angular momentum25\. For B.5.
the ground state of the three-electron system is sp
ized. Then, the angular momentum takes the
values2,3,20–22and changes by 3\ as the magnetic fie
creases.

The present method withM5N uses only a single
figuration and at high magnetic field is equivalent
multicenter HF method.29 For M5N53 the MCI me
reproduces the angular momentum of the MDD s
squares in Fig. 2~a!#. After the MDD decay, the expe
value decreases linearly withB in contrast to the exact
wise decrease. The MCI method with six centers rep
also the exact angular momentum of the first spin-p
state after the MDD decay, and at higher magnetic
starts to decrease linearly withB. For M512 the M
method yields correct expectation values of the ang
menta of all spin-polarized states in the entire con
range of magnetic fields.

Let us now discuss the convergence of the ene
mates obtained with the MCI method to the exact
state energy@cf. Fig. 2~b!#. The overestimation of the
energy with a single configuration@M5N53, cf. the up
1
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most curve of Fig. 2~b!#is a nonmonotonous function
The oscillations are due to the fact that the energy
of MCI with M5N is a smooth function ofB, while
exact energy exhibits cusps at these values ofB for which
ground-state angular momentum changes. The env
these oscillations decreases to 0 in the infinite magn
limit.24 Introduction of six centers reduces the overest
of the total energy as long as the total angular mome
reproduced by the MCI method withM56 @cf. dashed
in the upper panel of Fig. 2~a!#. At higher magnetic field
which the overlaps of functions~4! centered around diff
sites vanish, the precision of the MCI method withM5
deteriorates to the one obtained withM53, i.e., to
MCHF method.29 The method withM59 ~12! centers g
the exact energy to a precision better than 0.15 me~0
meV! for 5.4,B,20 T, i.e., in the studied range of
netic field after the MDD breakdown for which the a
assumption of spin polarization is fulfilled. Results of
test calculations forN52 and 4 show that the correspo
upper bounds for the precision of the MCI method wit
centers per electron (M /N53) equal 0.1 and 0.12 me
spectively.

Figure 3 shows the charge density of the three-
system atB56 T for three, six, and nine centers.
single-configuration charge density (M53) the circ

FIG. 2. ~a! Exact total angular momentum of the ground
the three-electron system confined in an isotropic quantum
\v53 meV and the expectation values for the mult
configuration-interaction wave functions using various nu
centers.~b! The overestimation of the total three-electron
with the multicenter approach for different number of cent
25344-3
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SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B 69, 125344~2004!
metry of the external potential is broken. For six centers
cylindrical symmetry is approximately restored, although
closer inspection the sixfold symmetry—a trace of the

ice of centers—can be noticed. ForM59 the charge den-
shows a perfect cylindrical symmetry. The present nu-
ical method restores the cylindrical symmetry in a man-
alternative to the rotated-electron-molecule approach of
nouleas and Landman.23

e conclude that the single-electron wave functions~3!
d in the present MCI approach work similarly as the
k-Darwin functions with definite angular momentum~cf.
. 1 and 2!. At high magnetic fields the precision of the

I method is not worse than the MCHF method29 which in
gives exact results in the infinite magnetic-field limit.24

applicability of the present configuration-interaction ap-
ch is not limited to cylindrically symmetric potentials.
MCI method allows for a flexible choice of the position

enters which can be tailored to any smooth external po-
ial of arbitrary profile and symmetry.

III. ELLIPTICAL QUANTUM DOT

A. Wigner crystallization

n this section we applied the MCI method to analyze
ner crystallization in elliptical quantum dots with aniso-
ic parabolic potentialV(x,y)5m* (vx

2x21vy
2y2)/2 with

vx . Calculations were performed withM512 centers
on an ellipse symmetric with respect to thex andy axes
equal angular spacings.

igure 4 shows the calculated charge densities for two-,
e-, and four-electron systems at different magnetic fields
energies obtained are listed in Table I!. The lowest panel

ws the position of the classical point charges in the
est-energy configurations. The classical two- and four-
tron systems in the studied potential possess a unique

est-energy configuration. On the other hand the classical
tem of three electrons possesses two equivalent configu-
ns~marked by ‘‘black’’ and ‘‘white’’ symbols in the low-

panel of Fig. 4!. Existence of several equivalent classical
figurations will be referred to asclassical degeneracy.
t relatively low magnetic field~4 T! the electron puddles
very similar and exhibit two maxima at their left and

t ~x! ends. ForB58 T the electrons in the two- and
-electron systems start to become spatially separated. At
er magnetic field the electron charge densities forN
and 4 tend to the charge distributions of their classical

co
th
fie
de
si
sm
is
de

IG. 3. MCI charge density obtained for the three-electron sys-
with differentM for \v53 meV andB56 T. The darker the

de of gray the larger the electron density.

te
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nterparts~cf. lowest panel of Fig. 4!, which results from
shrinkage of the Landau radius with growing magnetic
. ForB58 T a central hole in the three-electron charge
sity appears. The plots of the three-electron charge den-
s for 12 and 20 T~cf. Fig. 4!show an appearance of two
ller maxima of the charge density along they axis. This

hown more clearly in Fig. 5 for the three-electron charge
sity atB530 T. The two charge maxima at thex ex-

IG. 4. Charge density of two-, three-, and four-electron sys-
for an anisotropic parabolic potential with\vx53 meV and

54 meV for different magnetic fields. The lowest panel pre-
s the lowest-energy configurations of the classical point-charge
ems. ForN53 the two energy-equivalent configurations are
ked with full and open circles.

ABLE I. Total energy of theN-electron systemEN ~in meV!
ned in an anisotropic parabolic potential with\vx53 meV

\vy54 meV.

B(T) E2 E3 E4

4 15.35 30.33 49.29
8 20.99 39.02 60.71
12 27.20 48.20 72.94
16 33.71 58.04 85.95
20 40.33 67.95 99.29
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ANISOTROPIC QUANTUM DOTS: CORRESPONDENCE . . . PHYSICAL REVIEW B 69, 125344~2004!
tremities of the charge puddle are spread out alon
direction into two distinct maxima. The results of Figs
5 show that the density distribution for the system o
electrons at high magnetic field tends to a linear com
of the two distributions of the degenerate classical
rations~cf. the lowest panel of Fig. 4!.

Evidence of Wigner crystallization in the four-el
charge density is not always as apparent as in the ca
in Fig. 4. The left panel of Fig. 6 displays the charge
of the four-electron system atB520 T for \vx53 meV
different \vy . The right panel of the figure shows th
responding configurations of the classical system.18 The c

FIG. 5. Charge density of the three-electron system fo
isotropic parabolic potential with\vx53 meV, \vy54 meV,
B530 T.

FIG. 6. Left panel: Charge density of the four-electron s
B520 T for \vx53 meV and different values of\vy . R
panel: Classical lowest-energy configurations. For\vy55.5
6 meV two equivalent configurations are marked with d
symbols.
1
praca 5A 72
they
4 and
three
nation
nfigu-

tron
shown

ensity
d
cor-
s-

sical system possesses a single lowest-energy con
for 3 meV,\vy&5.1 meV with electrons situated alo
x and y axes. For\vy larger than 5.1 meV the ele
leave the axes and as a consequence two equivalen
rations appear. As\vy is increased further the classica
trons become localized on thex axis and the classical d
eracy is removed. Note that the classical system e
zigzag transition as discussed in more detail in Ref.
classical configurations and the quantum charge dis
~cf. left panel of Fig. 6!are clearly related. In the abse
classical degeneracy (\vy55 and 9 meV! the quan
charge density possesses four nearly equal maxima
close to the positions of the classical electrons in
rium. The plot for \vy59 meV represents a nearly
dimensional case of a Wigner molecule,31 in which
charge maxima at the ends of the puddle are sligh
pronounced than the maxima in its interior. A trace
classical degeneracy for\vy56 meV in the quantum c
density is the elongation of the central maxima in thy
rection. These central maxima for\vy55.5 meV merge
a single ringlike plateau with a hole in the center. F
special case the separation of electrons is not comple
the charges of the two central electrons occupy th
island. We have found that in this case the separatio
two electrons cannot be observed even in the pair-co
function2 plots. Therefore, the four-electron system
potential forB520 T presents an interesting case ofpar
Wigner crystallization.

B. Parity symmetry

Let us now consider the spatial symmetry of th
electron wave function in an elliptical dot. In an anis
confinement potential the angular momentum is no
quantized. However, the wave functions of the few-e
systems in an elliptical dot have a definite parity with
to the rotation byp angle. In cylindrical quantum do
parity of the states is even~odd! if the angular momentu
an even~odd!multiple of \. The MDD states for two, t
and four electrons have angular momentum equal2
23\, and26\, respectively. Therefore, the two- and
electron MDD states are of odd parity and the four-e
MDD state is of even parity. At magnetic fields abo
MDD breakdown the angular momentum of the grou
takes the magic values2,3,20–22and changes byN\. As a c
sequence the two- and four-electron systems in th
state and after its decay possess always the same p~o
for N52 and even forN54), while for three electron
parity changes with each ground-state transformatio

Solid lines in Fig. 7~a!show the two lowest-energy
electron levels in the magnetic-field range correspon
the MDD decay in a circular quantum dot. The dis
energyE8 is calculated with respect to the lowest L
level, i.e., E85E2N\(vc1Szg* mBB)5E20.85(meV
3NB. The two-electron MDD decays atB55.75 T as
energy of the state with angular momentum23\ crosse
MDD energy level withL52\. The dashed lines pr
the magnetic-field dependence of the two lowest le
an elliptical quantum dot with\vx53 meV and \

an an-
nd

tem at
ht
nd
ferent
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125 meV. Instead of a level crossing we observe an
ided crossing. The avoided crossing is due to the fact that
states involved are of the same odd parity. A similar
ided crossing related to the MDD decay in elliptical dot
bserved for four electrons@cf. Fig. 7~b!#. Both the energy
ls presented in Fig. 7~b!correspond to even parity states.
both N52 and 4, further avoided crossings appear at
er magnetic fields. In the harmonic ellipsoidal quantum
the center-of-mass motion separates from the relative
ion eigenproblem.32 If the energy levels involved in the
ided crossing corresponded to different center-of-mass
es, the level crossing would still be observed in spite of
same parity of the considered few-electron states. The
earance of the avoided level crossings forN52 and 4
cates that these levels are associated with the same
und!state of the center of mass. In the two-electron sys-
the energy gaps between the anticrossing energy levels
, cf. Fig. 7~a!# for the same degree of anisotropy
/vx) are about four times larger than in four-electron
tems. The extent to which the anisotropy mixes the
ic-angular-momenta states of circular dots is a distinctly

reasing function of the differences of their angular mo-
ta (N\). The appearance of the avoided crossings in
tion of the anisotropy of the elliptical confinement in

ence of a magnetic field has been discussed for an elec-
pair in Ref. 10.
he magnetic-field-induced ground-state transformations
e circular quantum dots are accompanied by cusps in the
rgy as a function of the magnetic field and stepwise
nges of the angular momentum. Moreover, they appear
g with discontinuous changes of the average size of the

tem,30 the electron-electron interaction energy,29 and
pt transformations of the charge density. When the

rgy-level crossing is replaced by an avoided crossing
in two and four elliptically deformed dots! the changes

hysical quantities lose their sharp character and become
tinuous. As an illustration, a plot of the interaction energy
e two-electron system is presented in Fig. 8~a! for cir-
r ~solid line!and elliptical~dashed line!quantum dot. In
circular dot the interaction energy grows with magnetic
between the ground-state transformations which are ac-

co
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Fi
th
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of
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ou

th
be
po
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~s

IG. 7. Two lowest-energy levels of two~a! and four~b! elec-
s for\vx53 meV calculated with respect to the lowest Landau
l as functions of the magnetic field.
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panied by a stepwise decrease of this quantity. The in-
ction energy for the two-electron elliptical dot presents a
oth dependence on the magnetic field@cf. dashed line in
8~a!#. In circular quantum dots the sharp breakdown of

MDD is related with a level crossing leading to a sudden
ease of the electron-electron correlation30 and formation
molecular configuration in the inner coordinates of the

ntum system.2,3,29,30In the presence of the avoided cross-
the formation of the Wigner phase becomes a continu-
process.
the three-electron system confined in an elliptical dot

magnetic-field-induced level crossings are still present
ause, like in circular dots, the subsequent ground states
sess opposite parities. Figure 9 shows the two lowest-
rgy levels as function of the magnetic field. One of the
lowest-energy levels corresponds to the odd-parity state
id line! and the other to the even-parity state~dashed

IG. 8. Expectation value of the electron-electron interaction
gy in the two-electron system~a! and of the angular momentum

n the three-electron circular (\vx5\vy53 meV—solid lines!
elliptical (\vx53, \vy53.5 meV—dashed lines! quantum

IG. 9. Two lowest-energy levels of a three-electron elliptical
(\vx53 meV, \vy54 meV) calculated with respect to the
st Landau level. The energy level plotted with solid~dashed!
corresponds to the state of odd~even!parity. Dotted line shows
expectation value of the energy for the broken-symmetry state
Sec. III C and Eq.~5!#. The inset presents half the energy spac-
between the two energy levels, i.e., the energy overestimation
he expectation value of the Hamiltonian calculated for the
en-symmetry state~cf. Sec. III C!. Signs ‘‘2’’ and ‘‘ 1 ’’ corre-
d to odd and even parity of the ground state, respectively.
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line!. In the three-electron elliptical dot the changes o
cal properties conserve their stepwise character as
of the magnetic field due to the parity transformation
ure 8~b!shows the expectation value of the angular m
tum for the three-electron system. Although, the angu
mentum in an elliptical dot is not quantized, its expe
value presents discontinuous changes. For higher v
vy the angular momentum is quenched to zero as
finement potential starts to resemble a quasi-one-dim
wirelike dot.

Figure 10 shows the phase diagram for the parit
spin-polarized three-electron system as a function
strength of they confinement and the magnetic fie
\vx53 meV. The ground state is of even parity in th
tral region bounded by the solid line and marked by t
sign. The left vertical dashed line corresponds to
symmetry of the confinement potential. The change
charge density occurring at the crossing of the bo
tween the odd and even phases along this line are i
in Fig. 11. The upper panels of Fig. 11 show the
density ~left panel!and the pair-correlation function~P
~right panel!corresponding to the MDD phase in the
marked by ‘‘A’’ in Fig. 10. The lower panels correspo
the point marked by ‘‘B’’ in Fig. 10. Results of Fig. 11 s
that the MDD decay is accompanied by the formati
hole in the charge-density center33 and a distinct grow
the electron separation in the inner coordinates pre
the PCF plots. Figure 12 displays the charge density
PCF plots at the crossing of the border between the
even-parity phases for elliptical dot with\vy54 meV
the points marked by ‘‘C’’ and ‘‘ D ’’ in Fig. 10!. The ch
density in the even-parity ground state has a hole in
ter, similarly as for the even-parity state in the cylindr
~cf. Fig. 11!. An increase of the electron-electron cor
appearing at the crossing of the borders between th

FIG. 10. Phase diagram for the parity of the three-elect
polarized ground state in an elliptical quantum dot f\
53 meV. The parity is even in the region marked by a p
bounded by the solid line and odd outside of it. The do
shows the position of the avoided crossing of the lowest
parity energy levels. The insets show schematically the q
picture of the charge density in the different phases. For th
dashed lines and the symbols, see text.
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also resembles a similar effect appearing in circular
right panel of Fig. 12!. The charge-density plot for th
phase at a higher magnetic field (B58 T—point ‘‘E ’’ in F
10! was presented in Fig. 4. A qualitative change
charge density is observed at higher magnetic fields w
next phase border is crossed. In the odd phase ab
border, the two local maxima of the charge density a
the y axis ~cf. Fig. 4 for B512 T and N53). At hig
magnetic field the charge density tends to reproduce
degenerate classical configurations~cf. discussion of Fig

Figure 10 shows that with increasing anisotropy
confinement the even-parity phase is pushed to high
netic fields and finally for\vy.4.4 meV it is elimin

n spin-

x

s sign
d line
o odd-
litative
vertical

FIG. 11. Charge density~left panel!and PCF~right panel!p
for the three-electron system confined in a circular do\
5\vy53 meV) in the MDD phase~upper panel cf. point m
by ‘‘A ’’ in Fig. 10! and in the ground state withL526\ appea
at higher magnetic field~lower panel cf. point marked by ‘‘B’
Fig 10. The position of one of the electrons in the PCF plot
by 3 is fixed at pointx50, y521 nm.

FIG. 12. Charge density~left panel!and PCF~right panel!p
for the three-electron system in an elliptical dot (\vx53 m
\vy54 meV). The upper~lower! panel corresponds to the
~even-!parity state in the point marked by ‘‘C’’ ~‘‘ D ’’ ! in Fig.
The position of one of the electrons in the PCF plot marked3
fixed at pointx50, y520 nm.
25344-7
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the phase diagram. The charge-density plot presented in
upper panel of Fig. 12 for point ‘‘C’’ in Fig. 10 shows
the odd-parity state forms a charge-density maximum in
center of the dot. The strongy confinement prevents the
ation of the even-parity state~the lower panel of Fig.
in which this central charge-density maximum is re-
ed. The right vertical dashed line in Fig. 10 marks they
finement energy above which the zigzag structure18 of the
sical three-electron system~cf. lowest panel of Fig. 4! is
pressed to thex axis. Figure 13 shows the electron charge
sity plotted for\vy55 meV and B56 T ~the point
ked by ‘‘F’’ in Fig. 10!. The observed three charge-
sity maxima at higher magnetic field shrink and tend to-
d the single nondegenerate classical configuration. In the
si-one-dimensional regime of strongy confinement the
vergence of the three-electron charge density to the clas-
l limit is not accompanied by any level crossings.

C. Broken-symmetry states

he preceding results show that the quantum systems with
sical degeneracy at high field contain all the classically
enerate configurations. As a consequence, the corre-
nding charge density does not resemble any single clas-
l charge distribution. One has to break the symmetry of
external potential in order that the quantum charge den-
reproduces one of the degenerate classical configura-

s. Let us construct such broken-symmetry statescbs in
of a linear combination of the two lowest-energy few-

tron states (x1 andx2, respectively!,

cbs5~x11cx2!/A2, ~5!

re ucu251. Usually, the charge density of a state con-
cted in this way does not reproduce the symmetry of the
finement potential. We constructed such broken-
metry states for the system of three electrons in an ellip-
l dot with \vx53 meV and\vy54 meV ~cf. Fig. 9!.
have found that the broken-symmetry charge density ex-
ts three maxima. For a properly chosen phase of the co-
ient c in Eq. ~5! the positions of these maxima coincide
the position of the electrons in one of the degenerate

sical configurations~cf. the lowest panel of Fig. 4!. Fig-
14 shows the charge density of the broken-symmetry

es for different values of the magnetic field. Plots in Figs.

14
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IG. 13. Charge density for the three-electron system in an el-
al dot (\vx53 meV, \vy55 meV) for B56 T. The plot

esponds to the point marked by ‘‘F ’’ in Fig. 10.
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5
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!and 14~b!correspond to ‘‘black’’ and ‘‘white’’ degen-
e classical configurations depicted in the lowest panel of
4. Plots 14~a!and 14~b!have been obtained with oppo-
sings ofc in formula ~5!, so they correspond to orthogo-
wave functions. Figures 14~a!, 14~c!, and 14~d!show that
he magnetic field grows the charge density of the broken-
metry state converges to one of the degenerate classica
figurations of point charges.
he expectation value of the energy calculated for the
en-symmetry state@Eq. ~5!#, independently of the phase
, is equal to the arithmetic average of the two lowest-
rgy levels. It means that this expectation value overesti-
es the exact ground-state energy by half of the energy
cing between the two lowest levels~cf. inset of Fig. 9!.
the magnetic fields corresponding to degeneratex1 and
tates@cf. Eq. ~5!#, i.e., to the energy-level crossings pre-
ted in Fig. 9, the broken-symmetry states~5! are exact
nd eigenstates of the Hamiltonian. The magnetic fields

sen in Fig. 14 correspond to these level crossings. There-
, the charge densities presented in this figure correspond
e exact ground-state solutions of the Schro¨dinger equa-

. Conversely, for an arbitrary value of the magnetic field
exact ground-state wave function can be constructed
a superposition of the wave functions of two broken-

metry states with semiclassical electron localization@cf.
. 14~a!and 14~b!#.

IV. SQUARE QUANTUM DOT

order to verify the conclusions concerning the high-
netic-field evolution of the charge density in elliptical
we performed a study of Wigner crystallization in quan-
dots with square and triangular confinement potentials.
the square quantum dot we used a smooth confinement
ntial with a square profile,

V~x,y!5 1
2 m* v2~x21y2!@11cos~4f!/5#, ~6!

ref is the angle between the position vector (x,y) and
x axis. We take\v53 meV. The potential is illustrated

IG. 14. Charge density of the broken-symmetry three-electron
s @cf. Eq. ~5!# in an elliptical dot (\vx53 meV, \vy

meV) for B56.3 T ~a,b!, 14.125 T~c!, and 25 T~d!. For the
en fields the plots correspond to exact ground states.
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in Fig. 15 along with the degenerate classical lowes
configurations of three electrons. On the other hand
electrons there are only two equivalent configura
which the electrons reside in the opposite corners
square,34 and forN54 the classical system is nondeg
with electrons occupying all the corners.

The MCI calculations for potential~6! have been
formed with 12 centers placed on the circumferen
square with equal spacings along its sides. The siz
square was optimized variationally. The obtained cha
sity is presented in Fig. 16. In the system of four e
the charge density becomes distinctly separated i
single-electron islands. ForN52 and 3 the formation o
charge maxima at the corners of the square appea
pronounced delay in magnetic-field strength with re
the four-electron system.

The PCF plot presented in Fig. 17 gives an ad
insight into the electron distribution in the square q

FIG. 15. Equipotential lines for the square confinement
~6!. The different types of symbols mark the position of t
trons in one of the four energy-equivalent configurations
three-electron system.

FIG. 16. Charge densities of two-, three-, and four-
systems in the square quantum dot for various value
magnetic field.
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dot when one of the electrons is fixed~cross in Fig. 17!al
one of the diagonals. At high magnetic field the plot
52 and 4 show that the other electrons become l
semiclassically at the corners of the square. On th
hand the two remaining electrons in the three-elect
tem are smeared out over the two opposite side
square and their localization is weaker than in the tw
four-electron systems. This weaker localization is re
the degeneracy of the classical three-electron syste
the fact that the electrons in the degenerate classical
rations occupy nearby positions.

Table II shows that the present MCI approach
decent convergence of the energy estimates even
three-electron system whose localization in the squa
tum dot is rather vicious.

The gathering of the electron density at the cor
the square dot that we observe at high magnetic
in qualitative agreement with previous exact9

density-functional-theory11,12 results for large quantum
in the absence of magnetic field.

The symmetry of the electron states in square q
dots is higher than in elliptical dots.35 In the symm
gauge the Hamiltonian eigenstates are also eigensta

tential
elec-

or the

ectron
of the

FIG. 17. Pair-correlation function for the two-, three-, an
electron system in the square quantum dot. The cross m
position of one of the electrons@(212,12), (217,17), (220
for N52, 3, and 4, respectively~in nanometers!#.

TABLE II. Convergence of the total energy~in meV! for
three-electron system in the square quantum dot~6! as functio
the number of centers used in the wave function~3!.

M
B(T) 4 8 12 16

4 28.51 28.08 27.99 27.
12 48.87 46.38 46.27 46.
20 70.22 66.35 66.12 66.
25344-9
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rotation operator corresponding to eigenvalues61
n-parity states!and6 i ~odd-parity states!. Since we are
g the Landau gauge, in which the Hamiltonian does not
mute with thep/2 rotation operator, we cannot discuss
e symmetries properly.36 However, we have found that
ground state of two electrons for the MDD and the other
-polarized ground states at high magnetic fields is always
dd-parity-like in circular and elliptical quantum dots.
re 18 shows the two lowest-energy levels of two-
trons in a square quantum dot~the lowest excited state is
of odd parity!. Contrary to the case of elliptical dots the
sings between the odd-parity energy levels are not
ided. Thus we can conclude that the interchanging two-
tron energy levels presented in Fig. 18 correspond to
ogonal eigenstates with eigenvalues6 i of the p/2 rota-
operator.
or three electrons the oscillations of the ground-state
ty with magnetic field are observed like in circular and
tically deformed dots~cf. Fig. 9!. The two lowest-energy
ls forN53 are presented in Fig. 19.
he two- and three-electron systems in square quantum
are similar to the three-electron system in an elliptically
rmed dot~with comparable confinement energies in thex
y directions!in three points. First, all these systems ex-
t classical degeneracy. Second, their energy levels exhibit
sings as function of the magnetic field~cf. Figs. 13, 18,
19!. Third, it is possible to extract a single semiclassical
en-symmetry charge distribution as a linear combination
e two crossing lowest-energy levels.
igure 20 shows the charge density of a superposition of
two lowest-energy states of two- and three-electron

are dot calculated using Eq.~5!. The other semiclassical
figuration of the two-electron system corresponding to
trons gathering at the other diagonal of the square can be
ined by changing the sign ofc in Eq. ~5!. The three-
tron charge density plotted in Figs. 20~c! and 20~d!cor-
onds to the classical charge density marked by squares in
15. The three other equivalent configurations can be

ob
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gr
th
~fu
W
in

~h
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IG. 18. Two lowest-energy levels of the two-electron square
ntum dot calculated with respect to the lowest Landau level as
tions of the magnetic field. Both energy levels are of odd parity.
inset shows half of the energy spacing between the two lowest-

rgy levels.
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ined by rotating the coefficientc by p/2 in the Gauss
e. It is interesting to note that a linear combination of the
lowest-energy states can yield all four semiclassical

rge distributions. On the other hand any pair of the four
en-symmetry states is sufficient to reconstruct the exact
nd state. The broken-symmetry states corresponding to

classical configurations marked by squares and open dots
dots and crosses!in Fig. 15 are mutually orthogonal.
increasing magnetic field the charge maxima presented

ig. 20 shrink to the classical point-charge distributions.
he energy overestimate of the broken-symmetry state
f of the energy spacing between the lowest levels! is
ented in the insets of Figs. 18 and 19, respectively. We

ce that the envelope of the oscillation of the energy over-
mate is a decreasing function of the magnetic field. Simi-
ecreasing tendency can be noticed for the three-electron
em in an elliptical dot~cf. inset of Fig. 9!, but in that case
parity of the ground state has a visible influence on the
ht of the local maxima of the energy overestimate due to
shrinkage of the stability region of the even-parity phase
growing y-confinement energy~cf. Fig. 10!.

IG. 19. Two lowest-energy levels of the three-electron square
tum dot calculated with respect to the lowest Landau level. The
~even-!parity energy level is plotted with solid~dashed!line.
inset presents the half of the energy spacing between the two
st-energy levels.

IG. 20. Charge density of the broken-symmetry solutions@cf.
~5!# of the two- ~a, b! and three-electron square quantum dot,
55 T ~a!, 12 T~b!, 8 T ~c!, and 16 T.
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The four-electron spin-polarized ground state in a
dot is of even parity~like in circular and elliptical dots!
no level crossings as function of the magnetic field
served. In this respect the four-electron system confi
square quantum dot is similar to the two- and four-e
systems in elliptical dots as well as to three-elec
strongly deformed wirelike quantum dots~cf. discussio
Fig. 10!. Another feature common to almost all these
is that their classical counterpart is nondegenerate.
exception is the four-electron system for elliptical do
vy /vx ratio corresponding to the zigzag classical co
tion ~cf. Fig. 6!. We did not obtain level crossing fo
system, although for certain magnetic fields the exci
parity state can closely approach the even ground s

V. TRIANGULAR QUANTUM DOT

The confinement potential for a triangular dot is ta

V~x,y!5 1
2 m* v2~x21y2!@112 cos~3f!/7#,

with \v53 meV. Classical three- and four-electron s
in this potential are nondegenerate; the electrons oc
the corners of the triangle, and one of the electron
four-electron system resides in the center of the tr
On the other hand the classical two-electron system
fold degenerate. The profile of the potential and the p
of electrons in the degenerate two-electron classical
rations are presented in Fig. 21.

The calculations were performed with 12 centers
at the circumference of an equilateral triangle with
spacing along its sides. For four electrons an additio
center was introduced in the center of the triangle. A
preceding calculations, the size of the triangle was op
variationally. The obtained charge density is plotted
22. In systems of three and four electrons the magn
induces the formation of single-electron islands aro
positions of classical electrons in the nondegenerate
energy configurations. The clear localization of elect
N53 and 4 resembles the one for four-electrons
square quantum dot~cf. Fig. 16! as well as the plots
52 and 4 in the anisotropic confinement potential pr
in Fig. 4. On the other hand forN52 the formation o

FIG. 21. Equipotential lines for the triangular confinem
tential ~7! with \v53 meV. Different symbols show the thr
generate classical lowest-energy configurations for the two
system.
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charge maxima at the corners of the triangle appear
visible delay and the localization of electrons along th
is observed like in the three-electron system in the
quantum dot~cf. Fig. 16!.

The three- and four-electron systems in the triangu
for which their classical lowest-energy configuration
degenerate, do not exhibit any level crossings as fun
the magnetic field, but the two-electron system~classic
degenerate!does. The crossing lowest-energy levels
sented in Fig. 23. The electron systems in the triangu
finement potential do not possess a definite parity. H
~in the symmetric gauge! the Hamiltonian eigenfunc
should also be eigenstates of the 2p/3 rotation operator

t po-
de-

lectron

FIG. 22. Charge densities of two-, three-, and four-elec
tems in a triangular quantum dot~7! with \v53 meV for var
values of the magnetic field.

FIG. 23. Two lowest-energy levels of a two-electron tri
quantum dot calculated with respect to the lowest Landau l
insets present the charge density of the broken-symmetry
obtained for the subsequent energy-level crossings app
magnetic fields 5.9, 12, 18.3, and 24.4 T, respectively. Th
the inset shows the length scale for the charge-density plo
25344-11
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onding to eigenvalues equal to three complex cubic roots
. It may be expected that each level of the crossing pairs
ented in Fig. 23 corresponds to a different eigenvalue.
ilarly as in the dots studied in the preceding part of the
er the energy spacings between the two lowest levels ex-
t oscillations decreasing with the external field. Formula
still successfully produces the semiclassical charge-
sity distributions. The insets of Fig. 23 show the plots of
broken-symmetry solutions drawn for the magnetic fields
esponding to the level crossings. The presented charge
sities correspond to the classical configuration marked by
ses in Fig. 21. We have verified that the other two semi-
sical distributions can be obtained by rotation ofc in Eq.

by 2p/3 in the Gauss plane.

VI. EXACT BROKEN-SYMMETRY STATES
FOR CIRCULAR DOTS

rom the present findings for anisotropic dots we may
der whether it is also possible to obtain the classical
figurations for circular dots. The classical electron sys-
s in circular dots are infinitely degenerate with respect to
tion over an arbitrary angle. From the point of view of
preceding discussion, the cylindrical symmetry of the
ct charge density can be considered as a superposition o
classically degenerate configurations. Like most of the
sically degenerate systems discussed in this paper, the
tron systems in circular quantum dots exhibit level cross-
as function of the magnetic field.

he two lowest-energy levels of the two-electron circular
are displayed in Fig. 24. For an arbitrary magnetic field
ground and the first excited states correspond to adjacent
ic angular momenta~given by numbers close to the
es in Fig. 24!. The inset shows half of the energy spacing
een the lowest levels. The superposition of the two

est-energy states calculated according to Eq.~5! give the
en-symmetry semiclassical distributions which are dis-
ed in Fig. 25. The magnetic fields chosen for Fig. 25 are
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IG. 24. Two lowest-energy levels of the two-electron system in
lar dot with\v53 meV calculated with respect to the lowest

dau level. The numbers (21, 23, 25, 27, and29) give the
ular momenta of the two lowest-energy states~in \ units!.

of
co
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e to the level crossings presented in Fig. 24. At the level
sings the broken-symmetry states are exact ground
es. The corresponding charge densities shrink to pointlike
sity distributions with growing magnetic field. The modi-
tion of the phase ofc in Eq. ~5! results in a rotation of the
en-symmetry Wigner molecules, which can be pinned at
rbitrary angle for a properly chosen phase.37 It is a strik-

feature of the quantum superposition@Eq. ~5!# that for an
trary magnetic field the exact ground state with circularly
metric charge density can be reconstructed from the
e functions of two broken-symmetry Wigner molecules
ed at any two different angles@cf. also the discussion in

nection with Figs. 20~c!and 20~d!#.
he energy levels of the three- and four-electron system
Figs. 26 and 27!exhibit the same qualitative behavior as
N52. The envelope of the lowest-energy-level separa-
presented forN52, 3, and 4 electrons in the insets of
. 24, 26 and 27 exhibits very similar dependence on the
netic field, however ‘‘the frequency’’ of these oscilla-

s grows fast with the number of electrons. The broken-
metry charge densities in the neighborhood of the

IG. 25. Broken-symmetry charge densities of the superposition
o lowest-energy states forN52 for a circular dot. Plots~a–d!

espond to magnetic fields 6, 11.5, 17.5, and 25 T, respectively.

FIG. 26. Same as Fig. 24 but forN53.
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ground-state level crossings forN53 and 4 are display
Figs. 27 and 29. The charge density presented in F
has been obtained as a superposition of states with
momenta23\ and 26\. The charge densities of
states in the neighborhood of their energy-level c
were shown in Fig. 11.

The present broken-symmetry charge densities, w
constructed from the superposition of the exact diag
tion solutions, are very similar to charge densities o
by the unrestricted Hartree-Fock method, e.g., comp
27 with Fig. 13 of Ref. 38.

The present finding provides an insight into the p
of the magic angular momenta.2,3,20–22A linear combina
of any pair of states with different angular momen
duces a broken-symmetry charge density. The exc
feature of the states with adjacent magic angular mo
that their superposition reproduces the semiclassica
density, which at the infinite magnetic-field limit tends
of the degenerate classical point-charge distributio
obvious that any charge distribution, including the se
sical one, can be reproduced by a superposition of

FIG. 27. Broken-symmetry charge densities forN53 for a
cular dot. Plots~a–d! correspond to magnetic fields 4.9, 7.5,
18.4 T, respectively.

FIG. 28. Same as Fig. 24 but forN54.
1
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d in
. 27!
angular
ese

ssings

ich are
naliza-
tained
re Fig.

blem
on

pro-
ptional
enta is
charge
one

. It is
iclas-

ngular-

momentum eigenstates, since they form a comple
However, a superposition of more than two states
never give an exact value of the ground-state energ
the ground state in spin-polarized circular dots is
twofold degenerate. The subsequent magic angular m
correspond to states which exhibit ground-state leve
ing ~each of the crossing levels corresponds to the
state at its side of the level crossing!. The level cross
allow the semiclassical laboratory-frame charge dist
to appear as a realizable feature of the exact ground
the magnetic field corresponding to the crossing. We
note here that this conclusion has been reached for
containing a small number of electrons and we can
clude a different behavior for largerN.

Mean-field approaches predict spontaneous brea3

the symmetry of the confinement potential symmetry
electron wave function after the MDD decay. Althoug
effect is a notorious artifact,3 it is generally believed
there is some deeper physics behind it. The exact s
show a rapid increase of the electron-electron correl
ter the MDD breakdown. This increase appears in th
coordinates and can be observed in the PCF plots~cf. F
11, 12, and Ref. 30!. Since the mean-field theories
give a complete description of the inner-coordinate
they tend to account for the electron-electron correl
the external~laboratory!frame of reference, which res
the symmetry breaking.

The energy overestimates obtained with the
symmetry solutions exhibit oscillations with amplitu
creasing with the magnetic field. The precision
ground-state energy estimates obtained by the HF wa
tion with semiclassical localization24 also possesses an
latory dependence on the magnetic field with minim
magnetic field corresponding to the exact ground-sta
formations. Contrary to the broken-symmetry solutio
tained in the present paper at the exact-diagonalizat
the HF energy overestimates take on nonzero value

ir-
, and FIG. 29. Broken-symmetry charge densities forN54 for a

cular dot. Plots~a–d! correspond to magnetic fields 4.75, 6.
and 16 T, respectively.
25344-13
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ima.24 The present paper shows that the fact that the HF
en-symmetry solutions overestimate the exact ground-

e energy at the fields inducing its transformations is not
to their broken symmetry, but to their mean-field char-
r. The broken-symmetry states constructed from the de-
erate exact solutions presented in this paper contain a
plete description of the inner-coordinate space. Due to
fact they provide the exact ground-state energy for finite
es of the magnetic fields corresponding to the ground-
e transformations. The HF broken-symmetry solutions
ount for the separation of the electron charges but the rest
he correlation effects, most probably the reaction of an
tron on the actual positions of the electrons inside the
r charge puddles, is missed. This missing part of the
elation is squeezed to zero in the infinite magnetic field
which the charge puddles shrink to point-charge

ributions.24

VII. SUMMARY AND CONCLUSIONS

e presented a detailed study of the magnetic-field-
ced Wigner crystallization of the two-, three-, and four-
tron spin-polarized systems in quantum dots. The ob-
ed results, although limited to small numbers of
trons, cover several symmetries of the confinement po-
ial. We studied quantum dots of elliptical, square, trian-
r, and circular symmetry. In the present study, we devel-
d a configuration-interaction scheme which was based on
le-electron wave functions expanded in a multicenter ba-
The method, verified for the well-known case of an iso-
ic harmonic-oscillator potential, can be applied to the
e of any smooth confinement potential with arbitrary
metry. The arbitrariness in the choice of centers in basis
llows us to achieve a high accuracy and flexibility of the
ent MCI method accompanied with its relatively simple
licability to low-symmetry nanostructures.
e have studied the parity transformations in the spin-
rized electron systems confined in elliptical quantum
and found anticrossings between the energy levels of the
e spatial symmetry. The experimental identification39,40

he magnetic-field-induced ground-state transformations
the N-electron system in a cylindrical quantum dot is
ed on detection of cusps of the chemical potential, i.e.,
difference of the ground-state energy of theN and N
electron system. Based on the present results we expect
the ellipsoidal deformation of the quantum dot potential
lts in a smoothening of the cusps of the charging lines41

esponding to the ground-state transformations between
es of the same spin and parity symmetry. On the other

ha
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d, cusps related to spin or parity transformations should
ain sharp.
uantum Wigner molecules in anisotropic quantum dots
related with the lowest-energy configurations of their
sical counterparts. At high magnetic fields the quantum
rge density tends to simultaneously reproduce all the de-
erate lowest-energy classical configurations. Classical de-
eracy occurs when the lowest-energy configuration is of a
rent symmetry than the confinement potential. We found
the quantum charge density is a superposition of all

e degenerate classical configurations. Consequently, the
ntum-mechanical charge-density reproduces the symme-
f the confinement potential. We conclude that the obser-

on of Wigner crystallization through its charge-density
ribution will be facilitated in low-symmetry quantum

for which the symmetry of the classical configuration
forms with the symmetry of the external potential, i.e., in
ems which do not exhibit classical degeneracy.
oreover, we have found a relation between the occur-
e of the magnetic-field-induced level crossings and clas-
l degeneracy. None of the studied quantum systems with
degenerate classical counterpart exhibit such crossings.
formation of Wigner phase in these systems is a continu-
process. For majority of the studied quantum systems
degenerate classical counterparts these crossings are ob
ed. The only exception is the four-electron system for
tical dots for which the classical configuration has a zig-
form. We have shown that in the presence of the cross-
a superposition of the two lowest-energy states produces

roken-symmetry state whose charge density reproduces
of the degenerate classical configurations. These broken-
metry states are exact ground states for the magnetic
s for which the crossings appear and for which the
nd state is twofold degenerate. The ground-state degen-
y allows the semiclassical broken-symmetry charge dis-
tion to be a realizable property of the quantum system.
conclusion holds also for circular dots. The superposi-

of the adjacent magic-angular-momenta states allows the
r symmetry of the quantum system to appear in the labo-
ry frame of reference.
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act

igner molecules formed at high magnetic fields in circular and elliptic quantum dots are studied by exact

nalization (ED) and unrestricted Hartree–Fock (UHF) methods with multicenter basis of displaced lowest

au level wave functions. The broken symmetry states with semi-classical charge density constructed from

positions of the ED solutions are compared to the UHF results. UHF overlooks the dependence of the few-

on wave functions on the actual relative positions of electrons localized in different charge puddles and partially

ensates for this neglect by an exaggerated separation of charge islands which are more strongly localized than in

xact broken-symmetry states.
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 6A 83
guration. Otherwise the charge density at
field is a superposition of equivalent semi-
ical densities and the quantum system under-
symmetry transformations when the magnetic
is increased [4]. These transformations are
ciated with level crossings at which the ground
is two-fold degenerate. Superposition of the
s of the degenerate levels allows [4] to extract
emi-classical broken-symmetry charge density
the laboratory frame. On the other hand, the
stricted Hartree–Fock (UHF) produces [1]
en-symmetry states for Wigner molecules. In

www.elsevier.com/locate/physe
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Fig. 1. Energy of the lowest even (dashed curve) and odd parity

(solid curve) levels, the broken symmetry state (dotted curve)

and UHF energy calculated for N ¼ 3; _ox ¼ 3meV and

_oy ¼ 4meV. Inset shows the two equivalent classical config-

urations.
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the infinite magnetic field limit UHF gives exac
results for the total energy. At finite magn
fields for which exact broken-symmetry eigenst
exist the artifactal symmetry breaking cannot
blamed for the inaccuracy of the UHF [4]. In
paper, we look for the effects neglected by U
comparing the ED and UHF solutions
elliptical and circular dots.
We assume a spin-polarization of electrons

high magnetic field ð0; 0;BÞ oriented perpendicu
to the quantum dot plane and use the Lan
gauge. In the ED, described in detail in Ref.
the single electron wave functions used
construction of the Slater determinants
obtained via diagonalization of the single elect
Hamiltonian in the multicenter basis [7–9] of
displaced lowest Landau level wave functions

cðrÞ ¼
XM

k¼1

ck expf�a½ðx � xkÞ
2
þ ðy � ykÞ

2
�=4

þ ieBðx � xkÞðy þ ykÞ=2_g;

where a is treated as a variational parameter
the present UHF approach one-electron orbi
(1) are optimized self-consistently. We study up
N ¼ 4 electrons, use the material data of G
and a basis of 12 centers ðxk; ykÞ put on an ell
with a size determined variationally. The basis
of displaced lowest Landau level wave functi
reproduces [4] also higher Fock–Darwin ban
Contrary to previous multicenter HF calculati
[6,9] using a single center per electron, the pres
HF approach produces results which are exac
the UHF [10] sense.
Classical system of three electrons in an ellipt

confinement potential with _ox ¼ 3meV
_oy ¼ 4meV possesses two equivalent low
energy configurations (cf. inset of Fig. 1) and
quantum system undergoes parity transformati
[4] with the magnetic field (cf. Fig. 1). Sup
position [4] of the two lowest-energy eigenstat

CBS ¼ ðCeven þ eifCoddÞ=
ffiffiffi
2

p

yields a broken-symmetry (BS) charge density w
a distinct electron separation. Fig. 1 shows tha
contrast to the exact ground-state energy the U
energy estimate is a smooth function of
magnetic field.
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The charge densities of considered states
shown in Figs. 2(a) and (b) for two magnetic fi
values corresponding to the even–odd ene
crossing presented in Fig. 1. The phase f in
BS state is chosen such that the electrons
localized at the classical Wigner molecule p
tions. Notice that in the UHF the separation
electrons is more pronounced than in the exact
states. Fig. 2(c) shows the pair correlation funct
(PCF) [2] for the UHF and the exact BS s
corresponding to the charge density of Fig.
with the position of one of the electrons fixed
two different locations: in the center and on
edge of the central charge puddle. In contras
the exact BS state in the UHF wave function
electrons are insensitive to the actual position
the third electron in its charge puddle. This
consequence of the single-determinantal form
the UHF wave function, and can be ea
explained for two electrons. In the spin-polari
two electron Wigner molecule the UHF spa
wave function is given by Caðr1ÞCbðr2
Cbðr1ÞCaðr2Þ; where jCaj

2 and jCbj
2 are the cha

densities of separate charge puddles a and b:W
functions Ca and Cb are orthogonal due to
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B ¼ 17:25T. (c) Pair correlation function plots for UHF and
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for given shifts of phase f (Eq. (2)) with respect to the BS plot

in (b). Plots (a), (b) and (d) have the same scale given by the

length bar in (a). 4 12 16 20

B [T]

32

34

36

38

N=4

UHF

ED

8T 20T

10
0 

nm

8

E
 [m

eV
] -

2 
h ω

c

Fig. 3. Lowest energy levels for N ¼ 4; _ox ¼ 3meV and

_oy ¼ 4meV (solid lines) and total UHF energy (dotted) line.

Inset: Charge density calculated in the UHF (two upper plots)
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shing overlap between the puddles. The
lation of the PCF gives (up to a constant)
¼ jCaðraÞj

2jCbðrbÞj
2 þ jCaðrbÞj

2jCbðraÞj
2: For

side puddle b the second term of the sum
praca 6A 85
shes and the remaining one signifies that the
ability of finding an electron in point ra inside
le a is independent of the actual position of
econd electron in puddle b:
e UHF self-consistency is reached only in one
e two classical orientations (cf. inset of Fig. 1)
hich the UHF energy is minimal. On the other
, the exact BS states can be oriented under an
rary angle (cf. Fig. 2(d)) by modifying the
e f in Eq. (2). Moreover, since the BS state is
tructed with states of opposite parities, all the
in Fig. 2(d) correspond to the same value of
inetic, potential and electron–electron inter-
n energies equal to the arithmetic average of
xpectation values for Codd and Ceven states.
g. 3 shows the two lowest energy levels and
UHF total energy calculated with respect to
owest Landau level for the elliptical dot with
¼ 3meV and _oy ¼ 4meV. For these values
classical counterpart of the four-electron
m is unique and conform with the symmetry
e confinement potential, so that the Wigner
allization is visible in the exact quantum
nd-state for an arbitrary magnetic field after
DD decay. In this case, the MDD decay is a
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continuous process and appears at the anticros
around 6T.
The inset to Fig. 3 shows the charge dens

calculated with the UHF and ED methods. In
the charge density in between the charge max
takes on larger values than in UHF in which
separation of electrons is more distinct.
The average radius of the charge puddle

obtained for the two-electron ground state in
circular quantum dot (_ox ¼ _oy ¼ 3meV
displayed in Fig. 4. The ED and UHF values
similar below the MDD breakdown (Bo5:6
The exact value has discontinuities at the ang
momentum transitions. After the MDD decay
UHF value is close to the average around wh
ED and BS results oscillate, but at higher field
becomes an upper bound for these oscillati
The inset of Fig. 4 shows the exact BS and U
charge density for B ¼ 11:8 and 28.9 T. BS cha
densities for the two values of the magnetic fi
have been obtained from superpositions of
degenerate states with angular momenta �5
and �9;�11 (in _ units), respectively. The cha
the
n is
lds,
to

HF
eld
the
lcu-
eld
s.
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Fig. 4. Average radius of the charge puddle [ðor21 þ r224=2Þ1=2]
for two electrons in a circular quantum dot
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faster than in the exact broken-symmetry state
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Fig. 5. Charge density for N ¼ 3 electrons in a circular

quantum dot (_ox ¼ _oy ¼ 3meV) calculated with UHF

(upper plots) and for exact BS states (lower plots) for

B ¼ 7:5T (left plots) and B ¼ 15T (right plots).



Ac

M
Te
G
Sc
Sc
(V
th

Re

[1

[2

[3

[4

[5

[6

[7

[8

ARTICLE IN PRESS

B. Szafran et al. / Physica E 26 (2005) 252–256256
knowledgements

This paper was supported in part by the Polish
inistry of Scientific Research and Information
chnology in the framework of the solicited
rant PBZ-MIN-008/P03/2003, the Flemish
ience Foundation (FWO-Vl), the Belgian
ience Policy, and the University of Antwerpen
IS and GOA). One of us (BS) is supported by
e Foundation for Polish Science (FNP).
[9

ferences

] S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74 (2002)

1283.
praca 6A 87
] P.A. Maksym, H. Immamura, G.P. Mallon, H. Aoki,

J. Phys. Condens. Matt. 12 (2000) R299.

] M. Manninen, M. Koskinen, S.M. Reimann, B. Mottel-

son, Eur. Phys. J. D 16 (2001) 381.

] B. Szafran, F.M. Peeters, S. Bednarek, J. Adamowski,

Phys. Rev. B 69 (2004) 125344.

] V.M. Bedanov, F.M. Peeters, Phys. Rev. B 49 (1994) 2667.

] B. Szafran, S. Bednarek, J. Adamowski, M. Tavernier, E.

Anisimovas, F.M. Peeters, Eur. Phys. J. D 28 (2004) 373.

] J. Kainz, S.A. Mikhailov, A. Wensauer, U. Rössler, Phys.
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PACS. 73.21.La – Quantum dots.

PACS. 73.20.Qt – Electron solids.

Abstract. – Pinning of magnetic-field–induced Wigner molecules (WMs) confined in parabolic
two-dimensional quantum dots by a charged defect is studied by an exact diagonalization ap-
proach. We found a re-entrant pinning of the WMs as a function of the magnetic field, a
magnetic-field–induced re-orientation of the WMs and a qualitatively different pinning be-
haviour in the presence of a positive and negative Coulomb impurity.

Low-density electron systems in bulk may form an ordered crystalline phase called Wigner
crystal [1] in which electron charges are spatially separated. A similar collective type of
electron localization in quantum dots (QDs) is called Wigner molecule (WM) [2]. WMs may
be formed in large QDs [2] or be induced by a strong magnetic field [3] in the quantum
Hall regime. Wigner localization is observed in the inner coordinates of the quantum system
whose charge density conserves the symmetry of the external potential [4]. Therefore, in
circular QDs [4, 5] the charge density will be circular symmetric even in the Wigner phase.
However, a perturbation of the potential may pin [6] the charge density at a fixed orientation
in the laboratory frame which should allow for the experimental observation [7] of Wigner
localization. Pinning of the magnetic-field–induced WMs by the anisotropy of the potential [8]
or by an attractive Gaussian impurity potential [9] in the absence of a magnetic field have been
studied previously. Here, we will show that the WM pinning is qualitatively very different in
the presence of a positive and negative impurity.

We consider WMs induced by a magnetic field in a two-dimensional harmonic QD. A
strong magnetic field polarizes the spins of the confined electrons and leads to the formation
of a so-called maximum density droplet (MDD) corresponding to the lowest Landau level
filling factor ν = 1. Stronger fields induce the MDD to decay into a molecular phase with
ν < 1, for which the distribution of electrons in the inner coordinates resembles the equilibrium
configuration of a classical point-charge system [10]. The external magnetic field increases the
absolute value of the angular momentum of the confined electron system inducing its changes
c© EDP Sciences
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between certain “magic” [11] values for which the classical distribution of electrons in the
inner (“rotating”) frame of reference can be realized.

In this letter we investigate the way in which the potential of a charged defect (donor
or acceptor ion) situated outside the QD symmetry axis stops the “rotation” of the electron
system and freezes the WM at a fixed orientation. We use the configuration interaction
approach which allows for an exact solution of the few-electron Schrödinger equation. We
found that at magnetic fields inducing the angular-momentum transitions the exact ground
state can correspond to broken-symmetry charge density with semi-classical localization in
the laboratory frame. Broken-symmetry charge distributions were previously obtained as
artifacts of mean-field methods [4]. The existence of exact broken-symmetry states makes the
WMs susceptible to pinning by an arbitrarily distant charge defect (donor or acceptor ion)
at the angular-momentum transitions. Consequently, a distant defect induces re-entrant WM
pinning as a function of the strength of the magnetic field. We show that the orientation of
the pinned WMs can change with the magnetic field and demonstrate an essentially different
pinning behavior for a positive and negative impurity.

We assume that the system of N electrons is spin-polarized by the external magnetic field
and that the electrons are confined to move in the z = 0 plane. The present configuration
interaction approach is constructed in the following way. The single-electron Hamiltonian for
the considered system reads

h = (−ih̄∇+ eA)2/2m∗ +m∗ω2
(
x2 + y2

)
/2 +Bszg

∗µB ± e2/4πεε0red , (1)

where m∗ is the electron band effective mass, h̄ω is the confinement potential energy, ε0 is the
static dielectric constant, (0, 0, B) is the magnetic-field vector, sz is the z-component of the
electron spin, g∗ is the effective Landé factor and red is the distance between the electron and
the charged defect. The sign in the last term of eq. (1) is − (+) for a positively (negatively)
charged defect. We apply the Landau gauge A = (−By, 0, 0) and adopt GaAs material
parameters m∗ = 0.067m0, ε = 12.9 and g∗ = −0.44 as well as h̄ω = 3meV. Hamiltonian (1)
is diagonalized in a multicenter basis Ψµ(r) =

∑M
i=1 c

µ
i ψRi

(r) with

ψR(r) =
√
α exp

[ − α(r − R)2/4 + ieB(x−X)(y + Y )/2h̄
]
/
√
2π, (2)

where R = (X,Y ). The single-electron wave functions Ψµ are subsequently used for the
construction of M !/N !(M − N)! Slater determinants —the basis set for diagonalization of
the N -electron Hamiltonian. α and the positions of the centers Ri are chosen such that
they minimize the total energy. Function (2) with α = eB/h̄ is the lowest Landau level
eigenfunction. The basis set of displaced functions (2) allows for a very precise determination
of the exact Fock-Darwin [4] energy levels, including higher Fock-Darwin bands, which at
strong magnetic fields tend to excited Landau levels. We have verified the accuracy of the
present approach comparing its results with the standard exact diagonalization method [12].
We have taken 12 centers placed on a circle. Above the MDD decay (B > 5.8, 4.85 and
4.65T for 2, 3 and 4 electrons) and below 20T, the overestimation of the exact energy for
2, 3 and 4 electrons is lower than 0.01, 0.06 and 0.12meV, respectively. Few-electron wave
functions calculated in the Landau gauge are not eigenfunctions of the angular momentum,
but using the gauge-independent expectation value of its operator we can look at the angular-
momentum transformations of the confined system. The precision in the determination of the
critical fields inducing ground-state transformation is better than 0.15T. Previously, displaced
Landau level functions (2) were used in the investigation of the WMs with approximate
approaches, i.e., single-determinant of non-orthogonal wave functions [13], Hartree-Fock [14],
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Fig. 1 – (a) Two lowest-energy levels of the 4-electron unperturbed circular QD calculated with respect
to the lowest Landau level. Numbers denote L - angular momentum in h̄ units. Insets (A), (B) and
(C) display the charge densities of the states for B = 4.6T corresponding to L = −6, −10 and broken
symmetry, respectively (the darker the shade of grey the larger the density). (D), (E) and (F) show
the charge density of the degenerate states with L = −18, −22 and broken symmetry for B = 11.2T.
(b) Same as (a) but for 3 electrons. (A), (B) and (C) plotted for B = 4.2T correspond to L = −3,
−6 and broken symmetry, respectively. (D), (E) and (F) show the charge density of degenerate states
with L = −9, −12 and broken symmetry for B = 11.2T.

and rotated-electron-molecule approach [15]. Due to the arbitrariness in the choice of centers
the present configuration interaction approach can be easily applied to potentials without
circular symmetry. In the calculations for the perturbed QDs, we used 12 centers placed on
an ellipse, the size and its center of gravity were optimized variationally.

Figure 1 shows the two lowest 4- (a) and 3- (b) electron energy levels calculated with
respect to the lowest Landau level (E′ = E−N × 0.85 (meV/T)) as functions of the magnetic
field. E′ at high field tends to the potential energy of a classical point charge system [13]. At
lower magnetic fields, the ground state is the MDD with angular momentum −N(N − 1)h̄/2.
At larger magnetic fields, the angular momentum decreases by Nh̄ [4,5,11]. The ground-state
charge density after the MDD decay has a ring-like shape with a pronounced minimum at the
center of the dot. At each ground-state transformation, the central local minimum becomes
wider and the size of the charge puddle exhibits a stepwise increase. Between the ground-
state transformations, the magnetic field compresses the charge density which shrinks in a
continuous fashion [12].

At the angular momentum transformations, the ground-state charge density is twofold
degenerate. Consequently, each linear combination of the degenerate ground states Φ1 and
Φ2 is also an eigenstate. Consider the following combination: Φbs = (Φ1 + cΦ2)/

√
2, with

|c|2 = 1. Since the angular momenta of degenerate ground states differ by Nh̄, the angular
momentum in state Φbs is not defined and Φbs possesses a broken-symmetry charge distribu-
tion (cf. insets (C) and (F) in fig. 1). The charge density of the exact broken-symmetry states
resembles the approximate mean-field broken-symmetry solutions [4]. The broken-symmetry
charge distributions at high field tend [14] to the classical lowest-energy distribution of point
charges [10]. Superposition Φbs extracts the inner symmetry of the magic-angular-momenta
states into the laboratory frame of reference. The broken-symmetry charge distribution can
be oriented at an arbitrary angle depending on the phase of c.
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Fig. 2 – (a) Two lowest-energy levels of the 4-electron system in a circular QD perturbed by a potential
of a positively charged defect situated at (20, 0, 40) nm. The insets show the ground-state charge den-
sities and the lowest-energy configuration of the classical system. (b) Same as (a) but for 2 electrons.

Let us now suppose that at a certain distance of the quantum dot plane there is an
impurity ion located off the symmetry axis of the dot. In vertical quantum dots [16] for which
the harmonic approximation of the potential is justified [17], and in which the MDD decay
has been observed [16], ionized [17] donor impurities are present at a distance of 20–30 nm
from the QD plane. The defect potential perturbs the QD circular symmetry and mixes the
angular-momentum eigenstates. Level crossings are replaced by avoided crossings. Figure 2(a)
shows the two lowest-energy levels and the ground-state charge density for 4 electrons with a
positively charged defect situated at point x = 20, y = 0, z = 40nm. The energy gaps in the
avoided crossings are very small (∼ 10−3 meV). At the avoided level crossings (see insets for
B = 4.9 and 6.86T) Wigner crystallization in the laboratory frame (i.e. WM pinning) can
be observed. The positions of the pinned charge density maxima coincide with the position
of classical electrons in the lowest energy configurations (cf. lowest inset of fig. 2(a)). The
charge density plots for the magnetic fields outside the avoided level crossings resembles the
unperturbed circular densities (cf. fig. 1(a)), although an increased density at the right end of
the charge puddle is visible. Since the “momentary” pinning is a consequence of the existence
of the exact broken-symmetry states, it appears for an arbitrarily far situated defect.

Figure 2(b) shows that the effect of the defect on the 2-electron spectrum and the charge
density is much stronger (energy gaps are about 5× 10−2 meV). The oscillatory character of
the pinning as a function of the magnetic field is visible. At avoided level crossings separation
of the electron charges is particularly pronounced (see insets for 6.2 and 18.8T). The effect
of the negatively charged defect at this rather large distance from the QD is similar, although
the molecules become pinned at different angles.

The pinning effect is stronger when the defect is closer to the QD plane. In the rest of the
paper we consider a defect located at (20, 0, 20) nm. Figure 3 shows the results for 2 electrons.
An attractive impurity (fig. 3(a)) enhances the harmonic QD potential which results in a
stronger charge localization and, as a consequence, shifts the anticrossings to higher values
of the magnetic field. The energy gap between the lowest levels is larger for repulsive defect
(fig. 3(b)). In both systems, an anticrossing related with the MDD breakdown is visible (∼ 7T
in (a) and ∼ 5T in (b)). Both systems present smooth non-oscillatory convergence to the
lowest-energy configuration of their classical counterparts.
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Fig. 3 – Two lowest-energy levels of the 2-electron system in a QD perturbed by (a) positively and
(b) negatively charged impurity situated at (20, 0, 20) nm. The insets show the ground-state charge
densities as well as the classical configurations on a background of potential profile (the equipotential
lines are spaced by 3meV).

Figure 4 shows the plots for an attractive impurity with N = 3 (a) and N = 4 (b). For
both N = 3 and 4, the energy gaps between the anticrossing levels remain small (around
0.01meV (0.04meV) for N = 4 (3)) and the pinning of the WMs exhibits anew the oscillatory
dependence on the magnetic field. The distribution of charge maxima in the WMs pinned
at the MDD breakdown (5.8T for N = 3 and 5.3T for N = 4) differs from their classical
counterparts. In classical systems, a single electron is trapped under the attractive impurity.
In the WM pinned at the MDD breakdown, 2 electrons fit in the local minimum of the
potential induced by the defect. At higher fields (9T for N = 3 and 10.15T for N = 4) the
pinning fixes the charge maxima near the equilibrium positions of classical electrons. Thus,
an interesting rotation of the pinned WM is found as a function of the magnetic field. The
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the classical lowest-energy configuration. (b) Same as (a) but for 4 electrons.
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change in the charge distribution in the WMs between the MDD decay and the classical limit
is similar to the magnetic-field–induced transformations of the WMs in circular dots for larger
N [14]. At high magnetic field, the 3-electron charge density acquires the semi-classical charge
distribution even between the anticrossings (cf. plots for 11 and 15.4T in fig. 4(a)). This is
not observed for N = 4 in the studied magnetic-field range.

The results for 4 electrons in the presence of a repulsive defect are shown in fig. 5. The
ground-state energy is a smooth function of the magnetic field and oscillations appear only in
the excited state. A continuous MDD decay appears around 4T. The charge density tends in
a non-oscillatory way to the classical limit of point charges.

The influence of the charged defects on the average value of the total angular momentum
for 4 electrons is shown in fig. 5(b). In the presence of a defect, the average values of angular
momentum take non-integer values and their dependence on the magnetic field becomes con-
tinuous; however, much of the stepwise character of a pure QD is conserved for the positive
impurity as well as for a distant negative defect. For the positive (negative) defect, the elec-
trons become localized closer to (further from) the origin which results in a decrease (increase)
of the absolute value of the angular momentum with respect to the unperturbed case. For a
negative defect closer to QD plane the average value is a smoothly decreasing function of the
magnetic field. This fast increase of the absolute value of angular momentum is related to the
localization of the charge density near the classical equilibrium points (cf. fig. 5). Results for
3 electrons for this position of the negative defect are qualitatively the same as for 4 electrons.

Comparing the results for an attractive with those of a repulsive defect (cf. figs. 4 and 5)
shows that the pinning is much more effective in case of a repulsive defect. The attractive
defect enhances the confinement potential of the QD, decreases its size and hinders the Wigner
crystallization itself. Moreover, it binds one of the electrons in its neighborhood. The potential
of the bound electron and the defect potential partially cancels and, as a consequence, the
other electrons see a nearly circular potential and the system in the external magnetic field
behaves essentially like a N − 1 electron system. On the other hand, the potential of the
repulsive defect is not screened, so it breaks the circular symmetry of the potential felt by
each of the electrons in a more pronounced manner.
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In conclusion, magnetic-field–induced WMs in circular dots are from their very nature
susceptible to pinning by the potential of an external charged defect at the angular-momentum
transitions. Our results can be summarized as follows: 1) At large distance between the QD
plane and the defect, the pinning has a re-entrant character, i.e., it appears only at the
energy level anticrossings, which are situated near the angular momentum transition fields of
the unperturbed system. 2) For an impurity placed closer to the QD plane, the pinning by
the repulsive defect is more effective and leads to a non-oscillatory convergence of the charge
density to the classical limit at high field for all N . The pinning effect of a positively charged
defect is strong only for two electrons. For larger numbers of electrons it is weakened by a
partial screening of the defect potential by an electron trapped in the defects neighborhood
so that the re-entrant pinning behaviour is conserved. 3) For a positively charged defect close
to the QD, a magnetic-field–induced re-orientation of the WM is predicted.
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Laterally coupled asymmetric quantum dots occupied by two electrons are studied using the exact diago-
nalization approach. It is shown that the asymmetry enhances the exchange energy, i.e., the triplet-singlet
energy difference for finite magnetic fields. At high magnetic field, electrons enter the deepest dot more easily
if they have parallel spins.

DOI: 10.1103/PhysRevB.70.205318 PACS number(s): 73.21.La

The spins of an electron pair in coupled quantum dots1

were proposed2 to serve as a basis of a quantum gate for a
solid-state quantum computer. The coupling between the
spins can be realized in the orbital3 degrees of freedom ex-
ploiting the spatial symmetry of the singlet and triplet wave
functions. The strength of the coupling is quantified by the
exchange energy defined3 as the energy difference of the
lowest triplet and the lowest singlet states. The value of the
exchange energy depends on interdot tunnel coupling. In ver-
tically stacked dots1,4–8 the coupling is fixed by the process
of the growth which determines the composition and thick-
ness of the interdot layer. The interdot barrier can be more
conveniently controlled in laterally coupled dots1,3,9–15 by
potentials applied to gate electrodes. But there are possible
difficulties with the control of the exchange energy resulting
from the fact that electrostatic confinement potential in gated
quantum dots is usually weak.16 In such quantum dots with
weak confinement the dominant electron Coulomb repulsion
leads to the formation of Wigner molecules1 for which the
ground state becomes degenerate with respect to the spin.
This is due to the vanishing overlap between the single-
electron wave functions.8,17 Therefore for a pair of large
quantum dots the exchange energy may remain negligibly
small even if the interdot barrier is totally removed. Conse-
quently, the exchange energy risks to be too small to be of
practical use for spin control.

The exchange energy can be controlled by an external
magnetic field.3,4,7,12–14But its value is maximal in the ab-
sence of the field.3,4,7,12–14The application of a magnetic field
diminishes the interdot tunnel coupling due to an increased
localization18 of the electrons in each of the dots. A high
magnetic field results in a large effective interdot barrier
leading to a vanishing exchange energy3 due to the separa-
tion of the single-electron wave functions. This is similar to
Wigner crystallization appearing in a single large quasi-one-
dimensional quantum dot.8,17 In a single circular quantum
dot the magnetic field induces singlet-triplet oscillations1

which when the Zeeman spin effect is neglected, continue to
infinity. In coupled quantum dots the magnetic field usually
induces at least one singlet-triplet transition,3,4,7,12–14remi-
niscent of the singlet-triplet oscillations in a single dot,13

before the exchange energy is eventually reduced to zero.
In the present paper we show that at zero magnetic field

the exchange energy can be strongly enhanced by an asym-
metry introduced in the confinement potential of laterally

coupled dots. At high magnetic fields a small asymmetry19

turns out to be irrelevant for the exchange energy which
vanishes(when the Zeeman spin effect is neglected)due to a
complete localization of electrons in different dots.

Asymmetry of the confinement potential in existing de-
vices containing laterally coupled dots9,10 is the rule. In fact
symmetric coupling appears only for voltages along the
diagonal20 connecting the triple points at the honeycomb sta-
bility diagram.10 Although vertical coupling of asymmetric
dots4 has been considered in the context of the exchange
energy, most3,12,13 of the theoretical work on laterally
coupled dots dealt with pairs of identical dots. Only recently
was the effect of the asymmetry on the few-electron charging
considered.9 The influence of asymmetry on the exchange
energy in laterally coupled dots was addressed in Ref. 3
where the effect of the electric field was studied in the
Heitler-London approximation assuming single occupancy of
the dots with a neglected dependence of the single-electron
wave functions on the magnetic field. This neglect leads3 to a
magnetic-field-independent shift of the exchange energy,
which is in disagreement with the exact diagonalization re-
sults presented below.

We consider a two-dimensional double quantum dot in a
perpendicular magnetic fieldB=s0,0,Bd and neglect the
spin Zeeman effect, which does not influence the orbital
wave functions, and which can be trivially accounted for as a
shift linear inB to the exchange energy.21 The Hamiltonian
of the pair reads

H = H1
s + H2

s + e2/4pee0r12, s1d

wheree is the dielectric constant andHs the single-electron
Hamiltonian

Hs = s− i" ¹ + eAd2/2m* + Vsx,yd, s2d

with m* the electron band mass andVsx,yd the potential of
two Gaussian22,23 dots

Vsx,yd = − Vle
−fsx + d/2d2+y2g/R2

− Vre
−fsx − d/2d2+y2g/R2

, s3d

where Vl and Vr are the depths of the left and right dots,
respectively,d is the distance between the dot centers, andR
is the radius of each of the dots. It was recently found24 that
the confinement energy as generated electrostatically in a
gated two-dimensional electron gas is largest when the po-
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tential has a Gaussian shape. The single-electron eigenfunc-
tions of Hamiltonian(2) are obtained in the Landau gauge
A=s−By,0 ,0d using a basisCmsrd=oi=1

M ci
mcRi

srd of the low-
est Landau level eigenfunctions centered around pointsRi
=sXi ,Yid:18,25–27

cRi
srd = Îaiexph− aisr − Rid2/4

+ ieBsx − Xidsy + Yid/2"j/Î2p. s4d

Two-electron eigenfunctionsxsr1,r2d of Hamiltonian(1) are
subsequently calculated in a basis of symmetrized(antisym-
metrized) products of single-electron wave functions
Cmsr1dCnsr2d for the singlet(triplet) two-electron states. Ex-
tensive discussion of the exact diagonalization with wave
functions (4) is given in Ref. 18. Here we just remind the
reader that the displaced lowest Landau wave functions also
reproduce higher Fock-Darwin1 states. We use 14 centersRi,
i.e., 7 centers per dot, one in the center of each dot and six on
a circle surrounding it. Radii of both circles as well as pa-
rametersai responsible for the localization of the wave func-
tions (4) are optimized variationally.28 Comparing the results
for the magnetic field dependence of the exchange energy
presented in Fig. 4 of Ref. 13 with the results of the present
method applied to the model potential used therein13 we find
a nearly exact agreement with differences that do not exceed
5 µeV. However, contrary to the present approach, the basis
used in Ref. 13, consisting of wave functions localized
around the origin, is bound to be slowly convergent for larger
interdot distances and/or high magnetic fields.

We use the material data of GaAs,e=12.9,m* =0.067,
and take the potential parametersR=30 nm,Vr
=25 meV,d=52 nm(unless stated otherwise), and the value
of Vl is varied to induce the asymmetry. For a single quantum
dot sVl =0d the energy spacing between the ground and first
excited single-electron energy levels is 6.6 meV and between
the first and the second excited energy levels the spacing
equals 5.2 meV.

For the explanation of the results presented below we find
it useful to introduce the single-electron basis consisting of
lowest-energy statessl , sr , pl , pr, wheresspd stands for the
0s−"d angular momentum states and the subscriptlsrd denote
the localization of the state in the left(right) dot. Figure 1
shows the confinement potential for a symmetricsVl

=25 meVdpair of coupled dots and for a pair with a small19

asymmetrysVl =32 meVd. For B=0 the asymmetry-induced
shift of the charge density to the left(deeper)dot is visibly
stronger for the singlet state[see Figs. 1(a)and 1(b)]. AtB
=0 the exchange energy for the asymmetric system of
coupled dots presented in Fig. 1(b) equals 0.32 meV and is
three times larger than in the symmetric case of Fig. 1(a) for
which DE=0.1 meV(see below).

At high B the singlet and the triplet charge densities be-
come identical[Figs. 1(c)and 1(d)]for both the symmetric
and asymmetric coupling. At high magnetic field for which
the probability of double occupancy of each of the dots van-
ishes(see below)both lowest-energy singlet and the lowest-
energy triplet wave functions can be described using the

lowest-energy wave functions localized in the left and right
dot

xsr1,r2d = slsr1dsrsr2d ± srsr1dslsr2d, s5d

with a + sign for the singlet state and − for the triplet state
(this function is not normalized). The charge density is ob-
tained by integrating the two-electron probability density
over coordinates of one of the electrons

FIG. 1. Confinement potential(dotted line)and singlet(solid
line) and triplet (dashed line)charge density plotted in arbitrary
units aty=0 axis forVr =25 meV and(a) Vl =25 meV andB=0, (b)
Vl =32 meV and B=0, (c) Vl =25 meV and B=10 T, (d) Vl

=32 meV andB=6 T.
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rsrd =E dr2uxsr,r2du2

= uslsrdu2 + usrsrdu2 ± 2Refsr
*srdslsrd E dr2sl

*sr2dsrsr2dg.

s6d

As the magnetic field increasessl andsr wave functions be-
come more strongly localized.18 Finally, the overlap integral
between these functions appearing in Eq.(6) vanishes lead-
ing to identical charge densities for the singlet and triplet
states(see Fig. 1)and to the singlet-triplet degeneracy(see
below). Similarly the singlet and triplet charge densities be-
come indistinguishable in large quantum dots without the
external magnetic field.17 Note that the external magnetic
field reduces the effect of the asymmetry on the charge den-
sities [see Figs. 1(b)and 1(d)]due to an increased depth of
the effective potential well at the electron localization posi-
tions.

Figure 2(a)shows the charge accumulated at the left of
the origin 2e−`

0 dx1e−`
` dy1edr2uxsr1,r2du2 as a function of the

depth of the left quantum dot forB=0. For the symmetric
systemsVl =25 meVd the charge is equally distributed be-
tween the dots. Ford=52 nm near the symmetric point the
charge in the left dot for both the triplet and the singlet is
approximately a linear function ofVl, but the slope of the
straight line for the singlet is more than twice steeper indi-
cating that the triplet state is more robust against the inbal-
ance sVl /Vrd. For larger barrier thicknesssd=60 nmd the
curves acquire a more stepwise character.

The probability of finding both electrons at the same
side of the origin se−`

0 dx1dx2e−`
` dy1dy2uxsr1,r2du2

+e0
`dx1dx2e−`

` dy1dy2uxsr1,r2du2d, quantifying the double oc-
cupancy of the dots, is plotted as function ofVl in Fig. 2(b)
for d=52 nm andB=0. For the symmetric system the double
occupancy probability in the singlet state is almost twice as
large as the one in the triplet state. When the left dot is 1/3rd
deeper or shallower than the right dot the probability that the
deepest dot is double occupied is roughly 50% in the singlet
but only 10% in the triplet state.

The dependence of the exchange energy on the asymme-
try for B=0 is presented in Fig. 2(c). The exchange energy is
minimal for the symmetric system(i.e., Vr =Vl =25 meV).
For a thick interdot barriersd=60 nmd between symmetric
dots the exchange energy is 0 due to the negligibly small
tunnel coupling and complete charge separation. The ex-
change energy becomes nonzero only when the charge of
both electrons in the singlet state starts to occupy the deepest
dot [see Fig. 2(a)]. For thinner barriers[see plots ford=52
and 48 nm in Fig. 2(c)]even a small asymmetry increases
the exchange energy.

The results of Figs. 2(a)–2(c)can be explained in the
following way. In symmetric systems and in systems with a
small19 asymmetry the two-electron singlet(triplet) states
consist mainly of the symmetrized(antisymmetrized)prod-
ucts given in Eq.(5). In the singlet state the double occu-
pancy is introduced mainly by symmetric combinations
slsr1dslsr2d and srsr1dsrsr2d, which, however, do not contrib-

ute to the triplet state due to the Pauli exclusion. The double
occupancy in the triplet state can be realized by admixtures
of statesfr =Ahsrsr1dprsr2dj andfl =Ahslsr1dplsr2dj (A stands
for the antisymmetrizer). Tripletsfr and fl correspond to
maximum density droplets1 confined in the right and left
dots, respectively. In absence of the magnetic field these
states have larger energies thanslsr1dslsr2d and srsr1dsrsr2d
combinations resulting in a smaller double occupancy prob-
ability for the triplet state. In the presence of the asymmetry
the singlet combination with a doubly occupieds energy
level of the deepest dot has the lowest single-electron energy,
which increases the double occupancy probability in the sin-
glet state. The probability of the double occupancy in the
triplet state also increases with asymmetry[see Fig. 2(b)],

FIG. 2. (a) Charge accumulated at left of the origin ford
=52 nm andd=60 nm in the singlet(solid lines)and triplet(dotted
lines) states as function of the depth of the left quantum wellVl.
Data for d=52 nm are marked with squares.(b) Probabilities that
both electrons are on the same side of the origin for the singlet
(solid lines) and triplet (dotted lines) states for d=52 nm. (c)
Singlet-triplet energy difference as function ofVl. The values for
d=48, 52 and 60 nm are plotted with dashed, solid and dotted lines,
respectively.
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but more slowly, since in the triplet state thep-excited state
of the deepest dot has to be occupied. Therefore, the asym-
metry lowers the energy of the singlet with respect to the
triplet which explains the exchange energy enhancement by
the asymmetry observed in Fig. 2(c).

Figure 3 shows that the double occupancy probability
changes as a function of the magnetic field for a symmetric
double dot and a double dot with a small19 asymmetry. In
both the symmetric and asymmetric dots the probability for
the singlet decreases monotonically to zero with increasing
field. A similar high-B limit behavior is observed for the
triplet state. However, surprisingly, as the magnetic field is
switched on the probability for the triplet initially increases.
This is because in the subspace of states with both electrons
in the deepest dot the lowest-energy-state undergoes singlet-
triplet oscillations1 as in the single-dot problem. Above a
critical value of the magnetic field29 the maximum density
droplet statesfr and fl acquire lower energy than the sin-
glets built of products ofs single-electron states confined in
the same dot. This explains why beyond a certain value of
the external field the probability of finding both electrons in
the same dot is larger in the triplet than in the singlet state.

The discussed singlet-triplet energy crossings for the
states confined in the single dot has a striking effect on the
capacity of the deepest dot to bind both electrons for larger19

asymmetry. The inset of Fig. 3 shows the probability that
both electrons are in the same dot forB=10 T. Usually in the
triplet state the electrons avoid each another more efficiently
than in the singlet state due to the Pauli exclusion principle.
However, contrary to the case ofB=0 [see Fig. 2(b)]for B
=10 T (see the inset of Fig. 3)counterintuitively, the elec-
trons in the triplet state occupy the same dot more easily(for
smaller asymmetry)than in the singlet state. At high mag-
netic field the lowest singlet and triplet energy levels corre-
sponding to electrons occupying separate dots are degenerate
[see the discussion after Eqs.(5) and (6)] but the lowest-
energy state with both electrons in the deepest dot is the
triplet maximum density droplet. As a consequence, the low-

est triplet becomes localized in the deepest dot for smaller
asymmetry than the lowest singlet.

The magnetic-field dependence of the exchange energy is
displayed in Fig. 4. The magnetic field inducing singlet-
triplet transition increases with the asymmetry, which is
more effective forVl .Vr because of the increased strength
of the confinement in the left(deeper)dot which weakens the
relative effect of the external field. For largeB the exchange
energy tends to zero as long as the carriers are localized in
separate dots at the high-magnetic field limit(see inset to
Fig. 3). This is not the case for strongly asymmetric poten-
tials for which both electrons stay in the same dot and for
which the singlet-triplet oscillations continue to higher mag-
netic fields(see plots forVl =15 meV andVl =38 meV in the
inset of Fig. 4).

In summary, we have studied the effect of the asymmetry
on the lateral coupling of quantum dots in a perpendicular
magnetic field using a numerically exact method. We have
shown that atB=0 the exchange energy is minimal for a
symmetric system of laterally coupled dots, and that the
asymmetry promoting double occupancy of the deepest dot
in the singlet state can enhance this by a factor of 4. If for
practical reasons a stronger coupling between the dots was
needed and the dots could not be made any smaller the so-
lution is to make one of them even larger. We showed that
for high magnetic fields localization of both electrons in the
deepest potential minimum is easier if the electrons have
parallel spins and explained this effect in terms of singlet-
triplet oscillations in the lowest-energy state with both elec-
trons in the deepest dot.
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2003. B.S. was supported by the Foundation for Polish Sci-
ence (FNP) and by the EC Marie Curie IEF Project No.
MEIF-CT-2004-500157. We are grateful to M. Stopa and J.
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FIG. 3. Probability that both electrons are on the same side of
the origin for singlets(solid lines) and triplets(dashed lines)for
symmetric sVl =25 meVd and asymmetricsVl =32 meVd quantum
dots as function of the magnetic field. Curves for the symmetric
case are marked by squares. Inset: Same but forB=10 T as function
of Vl.

FIG. 4. Exchange energy as function of the magnetic field for
Vr =25 meV and various values ofVl for which the electrons at high
B occupy different dots. Inset: Exchange energy forVl =18 meV
(same as in the main figure) and forVl =15 and 38 meV. For the two
latter values the deeper dot is doubly occupied at highB.
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Three electrons in laterally coupled quantum dots: Tunnel vs electrostatic coupling,
ground-state symmetry, and interdot correlations
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The phase diagram for the ground-state symmetry of three electrons confined in a pair of laterally coupled
dots is determined as function of the interdot distance and the magnetic field. With a few exceptions the
ground-state spin and parity symmetry sequence of a circular harmonic quantum dot is conserved. Reentrant
behavior of some energy levels as ground states is found as a function of the magnetic field. The disappearance
of interdot tunnelling due to a strong magnetic field leads to ground-state degeneracy of the even and odd
parity energy levels. It is shown that at a high magnetic field the system can be closely approximated by a
two-electron system confined in one dot and a spectator electron localized in the other. Broken-parity eigen-
states with a classical charge distribution are constructed and used to discuss the interdot electron-electron
correlations.

DOI: 10.1103/PhysRevB.71.245314 PACS numberssd: 73.21.La

I. INTRODUCTION

Electrons confined in coupled quantum dots1–25 form sys-
tems commonly referred to as artificial molecules with
single-electron wave functions forming bonding and anti-
bonding orbitals similar to those known from the quantum
chemistry of covalent molecules. Artificial molecules are
formed by vertically1–11 coupled dots or by dots coupled
laterally.12–25 The electronic properties of two-electron sys-
tems in vertically4–7 as well as laterally12–16 coupled dots
have been extensively studied by exact methods that for two
electrons are particularly convenient due to the separation of
the spatial and spin degrees of freedom. The two-electron
studies were mainly motivated by the proposed26 realization
of a quantum gate based on the spins of the electrons con-
fined in coupled dots. For larger electron numbers the mean
field methods1–3,18–21are more commonly used. The mean
field approaches give reliable estimates for the ground-state
energy and are useful in simulations2,3,18,19,27of devices but
they possess several shortcomings28 due to an approximate
treatment of the electron-electron correlations, which results
in artifactal symmetry-breaking effects leading to an over-
simplified picture of Wigner crystallization, to the appear-
ance of spin-density waves, etc.

The exact solution of the few-electron Schrödinger equa-
tion possesses a rich literature for circular two-dimensional
quantum dots.28–39 Less work has been done in
noncircular40–42 and vertically coupled quantum dots.8–11 In
this paper we present the exact diagonalization results for the
three-electron system in quantum dots coupled laterally. We
are unaware of any previous exact diagonalization calcula-
tions for a pair of laterally coupled dots with more than two
electrons. While in vertically coupled dots the interdot tun-
nelling makes the problem intrinsically three dimensional,
but with conserved axial symmetry, in the laterally coupled
dots the physical interestsand technical implementation dif-
ficultiesd are related to the two-center nature of the electron
localization.

The three-electron system in laterally coupled dots is
more interesting than the extensively discussed two-electron
problem12–16 for at least two reasons:s1d In the two-electron
system the electron charge localized in each of the identical
dots is exactly equal toe.16 On the other hand, the three-
electron system possesses two equivalent classical configu-
rations with two electrons in the left or right dot. We show
that the three-electron parity operator eigenstates can be con-
structed as superpositions of the states corresponding to both
classical configurations. The charge density distribution in
the parity eigenstates is nonclassical; with one and one-half
electron charge confined in each of the dots. Due to tunnel-
ling each attempt to localize two electrons in one of the dots
will result in the formation of a nonstationary state. The clas-
sical charge distribution can only be obtained when the tun-
nel coupling between the dots disappears. The previous mean
field analysis of the charge distribution and symmetries dealt
mostly with an even number of electrons20–22 for which the
problem of nonclassical charge distribution, likely to result
in an artifactal spatial symmetry breaking, is absent.s2d The
evolution of the two-electron ground state ends in the
singlet-triplet degeneracy12–16 when the tunnel coupling is
removed by an external magnetic field. On the other hand, in
the three-electron system at high-magnetic field, spin oscil-
lations should be expected to continue in the two-electron
subsystem perturbed by the Coulomb potential of the elec-
tron confined in the other dot and the electrostatic interdot
coupling should pin43–45 the magnetic-field induced two-
electron Wigner molecules, extracting them from the internal
coordinates of the two-electron system to the laboratory
frame of reference.

In this paper we study the spin and parity symmetry of the
three-electron ground state, the electron-electron correlation,
the Wigner crystallization, and the extinction of tunnel cou-
pling in the limit of high magnetic field. The high-magnetic
field spectra are explained using a single-dot two-electron
model, including the Coulomb potential of an electron local-
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ized in the other dot. The interdot electron-electron correla-
tions accompanying the electrostatic interdot coupling, are
studied using broken-parity eigenstates. The results pre-
sented in this paper have been obtained by the multicenter
configuration interaction method described in detail in Ref.
41. This method was previously applied to problems of
Wigner crystallization in low-symmetry quantum dots,41 to
pinning of Wigner molecules by an external Coulomb
defect,45 and to the effect of the asymmetry on the exchange
energy in two-electron laterally coupled dots.16

The present paper is organized as follows. In Sec. II we
present the theory, Sec. III contains the results, summary and
conclusions are given in Sec. IV.

II. THEORY

We consider three electrons bound in a two-dimensional
system of laterally coupled dots that is described by the
Hamiltonian,

H = o
i=1

3

hi + o
i=1

3

o
j.i

3
e2

4pee0r ij
, s1d

with the single-electron energy operatorh defined as

h =
1

2m* s− i" = + eAd2 + Vsx,yd, s2d

where m* is the electron effective band mass ande is the
dielectric constant. We apply the model potential for laterally
coupled dots used previously by several authors,14,15,20,22

Vsx,yd =
m*v0

2

2
„minhsx− d/2d2,sx + d/2d2j + y2

…, s3d

where"v0 is the confinement energy andd is the distance
between the centers of the two dots. Ford=0 this model
potential reduces to a single circular quantum dot with a
harmonic oscillator confinement potential.

We use the Landau gaugeA =s−By,0 ,0d, GaAs material
parameters14 m* /m0=0.067, e=12.4, and choose"v0
=3 meV for the confinement potential energy. We include
only the orbital effects for the ground-state spin and spatial
symmetries, but we neglect the spin Zeeman effect. The lat-
ter can be trivially taken into account as a shift linear inB to
the calculated energy levels. At a high magnetic field the spin
Zeeman effect removes the nonpolarized states from the
ground-state symmetry sequence, as discussed
previously.28,37,38

We first solve the single-electron Schrödinger equation in
a basis of displaced lowest Landau level
eigenfunctions41,45–48

Cmsr d = o
i=1

M

ci
mcRi

sr d, s4d

where

cRi
sr d = Îa exph− asr − Rid2/4 + ieB

3sx − Xidsy + Yid/2"j/Î2p, s5d

and Ri =sXi ,Yid is the center of localization of theith basis

element. For a single quantum dot the multicenter basiss4d
reproduces41 also the Fock-Darwin eigenfunctions of the
higher Fock-Darwin bands that tend to excited Landau levels
at a high magnetic field. Therefore, for a single quantum dot
the present scheme works as efficient as the ones employing
the Fock-Darwin single electron basis.29–38,48Since the cen-
ters can be chosen quite arbitrarily the multicenter method is
suitable to treat any low-symmetry smooth confinement
potential.41 In the present calculations we use 14 centerss7
per dotd. The set of centers corresponding to the right quan-
tum dot is chosen in the following way. A single center is
localized in the pointsa,0d. Six additional centers are put
around this point on a circle of radiusR. The position of the
centers for the left dot are obtained from the set associated
with the right dot by a change of the sign of thex coordi-
nates. The basis is optimized by takingR, a, anda as varia-
tional parameters that are chosen to minimize the energy of
the three-electron system.

The three-electron Hamiltonians1d is diagonalized on the
basis of Slater determinants constructed from the single-
electron spin orbitals obtained as products of the spatial
wave functions expanded in the basiss4d and the eigenfunc-
tions of thez component of the single-electron spin. Eigen-
states of Hamiltonians1d are also eigenstates of the parity
operator as well as of the operators of thez component of the
total spinswith eigenvalueSz"d and of the square of the total
spin (SsS+1d"2). Of all 3276 three-electron Slater determi-
nants that can be constructed of the 28 spin orbitals we retain
only those with the requiredSz and parity eigenvalues, which
gives a basis of 182 basis elements forSz= ±3/2 and 637
basis elements forSz= ±1/2. The quantum number of the
total spinS is identified for each energy level by its multi-
plicity s2S+1—the degeneracy of the given energy level
with respect toSzd. In the following the evensodddsymmetry
states are denoted bySE sSOd.

III. RESULTS

A. Energy spectra

Figures 1sadand 1sbdshow the low-energy spectrum of
the three-electron single quantum dotsd=0d. We display en-
ergies calculated with respect to the lowest Fock-Darwin en-
ergy level, i.e., we subtract 3ED=33"Îv0

2+vc
2/4 from the

eigenvalues of Hamiltonians1d. In the absence of the mag-
netic field the ground state corresponds to −1 angular mo-
mentumsin " unitsd. The ground-state angular momentum
takes subsequent negative integer valuessthe absolute value
of the angular momentum of the states is given in the figured
as the magnetic field increases. Ground states with angular
momentum quantum numbers being multiples of 3 are real-
ized by the spin-polarized states.28,34,37,49At lower magnetic
field the intervals corresponding to subsequent ground state
symmetries have distinctly different lengthsfsee Fig. 1sadg.
In particular, a larger stability of the ground state with odd
angular momentum quantum numbers up to −7 is observed.
The results of Fig. 1sadare in perfect agreement with the
results of Mikhailov and Savostianova37 scf. Figs. 1sadand
2sad of Ref. 37,"v0=3 meV corresponds to the interaction
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parameterl=1.988d. At higher fieldsfcf. Fig. 1sbdgthe states
with increasing angular momentum become the ground state
in intervals of nearly constant length in magnetic field. A
similar feature has previously been observed in the spin-
polarized three-electron system in the Wigner crystallization
regime.48

Figures 1scdand 1sddpresent the spectrum for coupled
dots with centers separated by a distance ofd=26.736 nm. In
a single circular dot energy levels of the same spin and parity

symmetry differ by their angular momentum and cross. No-
tice that in the coupled dots these crossings are replaced by
anticrossings. Apparent crossings of3/2O and 1/2O energy
levels around 5.5 and 7.5 T visible in Fig. 1scdare in fact
anticrossings of width 2meV. The spectrum conserves the
same sequence of the ground-state spin and parity symme-
tries of the single dot casefcf. Figs. 1sadand 1sbdg. The only
difference is that the3/2E statesthe ground state ford=0
around 5.6Td is replaced by the1/2O energy level stemming

FIG. 1. sColor onlinedMagnetic field depen-
dence of the three electron spectra for different
values of the interdot distanced. Energy levels of
1/2O, 3/2O, 1/2E, and 3/2E symmetry states are
plotted in blue, black, green, and red, respec-
tively. Numbers in the energy levels labels given
in sad and sbd stand for the absolute value of the
angular momentum in" units. Dotted and dashed
lines in se–gdshow the singlet and triplet energy
levels in a reference two-electron system con-
fined in the potential given by Eq.s6d. Crosses
and squares insgd andshd mark the energy levels
of spin-polarized states of even and odd parity,
respectively. Numbers 0, 1, 1/2, and 3/2 in Figs.
1sed–1shdgive the spin quantum number of the
plotted energy levels. For clarity, the two-electron
spectrum insgd and shd was shifted by +0.1 and
+0.25 meV, respectively.
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from the mixture of states which in circular quantum dots
possess −5 and −7 angular momenta. The1/2O energy level
is particularly stable as the ground statefcf. Fig. 1sadgand
exhibits reentrant behavior. At higher magnetic fieldfsee Fig.
1sddg the ground-state changes almost periodically withB
like in the single dot case presented in Fig. 1sbd, only the
length of the magnetic field corresponding to subsequent
states of the sequence becomes shortened from about
1.1 to 0.9 T. At high magnetic field the energy differences
between the energy levels of different parity becomes
smaller with respect to the single dot case presented in Fig.
1sbd. For bothd=0 andd=26.736 nm the energy difference
between the lowest even and odd spin-polarized energy lev-
els possesses a local maximum nearB=12 T. Ford=0 this
difference is around 0.25 meVfcf. Fig. 1sbdg while for d
=26.736 nm it is only 0.05 meVfcf. Fig. 1sddg.

Figure 1sed shows the spectrum ford=40 nm. For B
,10 T the ground-state-symmetry sequence of thed
=26.736 nm case is reproduced. Near 8.5 T both the spin-
polarized and spin-nonpolarized energy levels become de-
generate. For larger barrier thickness the ground state be-
comes degenerate with respect to parity around 7, 6 and 4 T,
for d=50, 60, and 60 nm, respectively,fsee Figs. 1sfd–1shdg.
The magnetic field leads to an increase of the electron local-
ization in each of the dots, enhancing the effective barrier
height and leading finally to vanishing interdot tunnel cou-
pling. This is at the origin of the even-odd degeneracy, simi-
larly as in the single electron problem.

For an interdot separation ofd=40 nm, the low-energy
spectrum collapses into a narrow energy range for large mag-
netic fields. ForB.12 T the difference between the lowest
energy levels becomes smaller than 0.02 meVfsee Fig. 1sedg.
But, for a larger interdot distance we notice, e.g., ford
=50 nm fcf. Fig. 1sfdg above 8 T distinct spin-related oscil-
lations of the ground-state energy. Up to 10.5 T and between
13.5 and 17 T the two spin-polarized ground states of odd
and even symmetry are degenerate with two nonpolarized
states of both spatial symmetries. Between 10.5 and 13.5 T
the ground state is nonpolarized. The amplitude of these spin
oscillations decreases with magnetic field but increases with
interdot distance. For instance, the local maximum of the
energy splitting between the lowest spin-polarized and non-
polarized energy levels near 12 T is 0.03, 0.04, and
0.06 meV ford=50, 60,fsee Fig. 1sgdgand 80 nmfsee Fig.
1shdg, respectively.

B. Two-electron subsystem and a spectator electron
in the other dot

One may expect that in the absence of a tunnel effect, i.e.,
for larger d and high magnetic field, the system can be re-
duced to a spectator electron sitting in one dot and two elec-
trons confined in the other dot. In order to verify this hypoth-
esis, we have performed two-electron calculations for a
single dot with harmonic oscillator confinement potential
perturbed by the Coulomb potential of the electron sitting in
the othersleftd dot, namely, for the external potential we took

Vssx,yd =
m*v0

2

2
sx − d/2d2 +

e2

4pee0

1
Îsx + d/2d2 + y2

. s6d

Obviously, in the presence of the Coulomb interdot coupling
the spectator electron will be shifted off the center of the left

quantum dot, but we neglect this shift for simplicity. Two
electron calculations were performed with the multicenter
configuration interaction method with eight centers put on a
circumference of an ellipse and the ninth one in its center.
Position of the ellipse center as well as itsx andy sizes are
optimized variationally. In Figs. 1sed–1shdthe lowest singlet
energy level and the two lowest triplet energy levels are plot-
ted with dotted and dashed lines, respectively. The width of
the presented avoided crossings of the spin polarized energy
levels can be considered as a measure of the potential devia-
tion from circularity; as discussed in Ref. 45. In the circular
quantum dot limit of infinited, the avoided crossings are
replaced by crossings of the magic angular momenta eigen-
states corresponding to the semiclassical Wigner distribution
of electrons in the inner coordinates. The larger the deviation
of the potential from circularity the stronger is the mixing of
the states corresponding to neighbor angular momenta from
the magic sequence, and, consequently, the wider the
anticrossing.45 The width of the anticrossing appearing near
6 T decreases from 0.7 meV ford=40 nm to 0.3 meV for
d=60 nm and to 0.2 meV ford=80 nm. A comparison of
Figs. 1sed–1shdshows that the singlet-triplet oscillations in
the two-electron system have the smallest amplitude for the
smallestd for which the perturbation of the harmonic poten-
tial is the largest. This finding is consistent with the recent
study52 of the magnetic field effect on the two-electron an-
isotropic quantum dots showing that the amplitude of the
singlet-triplet oscillations53 disappears with increasing de-
gree of asymmetry and is finally replaced by the singlet-
triplet degeneracy in the quasi one-dimensional limitf50,51g
of the extreme anisotropy. In circular quantum dots the states
of higher angular momentum are less strongly localized.
Magnetic field increases the electron localization and conse-
quently the electron-electron interaction in each of the states.
This leads to the ground-state angular momentum transitions.
For two electrons the ground-state of the center-of-mass cor-
responds to zero angular momentum so that the entire angu-
lar momentum is carried by the relative electron-electron
motion. The relative-motion states with oddsevend parity
angular momentum quantum numbers are spin tripletsssin-
gletsd. Therefore, the increase of the angular momentum is
accompanied by singlet-triplet oscillations.53 Magnetic field
evolution is different for strongly anisotropic quantum dots
in which the two electrons occupy the opposite extremities of
the quantum dot potential and the external magnetic field
simply increases the localization of each of the electrons
leading eventually to the disappearance of the overlap of
their wave functions which results in the singlet-triplet
degeneracy54 svanishing exchange energyd. As the interdot
distanced increases, the potential becomes more circular
which is the reason why the amplitude of the singlet-triplet
energy oscillations becomes larger.52

The three-electron spectra presented in Figs. 1sed–1shd
display a striking similarity to the reference two-electron cal-
culations at a high magnetic field. Therefore, at high mag-
netic field the system is indeed separable into two sub-
systems confined in different dots. The single electron
confined in one of the dots does not participate in the mag-
netic field evolution of the spectrum and its only role is to
perturb the circular symmetry of the confinement potential
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felt by the two electrons in the other dot. Obviously the
three-electron system can be spin polarized only if the two-
electron subsystem is spin polarized, which explains the spin
dependence of the three-electron low-energy spectrum at a
high field fcf. Fig. 1sed–1shdg. The discussed spin oscillations
in the three-electron system have a somewhat larger ampli-
tude that is due to an exaggerated anisotropy of the external
potential in the two-electron reference calculation. The point
charge assumed in potentials6d deforms the quantum dot
circular potential more strongly than the real charge of the
spectator electron, which is in fact diffuse and displaced to
the left ssee belowdfrom the center of the left dot.

C. Phase diagram for the ground-state symmetry

Our results for the ground-state symmetry and the extinc-
tion of the interdot tunnel coupling is summarized in ad-B
phase diagram presented in Fig. 2. The3/2E ground state
around 6 T disappears ford.14 nm. Similarly, the ground
state of1/2E symmetry around 2 T located between the1/2O
and3/2O ground states disappears aboved.70 nm. The bor-
der of the white region of the phase diagram corresponds to
negligible tunnel interdot coupling and was determined as
the line beyond which the energy difference between the
ground state and the lowest excited state of the same spin but
opposite spatial parity is smaller than 0.02 meV.

D. Charge density evolution

The evolution of the ground-state charge density as a
function of the external magnetic field is presented in Fig. 3
for d=26.736 nm. The charge density exhibits two maxima
near x= ±28 nm. In each of the subsequent ground states,
localization of electrons in the left and right dots becomes
stronger. For low magnetic fields the shape of the charge
density is similar to the one of the three-electron ellipsoidal
quantum dotscf. Fig. 4 in Ref. 41d. Nevertheless, at higher
magnetic field the three-electron charge density in the ellip-
soidal dot develops two maxima along they axis41 related to
the position of one of the electrons in the two classically
degenerate configurations. Figure 3 shows a different behav-
ior: the electron charge density is removed from they axis at
which the barrier potential energy is maximal. Note that in
the state3/2E at 5 T fcf. Fig. 3sldg the central hole in the
charge density is larger than in the ground states for the
neighboring range of magnetic fieldsfcf. Figs. 3sed–3shdg.

FIG. 2. sColor onlined Magnetic field-interdot distance phase
diagram for the ground-state symmetry. Blue, green, black, and red
regions correspond to a ground state with1/2O, 1/2E, 3/2O, and3/2E
symmetry, respectively. The white region corresponds to a negli-
gible interdot tunnel coupling and a near degeneracy of the ground
state with respect to spatial parity symmetry.

FIG. 3. Contour plots of the charge density ford=26.736 nm and various magnetic fields. The plotssa–kdcorrespond to the ground state.
Plot sld at B=5 T corresponds to an excited state of3/2E symmetry.
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This is the reason why this symmetry is replaced by the1/2O
symmetryfcf. Figs. 1scdand 2gin the ground state.

Increasing the magnetic field leads to an increased elec-
tron localization in each of the states. For a given magnetic
field the subsequent states in the ground-state symmetry se-
quence correspond to weaker electron localization. In order
to keep the interelectron distances approximately constant as
the magnetic field increases, the system has to change the
symmetry of the ground state. The mechanism for ground-
state symmetry transformations is therefore the same as the
one in circular quantum dotsssee Sec. III Bd. Between the
avoided level crossings, the increased localization in each of
the states induced by increasing the magnetic field is usually
not accompanied by any pronounced quantitative change of
the shape of the charge density droplet. An exception to this
rule is observed for the3/2O state. Figure 4 shows the charge
density of this state for magnetic field values for which this
state is no longer the ground state. For 4 T a “bridge” of an
increased density along thex axis appearsfcompare Fig. 3scd
and Fig. 4sadg. Just before the narrow avoided crossing near
5.1 T fcf. Fig. 1sddg, a third charge density maximum is
formed in the barrier around the originfsee Fig. 4sbdg. In this
way the system forms a quasi-one-dimensional Wigner
molecule50,51,54with all charge maxima situated along thex
axis. Recently, it was proven54 that the spatial parity of the
spin polarized three-electron state must be odd in order to
allow the state to form such a one-dimensional Wigner mol-
ecule. After the anticrossing of spin polarized odd parity en-
ergy levels near 5.1 T, the lowest state of this symmetry
possesses a central charge density holefcf. Fig. 4scdg. The
shape of the charge density of this state, when it becomes the
ground state, is displayed in Fig. 3shd.

Let us now look at the magnetic-field dependence of the
electron-electron correlations. Figure 5 shows the contour
plots for the pair correlation function39 when the position of
one of the electrons is fixed at the points−28 nm,0d. For
B,6 T the two other electrons are simply shifted to the
right-hand side of the double quantum dot potential. Only for
B.6 T the two distinct centers of electron localization in the
right quantum dot appear. Wigner localization around these
centers, which coincide with the position of classical
electrons55 in the lowest-energy configuration,41 becomes
more pronounced at higher magnetic fields. Fig. 5sld shows
the excited3/2E energy level. Besides a larger central charge
density holefsee Fig. 3sldgthis state exhibits also a stronger
electron-electron correlation than the ground statefcf. Figs.
5sed and 5sfdg in this magnetic field range.

E. Broken-parity solutions and interdot correlations

For the parity operator eigenstates discussed so far one
cannot tell in which of the dots the two electrons are local-
ized. Let us now consider construction41 of the stationary
states with a classical charge density distribution with two
electrons confined in a specified left or right dot.

In single quantum dots the classical degeneracy,41 i.e., the
existence of more than one classical lowest-energy configu-
ration of electrons, is accompanied by crossings of levels of
different symmetries. Superpositions of the two states corre-
sponding to the crossing levels allows us to extract41 one of
the classical configurations. Here we use a similar manipu-
lation, constructing a superposition of oddsOd and evensEd
parity wave functions,

X = „E + expsifdO…/Î2. s7d

The state described by the wave functionX is not an eigen-
state of the parity operator but at the even-odd degeneracy
points appearing at the level crossings, or for negligible tun-
nel coupling, it is still stationary, i.e., it is still the energy
eigenstate.

For d=26.736 nm nearB=8.75 T, level crossings of odd
and even parity energy levels appearfcf. Fig. 1sddg for both
S=1/2 andS=3/2 states. We use this degeneracy to illus-
trate the properties of the broken-parity Hamiltonian eigen-
states. Figure 6 shows the charge accumulated on the right-
hand side of they=0 axis as a function of the phasef in Eq.
s7d. Notice that in the singlet broken-parity state the right dot
can contain up to 1.64 of the elementary charge. For the
triplet the maximum value is 1.89e. The maximum value of
the charge localized in the right dot reaches 2e ssee the curve
for d=80 nmd only when the tunnel coupling is completely
removed by the application of a high magnetic field and/or
for a large barrier thickness.

The charge density of the degenerate-energy spin-
polarized states atB=8.75 T is displayed in Fig. 7sad sthe
even parity statedand Fig. 7sbd sthe odd parity stated. Figure
7scd shows the broken-parity state constructed of the two
spin-polarized parity eigenstates for the phase in Eq.s7d for
which the charge localized at thex.0 semiplane is maximal
fcf. Fig. 6g. Figure 7scdshows that in spite of the leakage of
the two-electron charge through the barrier to the region of
negativex, the charge of the third electron is distinctly sepa-
rated. Such a separation is not visible in the singlet state
plotted in Fig. 7sdd. According to Eq.s7d both odd and even
parity states can be reconstructed from two broken-parity
states with two electrons localized in the right and left dot.
This is visible in the pair-correlation function plots presented
in Figs. 7sedand 7sfd for the odd-parity spin-polarized state.
Depending on the choice of the fixed-electron position a con-
figuration with two electrons in the leftfcf. Fig. 7sedgor right
dot fcf. Fig. 7sfdg appears in the pair-correlation function
plots. This property of the parity eigenstates makes it diffi-
cult to visualize the interdot correlations between the elec-
tron positions: instead of the reaction of the charge localized
in one dot to the position of an electron in the other, switch-
ing between configurations is observed. However, the effect
of interdot correlations can be conveniently visualized using

FIG. 4. Charge density contours for the lowest-energy state of
3/2O symmetry for various values of the magnetic field andd
=26.736 nm.
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the pair correlation plots for the broken-parity statesfcf.
Figs. 7sgdand 7shdg. For the electron position fixed in the
center of the left dotfsee Fig. 7shdg, the two other electrons
are more firmly localized in the right dot than in the odd
parity statefFig. 7sfdg. In the broken-parity state, a displace-
ment of the fixed position electron to the position of one of
the two charge maxima occupied in the configuration with
two electrons in the left dot induces a rotation of the elec-
trons in the right dotfcf. Fig. 7sgdg. Note that due to this
rotation the electron charge localized in the lower part of the
right dot tunnels through the barrier to the left of they=0
axis. Ford=26.736 andB=8.75 T the tunnel coupling be-
tween the dots is still not negligiblessee Fig. 2d.

Let us now look at a spin-polarized broken-parity state for
d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
der of the phase diagram of Fig. 2, beyond which tunnel
coupling is negligible. This specific value of the magnetic
field has been chosen because it corresponds to a crossing of
spin polarized even and odd energy levels. Although the tun-
nelling of the electrons from the right to the left dot is not
visible in the charge density plotfFig. 8sadgthe pair correla-
tion plot fFig. 8scdg shows that it is not totally absent. Fig.
8sbd shows the lowest triplet state for the reference two-
electron calculation with potentials6d. The separation of the
charges of the two electrons occupying the right quantum dot
in the reference calculation is stronger than in the three-
electron plot of Fig. 8sad.

Figure 9 shows the results ford=60 nm andB=8.5 T
deep inside the region of vanishing tunnel coupling on the
phase diagram presented in Fig. 2. The ellipsoidal deforma-
tion of the charge confined in the left dot is visibly smaller
than in the preceding plotsfsee Figs. 7scdand 8sadg. The
charge density confined in the right quantum dotfFig. 9sadg
is more similar to the reference two-electron calculations
fFig. 9sbdg than for d=40 nm. No tunnel coupling is ob-
served either in the charge density or in the pair correlation
plots. After the disappearance of the tunnel effect, the Cou-
lomb coupling of the charge in both dots is still accompanied
by quantum interdot correlations in the electron positions
fcompare Figs. 9scdand 9sddg.

For d=80 nm andB=8.5 T, the charge density in the
right quantum dotfFig. 10sadgbecomes identical to the two-
electron quantum dot perturbed by an external Coulomb po-
tentialfFig. 10sbdg. The same shape is also reproduced by the
pair correlation function for an electron placed in the left dot

FIG. 5. Pair correlation functions ford=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
s−28 nm,0d sindicated by the crossd. All the plotssa–kdwith the exception of the plotsld for the state3/2E atB=5 T correspond to the ground
state.

FIG. 6. Charge accumulated in the right quantum dot for the
broken-parity Hamiltonian eigenstates as function of the phase of
the superpositionfEq. s7dg for S=1/2 sdashed linedand S=3/2
ssolid lined at d=26.736 nm and for the spin-polarized state atd
=80 nmsdotted lined.
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the pair correlation plots for the broken-parity statesfcf.
Figs. 7sgdand 7shdg. For the electron position fixed in the
center of the left dotfsee Fig. 7shdg, the two other electrons
are more firmly localized in the right dot than in the odd
parity statefFig. 7sfdg. In the broken-parity state, a displace-
ment of the fixed position electron to the position of one of
the two charge maxima occupied in the configuration with
two electrons in the left dot induces a rotation of the elec-
trons in the right dotfcf. Fig. 7sgdg. Note that due to this
rotation the electron charge localized in the lower part of the
right dot tunnels through the barrier to the left of they=0
axis. Ford=26.736 andB=8.75 T the tunnel coupling be-
tween the dots is still not negligiblessee Fig. 2d.

Let us now look at a spin-polarized broken-parity state for
d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
der of the phase diagram of Fig. 2, beyond which tunnel
coupling is negligible. This specific value of the magnetic
field has been chosen because it corresponds to a crossing of
spin polarized even and odd energy levels. Although the tun-
nelling of the electrons from the right to the left dot is not
visible in the charge density plotfFig. 8sadgthe pair correla-
tion plot fFig. 8scdg shows that it is not totally absent. Fig.
8sbd shows the lowest triplet state for the reference two-
electron calculation with potentials6d. The separation of the
charges of the two electrons occupying the right quantum dot
in the reference calculation is stronger than in the three-
electron plot of Fig. 8sad.

Figure 9 shows the results ford=60 nm andB=8.5 T
deep inside the region of vanishing tunnel coupling on the
phase diagram presented in Fig. 2. The ellipsoidal deforma-
tion of the charge confined in the left dot is visibly smaller
than in the preceding plotsfsee Figs. 7scdand 8sadg. The
charge density confined in the right quantum dotfFig. 9sadg
is more similar to the reference two-electron calculations
fFig. 9sbdg than for d=40 nm. No tunnel coupling is ob-
served either in the charge density or in the pair correlation
plots. After the disappearance of the tunnel effect, the Cou-
lomb coupling of the charge in both dots is still accompanied
by quantum interdot correlations in the electron positions
fcompare Figs. 9scdand 9sddg.

For d=80 nm andB=8.5 T, the charge density in the
right quantum dotfFig. 10sadgbecomes identical to the two-
electron quantum dot perturbed by an external Coulomb po-
tentialfFig. 10sbdg. The same shape is also reproduced by the
pair correlation function for an electron placed in the left dot

FIG. 5. Pair correlation functions ford=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
s−28 nm,0d sindicated by the crossd. All the plotssa–kdwith the exception of the plotsld for the state3/2E atB=5 T correspond to the ground
state.

FIG. 6. Charge accumulated in the right quantum dot for the
broken-parity Hamiltonian eigenstates as function of the phase of
the superpositionfEq. s7dg for S=1/2 sdashed linedand S=3/2
ssolid lined at d=26.736 nm and for the spin-polarized state atd
=80 nmsdotted lined.
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field. The phase diagram for the spatial and spin parities of
the ground state as function of the interdot distance and ex-
ternal magnetic field was determined. Near degeneracy of the
ground state with respect to parity was used as a criterion for
the disappearance of the tunnel coupling between the dots
occurring for large interdot distances and/or at high magnetic
fields. The three-electron system in laterally coupled dots
reproduces the ground-state spin and parity symmetries of
circular quantum dots. The exception to this rule is the ab-
sence of the spin-polarized even parity ground state which in

circular quantum dots has angular momentum −6" and
which in laterally coupled dots turns out to be overcorre-
lated, i.e., correlated more strongly than the ground state.
After the disappearance of tunnel coupling the spectrum ex-
hibits spin oscillations that can be described using a model of
a two-electron quantum dot perturbed by the Coulomb po-
tential of a spectator electron localized in the other dot. We
have shown that interdot electron correlations are present
after the extinction of the tunnel coupling. For larger interdot
distances quantum interdot correlation disappears although
electrostatic interdot coupling is still significant. The effect
of the Coulomb interdot coupling for the singly occupied dot
is trivial, leading to a shift of the single-electron charge off
the dot’s center. On the other hand the Coulomb coupling
induces pinning of the magnetic-field induced two-electron
Wigner molecules, i.e., their extraction from the internal co-
ordinates of the two-electron system to the laboratory frame
of reference.
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