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Few-electron systems confined in a quantum dot laterally coupled to a surrounding quantum ring in the
presence of an external magnetic field are studied by exact diagonalization. The distribution of electrons
between the dot and the ring is influenced by the relative strength of the dot and ring confinement, and the
magnetic field which induces transitions of electrons between the two parts of the system. These transitions are
accompanied by changes in the periodicity of the Aharonov-Bohm oscillations of the ground-state angular
momentum. The singlet-triplet splitting for a two electron system with one electron confined in the dot and the
other in the ring exhibits piecewise linear dependence on the external field due to the Aharonov-Bohm effect
for the ring-confined electron, in contrast to smooth oscillatory dependence of the exchange energy for laterally
coupled dots in the side-by-side geometry.
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I. INTRODUCTION

Coupling1–14 between semiconductor quantum dots15 re-
sults in the formation of so-called artificial molecules. Since
most of the quantum dots have flat geometry, the coupling is
realized either by vertical stacking1–5 or by fabrication of
dots coupled laterally on the same plane6–14 Theoretical6–11

considerations and experimental12–14 realizations of laterally
coupled dots are based on the idea of dots placed side by
side. This paper is devoted to few-electron states in an es-
sentially different geometry of lateral coupling, namely, to a
quantum dot surrounded by a quantum ring16 with a tunnel
barrier separating both parts of the system. The confinement
potential considered in this paper can be obtained using an
atomic force microscope to locally oxidize17 the sample sur-
face which results in the depletion of the two-dimensional
electron gas(2DEG)underneath it. Alternatively one can ap-
ply split gates with a central cap gate surrounded by a thin
collar gate on top of a planarnAlGaAs-GaAs heterostructure
containing a 2DEG. A proper geometry of split gates for the
fabrication of the confinement potential considered in this
paper was applied in the study18 of effects related to electron
localization on local fluctuations of the confinement potential
in the low electron density regime. The system studied in the
present paper would require a sufficiently strong confinement
which is less perturbed by fluctuations. The effect of local
perturbations can be largely diminished by optimization19 of
the size of electrodes for the strength of the electrostatic
confinement potential.

Phase effects appearing in electron transport through
quantum dots were studied in the Aharonov-Bohm
interferometer.20,21The potential geometry studied in this pa-
per is a two-dimensional counterpart of quantum-dot
quantum-well structures.22,23 Impurity effect on the single-
electron states in a three-dimensional quantum ring for
strong in-plane confinement has been studied.24 Related to
the present work is the magnetic coupling of a superconduct-
ing disk surrounded by a superconducting ring.25 In contrast
to the work of Ref. 25, in the system considered here the
coupling between the ring and the dot occurs through quan-

tum mechanical tunnelling. The transfer of the charge be-
tween a quanum ring and inline- as well as side-coupled
quantum dot and its effect on the persistent currents in me-
soscopic samples was previously studed in the Anderson-
impurity-type model.26

We study the effect of the magnetic field on the confined
one-, two-, and three-electron systems using an exact diago-
nalization approach. In quantum dots and rings the magnetic
field induces ground-state angular momentum transitions.
However, the role of the electron-electron interaction for the
transitions in these two structures is different. In quantum
rings the interaction is of secondary27,28 importance for the
angular momentum transitions which are mainly determined
by the Aharonov-Bohm effect. In spinless27,29 few-electron
systems the ground-state angular momentum is not influ-
enced by the Coulomb interaction, and for electrons with
spin the angular momentum of the ground state differs from
the noninteracting case by at most".28 On the other hand, in
quantum dots the Coulomb interaction influences strongly
the values of the magnetic field at which the angular momen-
tum transitions appear. Moreover, in two- and three-electron
systems these transitions are absent if there is no electron-
electron interaction. In this paper we study the hybrid
magnetic-field evolution of the electron spectra in the dot-in-
the-ring geometry.

The magnetic-field along with the angular momentum
transitions induces a redistribution of the electron charge in
quantum dots.29,30 Here, we will show that in the considered
geometry the magnetic field can be used to transfer the elec-
trons from the dot to the ring or vice versa. We will also
address the problem of the magnetic-field-induced trapping
of electrons in local potential cavities.31

The spins of a pair of electrons localized in laterally
coupled dots have been proposed6 as a possible realization of
coupled qubits. A universal quantum gate requires the possi-
bility of application of single-qubit as well as two-qubit ro-
tations. For this purpose one should be able to address each
of the electrons individually as well as to control the state of
the pair, which requires the spatial separation of electrons
and a tunable coupling between them. We studied the singlet-
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triplet splitting energy for the two-electron system with one
electron localized in the dot and the other in the ring. We
show that the angular momentum transitions, appearing for
the ring-confined electrons as a consequence of the
Aharonov-Bohm effect, lead to a simple piecewise linear de-
pendence of the exchange energy on the external magnetic
field. Since the unitary evolution in quantum computation
needs precise control of the underlying qubit interaction this
simple dependence makes our system a good candidate for
the realization of the magnetic field controllable pair of spin
qubits. Recently, it has been established32 that the spin relax-
ation time in quantum dots defined by electric gates in two-
dimensional electron gas is much longer than the qubit red-
out time in spin-to-charge conversion technique.

This papers is organized as follows: In the next section
the present approach is explained, the single electron spec-
trum is described in Sec. III, the results for two and three
electrons are given in Secs. IV and V, respectively, and Sec.
VI contains the summary and conclusions.

II. THEORY

We study two-dimensionalN-electron systems confined in
circular potentials using the effective mass Hamiltonian

H = o
i=1

N

hi + o
i=1

N

o
j=i+1

N
e2

4p««0r ij
+ BSzg

*mB, s1d

where« is the dielectric constant,g* is the effective Landé
factor,mB is the Bohr magneton,Sz is thez component of the
total spin, B is the magnetic field, andhi stands for the
single-electron Hamiltonian, which written in the symmetric
gaugeA =s−By/2 ,Bx/2 ,0d has the form

h = −
"2

2m* ¹2 +
1

8
m*vc

2r2 +
1

2
"vclz + Vsrd, s2d

with m* the electron effective mass,lz the z-component an-
gular momentum operator,vc=eB/m* the cyclotron fre-
quency, andVsrd the confinement potential. We adopt mate-
rial parameters for GaAs, i.e.,m* /m0=0.067, e=12.9, and
g* =−0.44. The last term of Eq.(1), i.e., the spin Zeeman
splitting energy is independent of the distribution of elec-
trons between the different parts of the system as well as of
the Coulomb interaction energy. Moreover, the value of the
g* factor can be tuned by the admixtures of Al substituting
Ga.33 We have therefore decided to neglect the Zeeman ef-
fect in most of the results presented in this paper(unless
explicitly stated otherwise).

We model a strictly two-dimensional cylindrically sym-
metric potential of a quantum dot placed within the quantum
ring with the following confinement potential:

Vsrd = minfm*vi
2r2/2 + V0,m

*vo
2sr − Rd2/2g, s3d

where"vi and "vo are the confinement energies of the dot
and the ring, respectively, and the radius of the ringR is
determined by the sum of oscillator lengths for the dot and
ring potential and the barrier thicknesssbd according to for-
mula R=Î2" /mvi +Î2" /mvo+b. This potential is parabolic

within both the quantum dot and the quantum ring,V0 is the
depth of the dot confinement with respect to the bottom of
the quantum ring potential. The confinement potential(3) is
shown in Fig. 1 for "vi =5 meV, "vo=10 meV, V0
=−5 meV, andb=30 nm. A model potential parametrized
similarly to Eq.(3) was used previously for the
description10,11 of side by side quantum dots. The cusp
present in simple potentials of this type(cf. Fig. 1) is rather
unphysical and cannot be realized in real structures, however
this shortcoming is of secondary importance since the cusp
appears in a region of space where the barrier potential is
largest and the wave functions of the lowest energy levels are
small. In the weak coupling limit(for large barrier thickness)
approximate formulas for the dot- and ring-confined states as
functions of the magnetic field can be given(see below).

In the present paper the single-electron eigenfunctions for
Hamiltonian(2) and definite angular momentum are obtained
numerically on a radial mesh of points using the finite-
difference approach. Eigenstates of the two- and three-
electron Hamiltonian(1) are calculated using the standard
configuration interaction method34 with a basis composed of
Slater determinants built with single-electron wave func-
tions. The Coulomb matrix elements are evaluated by a
two-dimensional27 numerical integration. The few-electron
states are described by the total spinS and angular momen-
tum L quantum numbers. In this paper we discuss only the
two- and three- electron states with nonpositive total angular
momenta. We will therefore omit the minus sign for the an-
gular momentum quantum numberL.

III. SINGLE-ELECTRON STATES

The single-electron spectrum for"vi =6 meV, "vo
=11 meV,V0=0, andb=30 nm is shown in Fig. 2(a). For
this relatively large barrier thickness, the low part of the
energy spectrum is essentially a sum of the spectra of an
electron localized in the dot and in the ring. The solid lines in
Fig. 2 correspond to states localized in the ring and dashed
lines to s (lowest dashed line)and p states localized in the
dot. The ring part of the spectrum exhibits Aharonov-Bohm
oscillations. The angular momentum of the lowest-energy
ring-localized states takes on the subsequent values 0,−1,

FIG. 1. Confinement potential[cf. Eq. (3) for "vi =5 meV,
"vo=10 meV, V0=−5 meV, b=30 nm, and the GaAs effective
massm* /m0=0.067. The dot oscillator lengthl i =Î2" /mvi is equal
to 21.33 nm and the oscillator length for the ringlo=15.08 nm
which gives the ring radiusR=66.4 nm.
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−2, etc.[in " units] when the magnetic field increases. The
period of these oscillations is 0.337 T. This period corre-
sponds to a flux quantum passing through a strictly one-
dimensional ring of radiusR1D=62.51 nm which is in good
agreement with the radius of the ring in the present model
R=63.85 nm. The energy of the states localized in the dot
change with the magnetic field more slowly than the energy
of the ring-localized states. States with the same angular mo-
mentum change their order in anticrossings due to quantum
mechanical tunnel coupling between the dot and the ring.
Anticrossing fors states appears forB around 0.65 T[see
inset of Fig. 2(a)]. A much wider anticrossing forp states is
visible around 2.4 T.

Figure 2(b)shows the confinement potential for the pa-
rameters applied in Fig. 2(a)as well as the radial probability
densities for the lowests- andp-symmetry states. The radial
densities for the ring-localized states do not depend on the
angular momentum. However, Fig. 2(c) shows that the
s-wave function penetrates the dot region in a much stronger
way than thep-type wave function. It will have an important
consequence for the singlet-triplet splitting of the two-
electron states(see the next section). Note that the angular
momentum has an opposite effect on the strength of the tun-
neling of the dot-localized states to the ring part of the po-
tential. Barrier thickness is effectively smaller for the dot-
localized states of higher angular momentum[cf. Fig. 2(b)].

The dependence of the energy of the lowest dot-localized
state can be very well approximated by the expression for the
lowest Fock-Darwin state, i.e.,Edot=V0+Îs"vid2+s"vc/2d2.
Without the magnetic field the lowest energy ring-localized
level is approximately equal to"vo/2, i.e., to the energy of
the single-dimensional harmonic oscillator in the radial di-
rection. In the external field the envelope of the lowest-
energy ring-localized level can be quite well approximated
by Ering=Îs"vo/2d2+s"vc/2d2. These two formulas can be
used in order to roughly determine whether the ground state
of a single electron is localized in the dot or in the ring. For
equal depth of the ring and the dotsV0=0d the magnetic field
does not change the order of the lowest-energy dot- and ring-

confined states. However, forV0=0 andvo<2vi the mag-
netic field can induce oscillations of the ground state local-
ization from the dot to the ring, which results from the local
deviations of the lowest ring-confined energy level from the
smooth envelope[cf. Fig. 2(a)]. On the other hand, the mag-
netic field favors localization in the deep but small(thin)
quantum dot(ring). This effect is illustrated in the following
figure.

Figure 3 shows the energy spectrum for a"vi which is
increased with respect to Fig. 2 from 6 to 20 meV and the
bottom lowered byV0=−14 meV. ForB=0 the low-energy
part of the spectrum is the same as in the case shown in Fig.
2(a). However, the energy of the dot-localized state grows
more slowly than the envelope of the ring-localized states. In
consequence, the dot-localized state becomes the ground
state forB=3.3 T. When the radius of the Landau orbit be-
comes smaller than the size of the local potential cavity, the
electron can enter inside the dot without an extra increase of
the kinetic energy due to the localization. Similar effects of
trapping of electrons in local potential cavities at high mag-
netic fields are probably at the origin of the bunching of the
charging lines observed in single-electron capacitance spec-

FIG. 2. Single-electron spectrum for"vi =6 meV, "vo=11 meV,V0=0, andb=30 nm sR=63.85 nmd. The solid lines correspond to
states localized in the ring and the dashed lines to states localized in the dot. Lowest of the dashed lines corresponds to thes state and the
two higher top states. Inset shows the low-field and low-energy part of the spectrum-enlargement of the fragment surrounded by thin solid
lines corresponding to anticrossing of 0 angular momentum dot- and ring-confined energy levels. Dotted lines in(b) and (c) shows the
confinement potential(left scale)for the parameters applied in(a). Solid and dashed curves in(b) show the radial probability densityrucu2
and in (c) the wave functions of the lowest states ofs andp symmetry, respectively.

FIG. 3. Single-electron spectrum for"vi =20 meV, "vo

=11 meV,V0=−14 meV, andd=30 nm(potential is plotted in the
inset). The solid lines correspond to states localized in the ring and
the dashed line to the lowest-energy state localized in the dot.
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troscopy of large quantum dots.31 The opposite effect, i.e.,
the change of the ground-state localization from the dot to
the ring under influence of the external magnetic field is also
possible if the ring is thin but with a bottom deeper than the
dot.

IV. TWO ELECTRON SYSTEM

For B=0 the ground state of the electron pair corresponds
to zero total spin and angular momentum independently of
the electron distribution between the two parts of the con-
finement potential. The electron distribution in the system
can be illustrated by the charge accumulated within the dot.
This quantity is calculated as the integral of the radial prob-
ability density from the origin to the cusp of the confinement
potential (cf. Fig. 1). Figure 4(a)shows the dependence of
the charge accumulated within the dot as a function of the
ring oscillator energy for different barrier thickness, the dot
confinement energy"vi =6 meV and equal depth of the dot
and ringsV0=0d. Forb=30 nm the dependence of the charge
accumulated in the dot on the ring confinement energy is
almost stepwise and it becomes smoothened for thinner bar-
riers for which the separation of electrons between the two
parts of the system is less distinct. The transition of electrons
between the ring and the dot can also be provoked by chang-
ing the relative depth of the confinement potentials for fixed
oscillator energies. This is illustrated in the inset to Fig. 4(a)

which shows the charge accumulated within the dot as a
function of V0 for the potential parameters"vi =6 meV,
"vo=20 meV, b=30 nm, i.e., corresponding to the central
plateau of the solid curve in the main part of Fig. 4(a).

Figure 4(b)shows the phase diagram for the spatial dis-
tribution of electrons in the two-electron system in the ab-
sence of the magnetic field for barrier thicknessb=30 nm.
Borders of regions corresponding to different electron distri-
butions are marked with solid lines. Above the dotted line the
ground state of a single electron is localized in the dot and
below it–in the ring. The dotted line can be very well ap-
proximated byvo=2vi, which is in agreement with the ap-
proximate formulas for the lowest-energy dot- and ring-
localized states given in the preceding section. In the
noninteracting case this line would divide the regions in
which both of the electrons are localized in the dot or in the
well. In the presence of interaction a third region in which
one of the electrons is localized in the dot and the other in
the ring appears. This region of electron distribution starts
slightly above the dotted line. This results from the fact that
the Coulomb interaction, smallest for both electrons local-
ized in the ring, stabilizes the ring-confined ground state for
larger"vo than in the noninteracting case. The central region
of the phase diagram for which one electron resides in the
dot and the other in the ring is particularly interesting from
the point of view of potential spin quantum gate
applications.6

Let us now look at the magnetic field dependence of the
two-electron energy spectrum for the potential parameters

FIG. 5. Two-electron energy spectrum(left scale) for b
=30 nm,V0=0, "vi =6 meV, and"vo=14 meV (spin Zeeman ef-
fect neglected). Singlets(triplets) plotted with solid(dashed)lines.
Numbers close to extrema of the lines denote the absolute values of
the angular momentum in" units. The dotted line shows the abso-
lute value of the angular momentum of the ground state of asingle
electron confined in the ring(right scale).(b) Same as(a) but with
spin Zeeman effect included. Only the lowest energy level of the
split spin triplet is plotted.

FIG. 4. Charge accumulated in the dot as a function of"vo for
different values of the barrier thickness andV0=0. Inset in (a)
shows the charge accumulated in the dot as function ofV0 for b
=30 nm,"vi =6 meV, and"vo=20 meV.(b) Phase diagram for the
distribution of two electrons forB=0, V0=0, andb=30 nm. Solid
lines in (b) divide regions of different electron localization in the
two-electron system. Above the dotted line the ground state of a
single electron is localized within the dot.

SZAFRAN, PEETERS, AND BEDNAREK PHYSICAL REVIEW B 70, 125310(2004)

125310-4

praca 10A 113



corresponding to one electron in the dot and the other in the
ring, i.e., for V0=0, b=30 nm, "vi =6 meV, and "vo
=14 meV presented in Fig. 5(a). For this potential the one-
electron ground state is localized in the dot. The angular
momentum of the lowest excited ring-confined one-electron
state is plotted with a dotted line(right scale). Comparison of
this line with the ground-state energy crossings in the two-
electron spectrum shows that the angular momentum transi-
tions in the two-electron system are due to the Aharonov-
Bohm effect for the electron confined within the ring. All the
angular momentum of the system is therefore carried by the
ring-confined electron while the electron confined in the dot
remains in thes state. Singlet-triplet splitting of the ground
state[cf. the distance between the dashed and solid lines in
Fig. 5(a)] disappears at larger angular momentum. This ef-
fect can be understood if we look back at Fig. 2(c) showing
that the dot penetration of the ring-localized single-electron
states decrease with their angular momentum. In Fig. 5(a)
above 14.9 meV the energy band corresponding to both elec-
trons confined within the ring appears. Since in this band
both ring-confined electrons are subject to the Aharonov-
Bohm effect the angular momentum of the lowest state in the
band grows roughly twice28 as fast as in the ground state.
The energy levels of evenL correspond to spin singlets and
of oddL to triplets. Around 0.6 T we observe an anticrossing
of L=3 triplets corresponding to one and two electrons in the
ring. The Zeeman effect[cf. Fig. 5(b)] for large B lifts the
ground-state degeneracy with respect to the spin.

The energy difference between the lowest spin singlet and
triplet states, i.e., the exchange energy6—an important quan-
tity for the coupled spin qubit operations is also a very ad-
equate measure of the strength of the tunnel coupling be-
tween the dot and the ring confined wave functions. Figure 6
shows the exchange energy(Zeeman energy neglected) for
different values of the barrier thickness forV0=0, "vi
=6 meV, and"vo=18 meV, i.e., for the central point of the
plateau corresponding to one of the electrons localized in the
dot [cf. Fig. 4(a)]. The exchange energy is nearly indepen-
dent of magnetic field when the lowest singlet and the lowest
triplet possess the same angular momentum and it distinctly
decreases(grows)with the magnetic field when theL of the

lowest triplet is larger(smaller)thanL of the lowest singlet.
When the angular momentum of both singlet and triplet
states exceed 2, the exchange energy vanishes. The exchange
energy is a piecewise linear function of the magnetic field in
contrast to smooth oscillatory dependence of the exchange
interaction on the magnetic field for side-by-side dots(cf.
Fig. 4 of Ref. 11). In side-by-side dots the magnetic field
induces a continuous decrease of the overlap of the wave
functions of electrons confined in different dots. For the dot
in the ring geometry this decrease is discontinuous due to the
Aharonov-Bohm effect for the ring confined electron. Since
the Aharonov-Bohm magnetic period is inversely propor-
tional to the square of the ring radius one can largely reduce
the range of the magnetic field in which the exchange energy
is nonzero by a mere increase ofR.

The magnetic field can change the distribution of the elec-
trons between the coupled cavities. Consider the case ofb
=30 nm, V0=0, "vi =6 meV and"vo=26 meV. For these
parameters in the absence of the magnetic field both elec-
trons are localized within the dot[cf. Fig. 4(b)], but the state
corresponding to one electron in the ring is close in energy.
Figure 7 shows the magnetic field dependence of the two-
electron energy spectrum for this potential. Energies of states
corresponding to both electrons localized in the dot are plot-
ted with dashed lines. The lower of these two energy levels is
a spin singlet ofs symmetry. The upper dashed line corre-
sponds to a spin triplet ofp symmetry, i.e., to the two-
electron maximum density droplet.35 Spin singlet of
p-symmetry with both electrons localized in the dot lies
higher in energy beyond the range presented in this figure.
The energy levels plotted with solid lines correspond to one
electron localized in the dot(in the lowests state)and the
other in the ring. ForB=1.44 T an avoided crossings appears
for the L=1 spin triplets. ForB=3.74 T the energy level of
the dot localized state crosses the energy level of the state
with L=10 corresponding to one electron in the dot and the
other in the ring. Note that belowB=3.74 T in the ground-
state the electrons are in the singlet state while above this
field singlet and triplet states are nearly degenerate. Decou-
pling of spins, in the sense of vanishing exchange energy
appears abruptly after crossingB=3.74 T. ForB=4.35 T, a

FIG. 6. Exchange energy, i.e., the energy difference of the low-
est triplet and the lowest singlet energy levels for two electrons and
V0=0, "vi =6 meV, and"vo=18 meV for different values of the
barrier width and spin Zeeman splitting is neglected. The dash-
dotted line shows the Zeeman splitting between states withSz=0
and".

FIG. 7. Energy spectrum of two electrons forb=30 nm, "vi

=6 meV, and"vo=26 meV (spin Zeeman effect neglected). The
energy levels of states in which both(one)electrons are localized in
the dot are plotted with dashed(solid) lines. The inset shows the
ground state angular momentum. The dotted line corresponds to
twice the lowest Landau level energy.
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crossing of dot-localized singlet and triplet states appears.
The dotted line shows twice the lowest Landau energy level.
For B.4 T the envelope of the energy levels with one elec-
tron in the dot and the other in the ring as well as the dot
localized maximum density droplet run approximately paral-
lel to the lowest Landau level(dotted line). Figure 7 shows
that the magnetic field can change the electron occupation of
the dot and the ring. Generally, forV0=0 such an effect is not
observed for a single electron. The appearance of this effect
for two electrons is due to lowering of the Coulomb interac-
tion energy when one of the electrons is transferred from the
dot to the ring. Recently,36 it was shown that in the infinite
magnetic field limit the ground-state electron distribution can
be identified with the lowest energy configuration of
classical37 point charges. ForV0=0 the lowest-energy classi-
cal configuration corresponds to both electrons localized in
the ring. One should therefore expect that at higher magnetic
fields the second electron should also be transferred to the
ring. However, the magnetic fields at which this effect could
appear are beyond the reach of our numerical calculations.

For V0=0, b=30 nm,"vi =6 meV, and"vo=13.65 meV
[the left end of the central plateau in the Fig. 4(b)]for B
=0 one of the electrons is localized in the dot and the other
in the ring, but the state with two electrons localized in the
ring is not much higher in energy. Figure 8 shows the
ground-state energy and the ground-state angular momentum
as functions of the magnetic field for this set of parameters.
The state with one electron in the dot remains the ground
state up to 1.6 T. BetweenB=1.6 T andB=3.1 T the state
with two electrons in the ring is almost degenerate with the
state with one ring-confined electron and as a consequence
the localization of the ground state changes several times as
the magnetic field is increased. Ground-state ring-
localization becomes established above 3.1 T. The period of
the angular momentum transitions becomes halved with re-
spect to the low magnetic fields, for which the ring is occu-
pied by a single electron.

The magnetic field can induce opposite transitions of the
electrons from the ring to the dot if the dot is small but deep.
Consider the following set of parameters"vi =50 meV,
"vo=6 meV, b=20 nm, andV0=−66 meV. Figure 9 shows
the confinement potential and the radial probability density
for the lowest two-electron singlet states with total angular
momentum equal 0. For zero magnetic field in the ground-
state one electron is localized in the ring and the other one in
the dot. In the first exciteds singlet state both electrons re-
side within the dot. Note that in this case the ground state is
more extended than the excited state as a consequence of the
electron-electron interaction preventing the second electron
from entering the dot. The magnetic field energy dependence
is displayed in Fig. 10. The magnetic field has only a small
influence on the energy of the singlet with both electrons
localized in the dot. AroundB=2 T, singlets corresponding
to different electron distribution change their energy order
with a pronounced anticrossing. ForB=5.725 T the dot-
localized singlet becomes the ground state. In this structure
the Aharonov-Bohm oscillations are interrupted by the mag-
netic field which removes the second electron from the ring.
As a consequence a giant singlet-triplet energy difference
appears forB.5.725 T. This transition appears in spite of
the Coulomb interaction energy which is increased when the
second electron is trapped in the central cavity.

FIG. 8. Two-electron ground-state energy(left scale) for b
=30 nm,V0=0, "vi =6 meV, and"vo=13.65 meV(spin Zeeman
effect neglected). Energy of states corresponding to one electron in
the dot and the other in the ring plotted with solid line. Energy of
states in which both the electrons are localized in the ring are plot-
ted by the dotted curve. The thin solid step-like line gives the total
angular momentum which is referred to the right axis.

FIG. 9. Solid line (left scale): the external potential"vi

=50 meV and"vo=6 meV, b=20 nm,V0=−66 meV. The ground
state forB=0 corresponds to theL=0 singlet with one electron in
the dot and the other in the ring. Radial density of this state plotted
with dotted line(right scale). The first exciteds singlet state corre-
sponds to both electrons in the dot(dashed line).

FIG. 10. Two-electron energy spectrum for the potential param-
eters of Fig. 9. Dotted lines show the energy levels ofs singlets.
The dashed line corresponds to thes triplet.
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V. THREE ELECTRONS

Distribution of electrons in the three electron system with-
out the magnetic field forV0=0 andb=30 nm is plotted in
Fig. 11. Regions of different electron distribution are sepa-
rated by the solid lines. For large dot confinement energy,
i.e.,vi @vo all the electrons reside in the ring and the ground
state corresponds to total spinS=3/2 andzero28angular mo-
mentum. In the single-particle picture this state corresponds
to electrons having parallel spin and occupying states with
angular momentuml =−1,0, and 1(in " units). For increas-
ing ring confinement the electrons enter the dot one by one.
In states with two electrons of opposite spins occupying the
dot or the ring(cf. two central regions in Fig. 11 the ground
state corresponds toS=1/2 andL=0. When the ring confine-
ment energy is much larger(five times or more)than the dot
confinement all the electrons occupy the lowest dot-confined
energy levels forming the state of spinS=1/2 andangular
momentumL=1.

In the preceding section we showed that for equal depth
of the ring and the dotsV0=0d the electron-electron interac-
tion triggered the magnetic-field-induced transitions of elec-
trons from the dot to the ring. We found that in the three-
electron system the magnetic field can also induce the
opposite transition from the ring to the dot. This is illustrated
in Fig. 12 which shows the energy spectrum forV0=0, b
=30 nm,"vi =6 meV, and"vo=37 meV. Solid lines in Fig.
12 show the energy levels corresponding to two electrons of
opposite spins in the dot and one electron confined in the
ring. All these states haveS=1/2. Dashed lines correspond
to spin-polarized states withS=3/2 in which the two dot-
confined electrons occupy the 1s and 1p states. Energy levels
corresponding to three electrons localized in the dot are
shown by dotted curves. Quantum numbers of the dot-
confined states are given in the figure. Thick solid steplike
line at the bottom of the figure shows the absolute value of
the ground-state angular momentum which is referred to the
right axis. AtB=0, the energy of the state in which all three
electrons are localized in the dot withL=1 is 1 meV higher
in energy(cf. dotted line above 42 meV)above the ground
state with two electrons in the dot and one in the ring. This
energy level decreases initially with increasing magnetic

field due to the interaction of the magnetic field with the
magnetic momentum of thep electron. This decrease results
in an anticrossing of theL=1 energy levels corresponding to
two and three dot-confined electrons aroundB=1 T. Another
consequence of this anticrossing is a visibly increased region
of L=1 ground-state stability between 0.15 and 0.7 T. Sub-
sequently forB=1.7 T, the state with three electrons in the
dot andL=1 becomes the ground state. The transition of the
third electron from the ring to the dot happens in spite of the
electron-electron interaction which is not strong enough to
prevent it.

For B=0, the energy of the lowest spin polarized state(cf.
dashed lines)with L=1 is equal to about 44.25 meV. In this
state the two electrons confined in the dot have the same spin
and occupy 1s and 1p energy levels, while the ring-confined
electron occupy the orbital withl =0. Note that level cross-
ings appear at the same magnetic fields as in the lower
branch withS=1/2 where two electrons are in the 1s orbital
confined in the dot(cf. solid lines in the Fig. 13). The angu-
lar momentum quantum number of these states is equal to
the ring confined electron plus 1 - the angular momentum of
the dot-confined subsystem. For the adopted large barrier
thicknessb=30 nm the states of this band withS=3/2 are
almost degenerate withS=1/2 states(omitted in the figure),
i.e., the energy of the system is not influenced by the orien-
tation of the spin of the ring-confined electron. The only
exception appears for theL=2 state. The lower(upper)

FIG. 11. Phase diagram for the electron distribution in thes"vi,
"vod plane forV0=0 andb=30 nm in the absence of the magnetic
field. Solid lines separate regions of different electron distributions.
Numbers denote the ground-state total spin and total angular mo-
mentum quantum numbersS,Ld.

FIG. 12. Energy spectrum forN=3, V0=0, b=30 nm, "vi

=6 meV, and"vo=37 meV. The solid(dashed)lines show the low-
est energy levels with the two dot-confined electrons withS=1/2
and opposite(S=3/2 and the same) spin and one electron in the
ring. The states with the two dot-confined electrons of parallel spins
are almost degenerate with respect to the spin orientation of the
electron in the ring. The only exception is the state withL=2. The
lower of the dash-dotted line shows this state forS=1/2 and the
upper forS=3/2. Dotted lines correspond to all electrons confined
in the dot. Quantum numberssL ,Sd of these states are indicated in
the figure. Only nonpositive angular momenta are shown. The thick
solid line in the lower part of the figure shows the the ground-state
angular momentum quantum number(right scale). The panel above
the upper axis shows the number of electrons in the dotnd andS for
the ground state in formatndsSd, “deg” stands for degeneracy of the
S=1/2 and 3/2states.
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dashed-dotted line shows the energy of the state withL=2
andS=1/2 s3/2d. The reason of the lifted degeneracy is the
fact that the energy of the state withL=2 and S=1/2 is
pushed downward by the anticrossing with the dot-confined
state of the same quantum numbers, similarly as the above
discussedL=1, S=1/2 energy level in the lower part of the
spectrum.

The angular momentum of the ground state with three-
electrons confined in the dot changes from 1 to 2 atB
=4.3 T (cf. the crossing of the dotted lines). Above 4.5 T the
ground state corresponds again to two electrons in the dot
and one in the ring like forB=0 T, but now the dot-confined
subsystem is spin-polarized(cf. the crossing of the dashed
and dotted lines).

Figure 13 shows the ground-state energy for the same
parameters as studied in Fig. 12 but with the ring confine-
ment energy reduced from 37 to 27 meV. AtB=0 the ground
state still corresponds to two electrons in the dot and one in
the ring, but the state with two ring-confined electrons is
higher in energy by less than 1 meV. The envelope of the
lowest energy level with one electron in the ring grows with
the magnetic field faster than the envelope of the energy
levels with two ring-confined electrons which results in the
change of the ground-state electron distribution atB
=2.75 T. The dotted line in Fig. 12 marks the change in the
electron distribution. Left of this line the ground state has
S=1/2, the twodot-confined electrons are in the spin singlet,
and the spin of the ring confined electron is arbitrary. Right
of this line the spin-configuration of the ring-confined sub-
system oscillates from singlet(for evenL) to triplet (for odd
L) [cf. also the branch of ring confined electrons in Fig.
5(a)]. The magnetic fields for which the ring subsystem is in
the triplet state have been marked by vertical arrows on the
angular momentum staircase. The states with spin singlet of
the ring subsystem correspond toS=1/2. Since the angular
momenta of both ring-confined electrons exceed 6 the tunnel

coupling between the dot and ring wave functions is negli-
gible [cf. Fig. 8] and the spin of the dot confined electron
does not influence the energy. Therefore, the states with trip-
let configuration of spins in the ring subsystem correspond to
S=1/2 andS=3/2 degeneracy.

The envelope of the lowestN=3 energy levels with three
electrons and two electrons in the ring run almost parallel to
each other as a function of the external field. One should
expect36 that for equal depth of the ring and the dot at very
large magnetic field the three-electron ground state corre-
sponds to electrons forming an equilateral triangle in the
ring, but in the studied magnetic field range we did not ob-
serve a distinct transition of the last electron from the dot to
the ring.

VI. SUMMARY AND CONCLUSIONS

We have considered a quantum dot inside a quantum
ring–a unique example of lateral coupling realized with con-
servation of circular symmetry of the confinement potential.
A simple model for the potential was used. The model as-
sumes parabolic confinement in both the dot and the ring so
approximate formulas can be given for the lowest-energy
single-electron dot- and ring-confined states. One-, two-, and
three-electron systems were studied using the exact diagonal-
ization approach. We have investigated the distribution of
electrons between the dot and the ring. This distribution de-
pends not only on the parameters of the confinement poten-
tial but it can also be altered by an external magnetic field,
which therefore can be used as a driving force to transfer the
electrons from the dot to the ring orvice versa. The passage
of an electron from the dot to the ring should be detectable
by a change of the Aharonov-Bohm magnetic period. The
present model also allows for simulation of the magnetic
field induced electron trapping in local potential cavities. We
have studied the exchange energy in the two electron system
with one electron confined in the dot and the other in the
ring. Due to the angular momentum transitions resulting
from the Aharonov-Bohm effect for the ring-confined elec-
tron, the singlet-triplet splitting exhibits a piecewise linear
dependence on the external magnetic field. This should be a
more elegant method for the control of the spin-spin cou-
pling than the smooth oscillatory dependence predicted for
side-by-side coupled dots.11
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FIG. 13. Ground-state energy(left scale)and the absolute value
of the ground-state angular momentum(right scale)for N=3, V0

=0, b=30 nm,"vi =6 meV, and"vo=27 meV. The dotted vertical
line marks the magnetic field for which the electron distribution is
changed. The vertical arrows on theL staircase correspond to triplet
state of the ring subsystem.
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Few-electron eigenstates confined in coupled concentric double quantum rings are studied by the exact
diagonalization technique. We show that the magnetic field suppresses the tunnel coupling between the rings,
localizing the single-electron states in the internal ring and the few-electron states in the external ring. The
magnetic fields inducing the ground-state angular momentum transitions are determined by the distribution of
the electron charge between the rings. The charge redistribution is translated into modifications of the fractional
Aharonov-Bohm period. We demonstrate that the electron distribution can be deduced from the cusp pattern of
the chemical potentials governing the single-electron charging properties of the system. The evolution of the
electron-electron correlations to the high field limit of a classical Wigner molecule is discussed.

DOI: 10.1103/PhysRevB.72.155316 PACS number�s�: 73.21.La

I. INTRODUCTION

The phase shift of the electron wave function by the vec-
tor potential1 results in oscillations of the quantum transport
properties2–6 of ring-shaped structures. The conductance7 of
metal and semiconductor rings is periodic in the external
magnetic field with a period determined by the magnetic flux
through the ring. On the other hand, in bound states of closed
circular quantum rings, the single-electron spectrum exhibits
periodic ground-state angular momentum transitions with the
period of the flux quantum.8 In confined interacting few-
electron systems fractional Aharonov-Bohm �AB� periodicity
of the spectrum was predicted9,10 and subsequently observed
in conductance oscillations measured11 in a transport spec-
troscopy experiment. Discussion of the fractional periodicity
in the context of the strength of the electron-electron inter-
action was given in Ref. 12. The fractional period for the
interacting electron system is also found in realistic model-
ing of InGaAs self-assembled quantum rings.13

Recently, fabrication of self-assembled strain-free double
concentric GaAs/AlGaAs quantum rings was reported.14

Concentric coupled quantum ring structures can also be pro-
duced by the atomic force microscope tip oxidation
technique.4,11 In this paper we present an exact diagonaliza-
tion study of the properties of few-electron states confined in
concentric quantum rings. In the presence of inter-ring tunnel
coupling the electron wave functions undergo hybridization,
forming molecular orbitals similarly as in artificial molecules
formed by lateral15–19 or vertical20–22 coupling of quantum
dots. The magnetic field AB period will be significantly dif-
ferent for the internal and external rings. Therefore, the ques-
tion arises, what will be the periodicity of the angular mo-
mentum transitions for such hybridized orbitals?

In the two-electron laterally coupled dots, the external
magnetic field enhances the localization of the wave func-
tions in each of the dots.17 Similar is the effect of the
electron-electron interaction favoring charge segregation. On
the other hand, in concentric rings the electron-electron in-
teraction will favor localization of the electrons in the exter-
nal ring while the diamagnetic term of the Hamiltonian will

tend to localize the electrons in the inner ring. We will show
that the redistribution of the electrons between the rings af-
fects the AB period of the angular momentum transitions,
which can be extracted from conductance measurements11 on
rings connected to electrodes. Moreover, the angular momen-
tum transitions result in characteristic cusp patterns of the
chemical potential determining the single-electron charging
of the structure. The alignment of the chemical potentials of
the confined electrons with the Fermi level of the gate elec-
trode can be detected in capacitance spectroscopy, which was
used earlier to study the electronic structure of self-
assembled quantum rings23 incorporated in a charge tunable
structure.

The present paper extends our previous work on the cou-
pling between a quantum dot and a quantum ring.24 For a
single quantum ring, the envelope of the single-electron
ground-state energy depends only on the strength of the con-
finement in the radial direction and not on the radius of the
ring. For the radial ring confinement energy ��, when the
radius of the ring is large as compared to the range of the
radial confinement, the ground-state envelope is approxi-
mately given24 by �����2+ ���c�2 /2, where �c is the cyclo-
tron frequency. Therefore, a continuous evolution of the elec-
tron distribution between the two rings should be expected as
a function of the magnetic field in contrast to the rapid
ground-state charge redistributions found previously for a
quantum dot coupled to a surrounding quantum ring.24

A study related to the present one was presented earlier
for two concentric superconducting rings25 in which the cou-
pling between the rings was mediated by the magnetic self-
field of the separate rings.

The paper is organized as follows. In Sec. II we present
the model, the results for the single-electron coupling are
given in Sec. III, and for the interacting electron systems in
Sec. IV. Section V contains the summary and conclusions.

II. THEORY

We consider a two-dimensional model of circularly sym-
metric double concentric rings with confinement potential
taken in the form
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V��� =
m�2

2
min��� − R1�2,�� − R2�2� , �1�

where m is the effective electron band mass, R1 and R2 stand
for the internal and external ring radii, � is the distance of the
origin, and � is the harmonic oscillator frequency for the
lateral confinement of the electrons in each of the rings.
Similar models were previously applied for laterally coupled
dots.17–19 In our calculations we take the GaAs value for the
mass m=0.067m0, the dielectric constant �=12.4, and as-
sume ��=3 meV. The adopted oscillator energy corre-
sponds to a length l=�2� /m�=27.5 nm which defines the
width d=2l of the considered rings. The Hamiltonian of a
single electron in a perpendicular magnetic field �B�, using
the symmetric gauge, is

h = −
�2

2m
� d2

d�2 +
1

�

d

d�
� +

�2L2

2m�2 +
m�c

2�2

8
−

1

2
��cL + V��� ,

�2�

where L is the angular momentum of the considered state,
and �c=eB /m. In the following we refer to the second, third,
and fourth term of the Hamiltonian as the centrifugal, dia-
magnetic, and the orbital Zeeman terms. We neglect the Zee-
man interaction of the electron spin with the magnetic field,
which at high fields polarizes the spins of the confined elec-
trons. The spin Zeeman interaction is decoupled from the
orbital degree of freedom, it does not influence the tunnel
coupling, and can be trivially accounted for as an energy
shift linear in B.24 The eigenstates of the N-electron Hamil-
tonian

H = �
i=1

N

hi + �
i=1

N

�
j�i

N
e2

4���0rij
�3�

are found with a standard26,27 exact diagonalization approach
using the single-electron eigenstates of operator �2� to con-
struct the basis elements in the form of Slater determinants.
We use the numerical method as originally developed to dis-
cuss the coupling between a quantum dot and a quantum
ring.24 The single-electron Hamiltonian �2� is diagonalized
using a finite difference scheme and the Coulomb matrix
elements are integrated numerically.

III. SINGLE ELECTRON COUPLING

Let us first discuss the single-electron states in the
coupled concentric rings. Figure 1 shows the potential felt by
an electron in the L=0 and L=6 states as well as the lowest-
energy orbitals �radial probability densities� for R1=120 nm
and R2=180 nm in the absence of a magnetic field. In the
lowest L=0 states the electron is equally probable to be
found in both rings and the orbitals possess a clear bonding
and antibonding character. On the other hand, for L�0, the
centrifugal potential pushes the electrons towards the outer
ring. In Fig. 1 we show the result for L=6, which clearly
shows that the lowest-energy orbital is shifted to the external
ring. As a consequence, the electron in the excited-state or-
bital occupies predominantly the inner ring and the zero of

the wave function is displaced from the center of the barrier
to the external ring. We see that the bonding-antibonding
character of the lowest-energy orbitals occupying both rings
is, for increasing L, replaced by a single-ring type of local-
ization. Therefore, the effect of the centrifugal potential is to
lift the tunnel coupling.

The energy levels are shown in Fig. 2 as functions of the
inner ring radius R1 for fixed R2=180 nm. Note that for R1
=0, the system consists of a quantum dot surrounded by a
quantum ring.24 The lowest-energy level for L=0 and B=0
�see Fig. 2�a�� is then associated with the ring-localized state
�of energy close to �� /2=1.5 meV� and the excited state
corresponds to an electron confined in the parabolic quantum
dot �of energy ��=3 meV�. For R1�0 the quantum dot is
transformed to a quantum ring. The energy of the orbital,
which is predominantly localized in the inner ring, first goes
below �� /2 and then returns to this value. Around R1
=80 nm the tunnel coupling appears between the internal and
the external rings, leading to an energy gap between the two
energy levels. Finally, for a single quantum ring �R1=R2

=180 nm� the spectrum resembles the one-dimensional har-
monic oscillator potential.24 For L=2 at R1=0 both the
lowest-energy levels correspond to orbitals localized in the
external ring. The energies are slightly shifted above �� /2
and 3�� /2 by the centrifugal potential. The internal ring
localized level becomes the first excited state near R1
=30 nm. The centrifugal potential lowers the height of the
inter-ring tunnel barrier �see Fig. 1�. Consequently, the
avoided crossings between the L=2 energy levels �R1

	100 nm� are visibly larger than for L=0. A larger centrifu-
gal shift of the energy levels and a stronger level interaction,
a signature of a stronger tunnel coupling, is observed for L
=6 �see Fig. 2�b��. For L=6 and B=0.5 T the diamagnetic
shift of the external ring-confined level is almost exactly

FIG. 1. �Color online� Radial profile of the confinement poten-
tial �black solid curve referred to the right vertical axis� of the two
concentric rings for R1=120 nm and R2=180 nm at B=0. The black
dotted curve shows the sum of the confinement potential and the
centrifugal potential for L=6. Red �light gray� and blue �dark gray�
curves show the square of the modulus of the two lowest-energy
single-electron wave functions multiplied by Jacobian � at B=0 for
L=0 and L=6, respectively. The lower-energy orbitals are given by
the solid curves and the higher-energy orbitals by the dashed
curves.
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cancelled by the orbital Zeeman term �compare the lowest
black and blue curves at R1=0 in Fig. 2�b��. However, the
Zeeman term dominates for the state localized in the internal
ring. As a consequence, the energy levels change their order
in a narrow anticrossing near R1=90 nm.

The dependence of the single-electron energy spectrum on
the external magnetic field is plotted in Figs. 3�a�–3�c� for
fixed R2=180 nm and different internal ring radii. For R1
=60 nm there is no tunneling between the rings and the spec-
trum is a simple sum of two single-ring spectra. The spec-
trum corresponding to the internal ring exhibits angular mo-
mentum transitions with a period of 0.214 T while the period
of the one corresponding to the external ring is 0.0406 T.
These periods correspond to the flux quantum passing
through an effective one-dimensional ring of radius 55.4 nm
and 180 nm, respectively. The ground state corresponds to
the electron in the internal ring, except for B	0.2 T and B
	0.65 T. The inner-ring localized states are favored by the
−�1/���d /d�� term of the kinetic energy.

For R1=100 nm �see Fig. 3�b�� the inter-ring coupling is
non-negligible. For comparison, the ground-state energy of
the single quantum ring of radius 180 nm is also shown in
Fig. 3�b� by the black curve. For B�0.15 T, sightly above

the ground state, we observe more frequent angular momen-
tum transitions than in the ground state. This energy band
corresponds to the electron predominantly confined in the
external ring. With increasing magnetic field, this band
closely approaches the single-ring spectrum �cf. the black
curve�, which indicates that the electron becomes entirely
localized in the external ring. Thus at high magnetic fields
the spectrum of the internal and external rings become de-
coupled. Note that the energy band corresponding to the lo-
calization of the electron in the external ring becomes dis-
tinct only for L�4.

Energy levels with the same angular momentum change
their order through avoided crossings. The lowest-energy
levels, for L�2, possess two minima, after and before the
avoided level crossing. The wave functions and the poten-
tials for the anticrossing of the L=5 energy levels �see the
anticrossing of red lines near 0.38 T at Fig. 3�b�� are pre-
sented in Fig. 3�d�. The L=5 eigenstate for B=0.2 T is the
lowest-energy state of the external ring energy band �see Fig.
3�b� and the paragraph above� and its wave function is pre-
dominantly localized in the outer ring �see Fig. 3�d��. At B
=0.38 T, corresponding to the smallest distance between the
anticrossing energy levels, the electron can be found with a
comparable probability in both rings. After the avoided
crossing the diamagnetic potential localizes the electron in
the internal ring. For B=0.7 T the L=5 state is localized
almost entirely in the inner ring �see purple curve in Fig.
3�d�� when it corresponds to the ground-state of the system
�Fig. 3�b��. Concluding, for B=0 and fixed nonzero L the
lowest energy level is predominantly localized in the external
ring due to the centrifugal potential. For high magnetic field,
the lowest-energy state for a fixed L is transferred to the
internal ring by the diamagnetic term of the Hamiltonian.

For R1=120 nm �Fig. 3�c�� the coupling between the two
rings is stronger and the difference between the centrifugal
potentials in both rings is smaller. Consequently the two de-
coupled spectra of the internal and external ring are only
distinguishable for B�0.5 T. The amount of electron charge
localized in the internal ring �integrated over � from 0 to
�R1+R2� /2� for the ground state is plotted in Fig. 4, together
with the ground-state angular momentum. For low magnetic
field the ground-state wave functions are almost equally dis-
tributed between the two rings and at high field they are
entirely localized in the inner ring. Consequently, the period
of the ground-state oscillations increases with B �see the
slope of the black staircase in Fig. 4�. Note that the decou-
pling of the spectra in Fig. 3�c� for B�0.5 T �R1=120 nm�
is accompanied by the transfer of the electron to the internal
ring �see Fig. 4�. For R1=140 nm many more angular mo-
mentum transitions are needed before the electron becomes
entirely localized in the inner ring.

At the end of this section we would like to explain the
role of the adopted finite value of the rings’ width for our
results. The studied rings radii �R	150 nm� and width �d
=55 nm� correspond to structures produced by the tip oxida-
tion technique.4 For instance, the ring of Ref. 4 is character-
ized by R=132 nm and d=65 nm. In the limit of infinite
oscillator energy ���� the rings become strictly one-
dimensional �d→0� and decoupled due to the infinite inter-

FIG. 2. �Color online� Two lowest single-electron energy levels
for L=0, and L=2 at B=0 �a� and for L=6 at B=0 and 0.5 T �b�, as
functions of the internal ring radius for an external ring of radius
R2=180 nm.
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ring barrier. The energy levels of states confined in one-
dimensional rings only depend on the magnetic flux8 Ei�L�
= ��2 / �2mRi

2���L−�i /�0�2, where i=1, 2 stands for the in-
ternal and external ring localization respectively, �0=h /e is
the flux quantum, and �i corresponds to the flux through the
radius Ri. It is clear that the localization of the lowest-energy
level of a pair of one-dimensional rings will oscillate
abruptly between internal and external rings when the mag-
netic field is increased. However, this switching is deprived
of physical consequences since due to the infinite inter-ring
barrier the electron is not allowed to release its energy tun-
neling from one ring to the other. Note that a trace of the
discussed localization switching can be observed in Fig. 3�a�
for negligible inter-ring tunnel coupling. Decoupled spectra
with short appearances of the external ring localization in the
lowest-energy state similar to Fig. 3�a� are obtained for R1
=120 nm, R2=180 nm for d decreased from 55 nm �as in
Fig. 3�c�� to 13.5 nm ���=50 meV�. The rapid localization
switching disappears for the nontrivial case of a non-
negligible tunnel coupling �cf. Figs. 3�b�–3�d��.

FIG. 3. �Color online� �a�–�c� Single electron spectrum for coupled rings with the external ring radius R2=180 nm and the internal ring
radius R1=60 nm �a�, 100 nm �b�, and 120 nm �c�. Energy levels corresponding to different angular momenta up to 8 were plotted with
different colors. In �b� the ground state of a single ring with radius 180 nm is shown by the black curve. �d� Lowest energy L=5 wave
function �solid lines� for R1=100 nm, before �B=0.2 T� at �0.38 T� and after �0.7 T� the avoided crossings of the energy levels �cf. red lines
in �b�� corresponding to states localized in the external and internal ring, respectively. Dotted curves refer to the right vertical axis and show
the sum of the confinement, centrifugal, and diamagnetic potentials.

FIG. 4. �Color online� The discontinuous lines show the amount
of charge localized in the internal ring for the single-electron
ground state. The results correspond to the external radius R2

=180 nm and internal radius R1=120 nm �black lines� and R1

=140 nm �red lines� as functions of the magnetic field. The stair-
cases at the lower part of the figure are referred to the right axis and
show the ground-state angular momentum.
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IV. FEW-ELECTRON EIGENSTATES

Let us now discuss the effect of the electron-electron in-
teraction on the ground-state properties of few-electron sys-
tems. We find that for the interacting two-electron system the
ground-state angular momentum takes on all the subsequent
integer values, such as for a single quantum ring. The upper

bound for the ground-state angular momentum of the two-
electron system 	�L is plotted in Fig. 5�a� as a function of
the external magnetic field. In contrast to the single-electron
problem, no influence of the inner ring on the ground-state
angular momentum is observed for R1
90 nm. This indi-
cates that the Coulomb repulsion prevents the electrons from
occupying the inner ring if its radius is too small. As a sig-
nature of the inter-ring coupling we see for R1=115 nm, 120
nm, and 122 nm that the ground-state angular momentum
increases initially more slowly than for the single R
=180 nm ring, indicating the presence of electron charge in
the internal ring. At a certain value of magnetic field, how-
ever, the lines change their slope and tend toward the values
obtained for a single ring of radius 180 nm. In the discussed
range of the magnetic field, the inter-ring coupling for the
internal ring radii R1=130 and 140 nm is preserved.

Dotted lines in Fig. 5�a� show the 	 values for the nonin-
teracting electron couple for a single ring with R=180 nm
�black dots� and for the double ring with R1=120 nm and
R2=180 nm �orange dots�. For the single R=180 nm ring,
the 	 values for the interacting and noninteracting cases run
parallel to one another. However, for R=120 nm the 	 values
for the noninteracting pair decreases its slope as the magnetic
field is increased, while for the interacting pair an increase of
the slope is observed instead. This is because for high mag-
netic fields the interacting electrons tend to occupy the ex-
ternal ring �cf. Fig. 5�b�� to minimize their mutual repulsion

FIG. 5. �Color online� �a� Upper bound for the two-electron
ground-state angular momentum for R2=180 nm and various values
of the inner ring radius. The dotted lines show the values in the
absence of the electron-electron interaction. �b� Charge localized in
the inner ring as function of the magnetic field for R2=180 nm and
different radii of the inner ring. �c� The two-electron energy spec-
trum for R1=122 nm and R2=180 nm. The spin singlets are plotted
as solid lines and the triplets with dotted lines. In the bottom of the
figure the ground-state angular momentum staircase is plotted.

FIG. 6. �Color online� Three electrons in two concentric rings.
�a� Charge localized in the inner ring for R2=180 nm and various
R1 radii. �b� Upper bound for the ground-state angular momentum.
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in contrast to the single-electron problem in which the dia-
magnetic term of the Hamiltonian promotes the localization
in the inner ring �see Fig. 4�.

The energy spectrum for R1=122 nm, for which the local-
ization of the charge in the external ring appears in the most
abrupt way, is plotted in Fig. 5�c�. Below B=0.4 T one can
observe two bands of energy levels. In the ground state the
spin singlets correspond to even angular momenta and the
spin triplets to odd angular momenta. Opposite correspon-
dence is found in the excited energy band. The two bands
approach each other near B=0.5 T, but never cross. The re-
lation between the ground-state spin and the even/odd parity
of the angular momentum remains unchanged �cf. singlets
and triplets of L=24 marked in orange in the right upper part
of Fig. 5�c��.

The distribution of the charge between the rings in the
three-electron system is qualitatively similar to the two-
electron case. At zero magnetic field the electrons refuse to
occupy the inner ring if its radius is too small �see Fig. 6�a��.
Some electron charge is present in the internal ring due to
inter-ring tunneling, which is lifted by the application of the
external magnetic field. The ground-state angular momentum
at high magnetic field tends toward the value obtained for a
single, external ring �see Fig. 6�b��. For R1=140 nm, in the
range of the magnetic field presented in Fig. 6, the inter-ring
coupling is not broken �cf. Figs. 5�a� and 5�b� for R1
=130 nm and R1=140 nm�. In the high magnetic field limit,
when the magnetic length becomes small compared to the
size of the confining nanostructures, the charge distribution
in few-electron systems can be identified28 with the lowest-

energy configuration of a classical system29 of point-charge
particles. Therefore, one should expect that in our model,
assuming equal depths of both rings, the few-electron system
will eventually become entirely localized in the external ring
at still higher magnetic fields.

Next, we study the evolution of the ground-state electron-
electron correlations with increasing magnetic field. For this
purpose we consider the pair-correlation function plots given
in Figs. 7 and 8 for two- and three-electron systems, respec-
tively. The position of one of the electrons is fixed in the
middle of the external ring, namely in the point �180 nm,0�.
For two electrons at zero magnetic field the second electron
is found with an almost equal probability in the outer and
inner rings opposite to the fixed electron �Fig. 7�a��. For 0.6
T �Fig. 7�d�� the second electron occupies mainly the exter-
nal ring with a small leakage of the probability density to the
internal ring �cf. also the orange line in Fig. 5�b��. On the
other hand, in the three-electron system at B=0 there is al-
ready a pronounced shift of the pair-correlation function to
the external ring �Fig. 8�a��. Figs. 7 and 8 show that the
infinite magnetic field limit is obtained in two steps: first the
charge is removed from the internal ring and then the angular
correlations between the electrons start to increase. The
Wigner type of localization, i.e., separation of electron
charges in the internal coordinates, increases with each
ground-state angular momentum transition tending to the
point-charge limit.

FIG. 7. Pair correlation function for two-electron ground state in
concentric rings with radii R1=120 nm and R2=180 nm. One of the
electrons is fixed at the point �180 nm,0�.

FIG. 8. Same as Fig. 7, but now for three electrons.

B. SZAFRAN AND F. M. PEETERS PHYSICAL REVIEW B 72, 155316 �2005�

155316-6

praca 11A 124



The above discussed AB oscillations associated with the
angular momentum transitions can be measured through the
magnetic field dependence of the conductance11 as per-
formed in phase-sensitive transport spectroscopy. Such trans-
port measurements require contacts to be attached to the
nanostructure. Connection of terminals to rings formed by
the surface oxidation technique4,11 is straightforward. On the
other hand, attachment of electrodes to self-assembled
rings14,23 has not been reported so far. However, the ground-
state angular momentum transitions can still be extracted
from the chemical potential as measured in a capacitance
experiment.23 The magnetic field dependence of the chemical
potentials �N, defined as the ground-state energy difference
of N and N−1 electrons, is presented in Fig. 9. Figure 9�a�
shows the chemical potential for a single quantum ring of
radius 180 nm. For a single electron the chemical potential is
equal to the ground-state energy. The potential exhibits cusps
having a � shape at the angular momentum transitions.
These � cusps are translated into V-shaped cusps of the
chemical potential for the two-electron system. The angular
momentum transitions in the two-electron system are twice
as frequent10 as for N=1, hence in the �2 plot we observe
two � cusps per one V cusp. Similarly, in the cusps’ pattern
of the three-electron chemical potential we obtain three �’s
per two V’s. Below 0.7 T for the double-ring structure with
R1=140 and R2=180 nm, we obtain qualitatively the same

spectrum of a single-ring type, only the AB oscillations pe-
riod is increased due to the reduced effective R value. This is
because for R1=140 nm the inter-ring coupling is not broken
by the magnetic field for B
0.7 T �see Figs. 4, 5�a�, and
6�a��. The occupied orbitals are equally distributed between
the rings.

Figure 9�b�, for the doubled ring with internal radius R1
=100 nm, corresponds to the situation when a small mag-
netic field localizes the single-electron ground states in the
internal ring and ejects the entire charge of the two- and
three- electron systems to the external ring �see Figs. 5�b�
and 6�a��. As a consequence, for �2 we observe seven to
eight � cusps between each couple of V’s. On the other
hand, the pattern of cusps in the chemical potential of the
three-electron system resembles the single-ring case �Fig.
9�a��, only below B
0.1 T a small perturbation of the pat-
tern is observed.

Figure 9�c� shows the chemical potentials for R1
=120 nm, for which the inter-ring tunnel coupling is quite
significant at B=0, but becomes suppressed in the studied
range of magnetic field �see Figs. 4, 5�a�, 5�b�, and 6� for all
considered N. Note that for N=1 and 2, the range of the
chemical potential modification by the magnetic field is an
order of magnitude larger than for a single ring �see Fig.
9�a��. A distinctly larger range of chemical potential variation
can also be noticed for N=1 in Fig. 9�b�. This increase is due

FIG. 9. �Color online� Magnetic field dependence of the chemical potentials for 1, 2, and 3 electron systems in a single ring of radius
R=180 nm �a�, in double concentric rings of external ring radius R2=180 nm and internal ring radius R1=100 nm �b�, and R1=120 nm.
Chemical potentials for one and three electrons have been shifted for clarity. �d� Deviation of the chemical potentials from the local average
�see text� for plot �c�.
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to the magnetic field lifting of the inter-ring coupling present
at B=0. For larger N the Coulomb repulsion weakens the
tunnel coupling at B=0, which explains the weaker depen-
dence of the envelopes of �3 and �2 in Fig. 9�b� and �3 in
Fig. 9�c�.

In order to extract the fine features of the cusps’ pattern
we fitted slowly varying sixth order polynomials to the
chemical potentials in Fig. 9�c� and then subtracted from �N
this local average provided by the fitted polynomial. The
result is displayed in Fig. 9�d�. For N=1 we see an enlarge-
ment of the AB oscillation period as the electron becomes
localized in the inner ring. The low magnetic field �-V cusp
sequences for N=2 and 3 resemble the single-ring localiza-
tion �see Fig. 9�a��. For B�0.45 T when both electrons are
ejected to the external ring and the single electron is local-
ized in the inner ring, we see in �2 several �’s per one V, as
in Fig. 9�b�. For �3 the single-ring type of pattern is found
above B�0.45 T. In the transition region �0.35 T
B

0.45 T� the cusp structure is less pronounced. This is due
to the fact that in the B range corresponding to the transition
of the electrons to the external ring, the angular momentum
increases very fast, tending toward the angular momentum of
the ground state in the single quantum ring �see Figs. 5�a�,
5�c�, and 6� of radius R=180 nm.

V. SUMMARY AND CONCLUSIONS

We studied the coupling between concentric rings for the
few-electron eigenstates using the exact diagonalization ap-
proach. We find that the strength of the tunnel coupling de-
creases with angular momentum since the centrifugal poten-
tial favors the localization of the electrons in the external

ring. At high magnetic field, for which the ground state cor-
responds to high angular momentum, the tunnel coupling
between the rings is suppressed and the energy spectrum
becomes decoupled into spectra of separate external and in-
ternal rings. The ground state for the single electron becomes
entirely localized in the inner ring due to the diamagnetic
term of the Hamiltonian, enhancing the localization of the
electron orbits. In contrast, the few-electron states at high
magnetic field become localized in the external ring to mini-
mize their mutual Coulomb repulsion. In our model, assum-
ing a similar radial confinement potential near the centers of
both rings, we find that the order of the spin-orbital ground-
state symmetries is not perturbed by the inter-ring coupling,
only the stability intervals of the subsequent ground states
are affected by the coupling. The modification of the electron
distribution between the external and internal rings is trans-
lated into the frequency of the ground-state angular momen-
tum transitions on the magnetic field scale. The electron dis-
tribution can be extracted from the cusp patterns of the
single-electron charging lines, i.e., the chemical potential de-
pendence on the magnetic field. Suppression of the tunnel
inter-ring coupling and localization of the ground states in
one of the rings under the influence of a magnetic field is
accompanied by a distinctly stronger increase of the chemi-
cal potentials compared to the charging spectra in which the
charge distribution between the rings is not modified.
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In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot
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The orbital effects of the in-plane magnetic field on a two-electron harmonic quantum dot are studied using
a variational method. For flat quantum dots the singlet-triplet transitions appearing in a perpendicular magnetic
field are absent in a magnetic field oriented parallel to the plane of confinement. Instead, a degeneracy of
orbital energies for symmetric and antisymmetric states at high in-plane magnetic field is observed. This
degeneracy is due to the formation of Wigner molecules in the laboratory frame of reference with charge
islands elongated along the direction of the magnetic field and localized within the plane perpendicular to it.

DOI: 10.1103/PhysRevB.70.235335 PACS number(s): 73.21.2b, 73.22.Gk

I. INTRODUCTION

Epitaxially grown quantum dots1 usually have a flat ge-
ometry with a confinement in the growth direction much
stronger than the in-plane confinement. Application of a
magnetic field oriented along the growth direction leads to a
number of extensively studied2 effects, i.e., angular momen-
tum and spin transitions, which are observed in transport
spectroscopy3 as cusps in the single-electron charging lines.
A high perpendicular magnetic field induces separation of
electron charges, i.e., Wigner crystallization, which for cir-
cular dots appears only in the internal degrees of freedom.
Laboratory-frame Wigner crystallization is a realizable fea-
ture of the ground state only at the angular momentum
transitions.5 On the other hand, Wigner molecules can be
observed in anisotropic quantum dots if the system possesses
a nondegenerate classical4 counterpart reproducing the sym-
metry of the confinement potential.5,6 The pinning of Wigner
molecules by a local potential cavity7,8 or by an external
charged defect9 was studied recently. In this paper we con-
sider the breaking of the rotational symmetry of the quantum
dot by the application of an in-plane magnetic field, and we
show that it can result in a laboratory-frame Wigner localiza-
tion.

The effect of the external magnetic field on the electron
system is proportional to its flux through the area encircled
by the electrons. Therefore, the orbital effects of the in-plane
magnetic field are weaker than those of the perpendicular
field and in the limit of a strictly two-dimensional confine-
ment the in-plane magnetic field does not influence the or-
bital wave functions. Such an in-plane magnetic field
has been applied experimentally10–12 to investigate spin ef-
fects(Zeeman splitting and spin-orbit13,14 interactions). Nev-
ertheless, the electron wave functions in real dots have a
finite spread in the growth direction. In pillar quantum dots
based on AlxGa1−xAs/InxGa1−xAs double barrier hetero-
structures15 the quantum well has a width of 12 nm, and the
width of the GaAs quantum well in the planar vertical dot16

is about 17 nm. The lateral quantum dots17 are based on a
gated two-dimensional electron gas(2DEG) formed at a
GaAs–nAl xGa1−xAs heterojunction. The vertical spread of
the electron wave function in the 2DEG for typical values of
the electron density and dopant concentration is also of the

order 10–15 nm.18 As a consequence, the orbital effects of
the field are nonzero and can be visible for instance in the
diamagnetic shifts12 of chemical potentials. The role of the
in-plane magnetic field for the attenuation of tunneling be-
tween vertically19 and laterally20 coupled dots has been
pointed out.

The effect of the in-plane magnetic field on few-electron
systems in a single dot has not been studied so far. The
purpose of the present paper is to provide such a study for
the two-electron system—the simplest few-electron eigen-
problem. We show that although for strong vertical confine-
ment and relatively weak magnetic fields the orbital related
triplet-singlet energy difference(the exchange energy20) is
positive and approximately constant, its limit value in the
high magnetic field falls to zero, which results from the sepa-
ration of the electron charges appearing due to Wigner crys-
tallization. In vertical and lateral quantum dots the confine-
ment in the growth direction has a rectangular or triangular
shape. In the present paper we are interested in the qualita-
tive effects of the in-plane field, so we consider a harmonic
confinement potential that largely simplifies the calculations
due to the separation of the center-of-mass motion.

This paper is organized as follows. The next section out-
lines the theory and the method to solve the Hamiltonian
eigenvalue problem. In Sec. III the results and discussion are
given. The summary and conclusions are presented in Sec.
IV.

II. THEORY

We consider a pair of electrons in a three-dimensional
harmonic quantum dot, rotationally symmetric with respect
to the z axis and subject to a magnetic field oriented along
the x direction. We apply the Landau gaugeA =s0,−Bz,0d
under which the Hamiltonian reads

H = − "2s¹1
2 + ¹2

2d/2m+ mv2sx1
2 + y1

2 + x2
2 + y2

2d/2

+ msvz
2 + vc

2dsz1
2 + z2

2d/2 + i"vcsz1 ] /] y1 + z2 ] /] y2d

+ e2/4pee0ur 1 − r 2u, s1d

where"vz is the confinement energy in thez direction,"v is
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the energy of confinement in thesx,yd plane,m is the elec-
tron band mass,vc=eB/m is the cyclotron frequency, ande
is the dielectric constant. For our numerical calculations ma-
terial data of GaAs are usedm=0.067 ande=12.9. We study
the orbital effects neglecting the spin Zeeman interaction,
which, however, can be trivially accounted for.

Introducing center-of-massR=sr 1+r 2d /2 and relative po-
sition r =r 1−r 2 vectors, one can separate the Hamiltonian
into a sum of center-of-mass and relative HamiltoniansH
=Hcm+Hrel with

Hcm= − "2¹cm
2 /2M + Mv2sX2 + Y2d/2 + Msvz

2 + vc
2dZ2/2

+ i"vcZ ] /] Y s2d

and

Hrel = − "2¹rel
2 /2m + mv2sx2 + y2d/2 + msvz

2 + vc
2dz2/2

+ i"vcz] /] y + e2/4pee0r , s3d

whereM =2m andm=m/2. The two-electron wave function
can be written as a product of center-of-mass and relative
eigenfunctions

Csr 1,r 2d = Fcmfsr 1 + r 2d/2gFrelsr 1 − r 2d. s4d

It can be verified by a direct calculation that the ground-state
energy of the center-of-mass motion equalsEcm="hv+fvc

2

+sv+vzd2g1/2j /2, and that the ground-state wave function
reads(up to a normalization constant)

FcmsRd = exps− bxX
2 − byY

2 − bzZ
2 + ibzyZYd, s5d

with bx=Mv /2", by=MvÎ1+vc
2/ svz+vd2/2", bz

=MvzÎ1+vc
2/ svz+vd2/2", andbzy=Mvcv / svz+vd".

The relative Hamiltonian(3) commutes with the parity
operatorsr →−r d. States with even(odd)parity are symmet-
ric (antisymmetric)with respect to the interchange of elec-
trons and therefore correspond to spin singlets(triplets). The
relative Hamiltonian commutes also with operators of inver-
sion inx directionsx→−xd and in the plane perpendicular to
the magnetic fieldfsy,zd→−sy,zdg. In the following we will
label the states by their parities inx and y directions put in
parentheses by the first and second descriptor, respectively
[for instance,(even,odd)stands for a state even inx direction
and odd in the(y, z) plane].

In the absence of the electron-electron interaction the con-
tribution of the diamagneticsmvc

2z2/2d and the paramagnetic
si"vcz] /]yd terms describing the in-plane magnetic field in
Hamiltonians(1)–(3) can be evaluated analytically. For the
center-of-mass Hamiltonian(2) and the wave function(5) the
expectation values of the diamagnetic and paramagnetic
terms equal Mvc

2/8bz="vc
2/4vzÎ1+vc

2/ svz+vd2 and
−"vcbzy/4bz=−"vvc

2/2svz+vdvzÎ1+vc
2/ svz+vd2, respec-

tively. In the limit of infinite vz the electrons become con-
fined two-dimensionally in thez=0 plane, which leads to the
vanishing of the diamagnetic and paramagnetic contributions
(it is also evident from the form of the corresponding terms
in the Hamiltonian). In order to maintain the values of the

magnetic contributions to the energy,vc has to grow simul-
taneously withvz. For thevc/vz ratio kept constant the dia-
magnetic contribution is approximately linear invc and the
paramagnetic contribution is approximately constant.

In order to solve the eigenequation for the relative motion
Hamiltonian in the presence of the interaction we use the
variational method with the following trial wave function:

Frelsr d = exps− ax2 − by2 − gz2 + iczyd o
i,j ,k=0

i+j+køM

dijkxiyjzk,

s6d

wherea, b, g, c are the nonlinear parameters anddijk is the
linear variational parameter,M controls the number of basis
elements. In the absence of the interaction, the wave function
(6) reproduces exactly the analytic eigenfunctions using a
finite number of terms in the expansion. In this sense the
present approach is equivalent to the three-dimensional gen-
eralization of the method used by Drouveliset al.22,23 for
two-dimensional anisotropic quantum dots with perpendicu-
lar magnetic field. Similar single-electron wave function was
used by Harjuet al.21 for the configuration-interaction study
of the electron pair in two-dimensional laterally coupled
quantum dots.

The exact wave function for thes-type states in a
harmonic-oscillator confinement potential is asymptotically
linear in the limitr →0 (has a cusp atr =0), which is related
to the Coulomb interaction singularity. Sincer cannot be
developed in a MacLaurin series in Cartesian coordinates the
present and previously used wave functions21–23 cannot ac-
count for this linearity in the nearest neighborhood of the
origin. We have performed test calculations in order to esti-
mate the importance of this shortcoming. For this purpose
we have solved the eigenequation for Hamiltonian(1) for
B=0 and a spherically symmetric potential"v="vz
=3 meV in a numerically exact manner with a finite differ-
ence method. Table I shows the convergence of the energy
estimates obtained with the wave function(6) to the exact
ground-state eigenvalue. Comparison of the wave functions
is presented in Fig. 1. ForM =6 the wave function has a
shallow local minimum at the origin and the maximum of the
wave function is shifted to the right with respect to the exact
solution. ForM =22 the local minimum gets almost as deep

TABLE I. Convergence of the energy estimates obtained with
wave function(6) to the exact ground-state energy(last row)of the
relative Hamiltonian as function ofM (the number of terms used in
the wave function isK) for B=0 and a spherically symmetric con-
finement potential with"v="vz=3 meV.

M K EsmeVd

0 1 8.6100

2 5 8.4336

6 30 8.4187

14 204 8.4145

22 650 8.4134

exact 8.4134
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as in the exact solution, the wave function becomes linear
between 5 and 15 nm, and the position of the maximum of
the wave function is improved with respect to theM =6 wave
function. The expectation value of the energy is a functional
of the radial probability density, which is depicted in the
inset of Fig. 1. We can see that the exact radial probability
density and the one calculated forM =22 are indistinguish-
able, which explains the high precision of the energy esti-
mates(cf. Table I). The region of the trial wave function
nonlinearity around the origin can be made arbitrarily small,
and a numerically exact value of the energy and a nearly
exact radial probability density are obtained. Therefore the
application of the proposed wave function is well justified.
The cusp shortcoming concerns also the states ofp symme-
try, but its importance is smaller since forp states the func-
tions vanish at the origin. Wave functions of higher angular
momentum have no cusps at the origin. The cusps in the
exacts andp symmetry states dissapear24 in the Wigner crys-
tallization limit for which a Coulomb hole is formed in the
relative wave function nearr =0.

III. RESULTS AND DISCUSSION

A. Spherical quantum dot

We consider first the effect of the magnetic field on a
spherical quantum dot. The lowest energy levels for all parity
symmetries calculated with respect to the lowest Landau
level are plotted in Fig. 2 as function of the external mag-
netic field. The solid(dotted) lines correspond to states of
even(odd) total parity, i.e., to singlet(triplet) states. In the
absence of a magnetic field the ground state corresponds to
the angular momentum quantum numberL=0, the lowest
excited states of(even, odd)as well as with(odd, even)
parity correspond toL=1. The lowest(odd, odd) energy
level corresponds toL=2. The magnetic field breaks the
spherical symmetry of the system so only thex-component

of the angular momentum is quantized. Figure 2 shows that
angular momentum and spin transitions appear in the ground
state. Thex component of angular momentum of the lowest
singlet (triplet) states takes values of even(odd) parity inte-
gers(in " units). The angular momentum transitions and the
singlet-triplet oscillations are qualitatively similar to the ef-
fects appearing in two-dimensional circular quantum dots in
the presence of a perpendicular magnetic field.23,25 The ori-
gin of the singlet-triplet oscillations in two-electron two-
dimensional quantum dots is well understood. The increase
of the magnetic field pushes the maximum of the relative
wave function toward the origin(in the three-dimensional
case—towards thex axis) increasing the mean value of the
Coulomb interelectron repulsion. In consequence the state of
a higher angular momentum(with stronger electron separa-
tion) acquires lower energy beyond some critical value of the
magnetic field. The ground-state angular momentum(with-
out the spin Zeeman term)takes the subsequent integer val-
ues as the magnetic field increases. The lowest-energy states
of the odd(even)angular momentum are realized in the trip-
let (singlet)spin configuration,25 which leads to the singlet-
triplet oscillations.

On the other hand, the order of the lowest singlet and
triplet energy levels that are odd in thex direction is not
affected by the field(cf. Fig. 2). Here, the magnetic-field-
induced localization of the relative wave function around the
x axis does not essentially decrease the electron-electron dis-
tance since in these states the electrons are separated in thex
direction. The driving force for the singlet-triplet oscillations
is therefore absent in this branch of energy levels.

The inset to Fig. 2 shows the contours of the relative
probability density for the lowest singlet state integrated over
the x direction. Note that in the integration the minimum of

FIG. 1. Ground-state wave function of the relative Hamiltonian
calculated for the parameters used in Table I. Solid line shows the
exact wave function, the dashed(dotted) line is the wave function
obtained by the variational method forM =6sM =22d. Inset: com-
parison of the exact radial probability density(solid line) with the
dependence obtained variationally withM =22 (open circles).

FIG. 2. Energy eigenvalues of the relative Hamiltonian(3) cal-
culated with respect to the lowest Landau level for a spherical quan-
tum dot with "v="vz=3 meV (Zeeman effect neglected). The
solid and dotted lines show the singlet and triplet energy levels,
respectively. In parentheses the parity of the corresponding eigen-
states in thex direction and within the(y, z) plane is given. The
numbers indicate thex component of the angular momentum in"
units. The inset shows the lowest singlet probability density inte-
grated over thex direction for magnetic fieldsB=0, 12, and 18 T.
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the probability density at the origin forB=0 (cf. Fig. 1)
disappears. The lowest singlet states forB=0, 12, and 18 T
correspond to thex component of the angular momentum
equal to 0, −2", and −4", respectively. For nonzero angular
momentum, the probability density is totally removed from
the x axis. The densities exhibit perfect circular symmetry
around thex axis, although it is not evident from the form of
the Landau-gauge Hamiltonian[cf. Eq. (3)]. This result can
serve as an additional test of the reliability of the numerical
approach applied.

B. Flat quantum dot

The low-energy spectrum for a flat quantum dot with
"v=3 meV and"vz=12 meV is plotted in Fig. 3(Zeeman
effect neglected). For this value of thez confinement energy
the spread of the electron charge density in thez direction
2Dz=2kz2l1/2=Î2" /mvz is about 13.75 nm. The magnetic
field lifts the degeneracy of the triplet energy levels, which
for B=0 correspond to states withz-component angular mo-
mentum equal to ±". In the presence of a magnetic field
oriented along thex direction none of the components of the
angular momentum commute with the Hamiltonian and
therefore none of them are quantized. The external magnetic
field leads to singlet-triplet degeneracy in contrast to singlet-
triplet oscillations observed in a spherical dot(cf. Fig. 2).
Figures 2 and 3 show that the lowest singlet as well as the
lowest triplet states have evenx direction parity, indepen-
dently of the value of the magnetic field and the strength of
the electron-electron interaction.

The singlet-triplet energy splitting in the absence of the
spin Zeeman effect is shown in more detail in Fig. 4. The
exchange energy for the spherical quantum dot has a discon-
tinuous derivative when angular momentum transitions ap-
pear in the lowest singlet or triplet states. For small aniso-

tropy of the confinement potential(cf. the line for "vz
=3.5 meV), the exchange energy becomes a smooth function
of the magnetic field. The oscillations of the energy differ-
ence around zero have a decreasing amplitude with growing
confinement energy in thez direction. For"vzù8 meV the
oscillations disappear and the exchange energy decreases
monotonically to zero with the external field. The thick
dashed line in Fig. 4 shows the spin Zeeman splitting be-
tween the singlet and triplet states(−B"g*mB with the effec-
tive Landé factorg* =−0.44). The crossing of this line with
the exchange energy curves indicate the value of the mag-
netic field for which the triplet becomes the ground state.

The inset to Fig. 4 shows the exchange energy in the low
magnetic field region. ForB=0 T the singlet-triplet energy
splitting is a decreasing function of the strength of confine-
ment in thez direction. As thez size of the quantum dot is
decreased the system starts to approach the strictly two-
dimensional limit in which the singlet-triplet splitting for
"v=3 meV is 1.3 meV. The increase of thez confinement
energy affects more strongly the energy of the singlet state,
increasing the value of the wave function at the origin(cor-
responding to both electrons localized in the same position).
The triplet wave function vanishes at the origin due to the
Pauli exclusion principle.

Let us now look at the origin behind the magnetic-field-
induced singlet-triplet degeneracy for the dot with"vz
=12 meV. The contour plots in Fig. 5 show the relative prob-
ability density integrated overx (left panel) and z (right
panel) coordinates for the lowest singlet state. The quasi-
three-dimensional plots at the right-hand side of Fig. 5 show
the surface in thez.0 half space at which the probability
density falls to one-fifth of its maximum value. Region in-
side the surface contains roughly 90% of the probability. For
B=0 T the probability density integrated over thex direction
exhibits local maxima outside they=0 line (cf. left panel of
the contour plot in Fig. 5). The magnetic field transforms
them into separated islands on the(y, z) plane. ForB=0 T

FIG. 3. Energy eigenvalues of the relative Hamiltonian calcu-
lated with respect to the lowest Landau level for a flat quantum dot
with "v=3 meV and"vz=12 meV. The solid and dotted lines
show the singlet and triplet energy levels, respectively. In parenthe-
ses the parity of the corresponding eigenstates in thex direction and
within the (y,z) plane is given.

FIG. 4. Triplet-singlet energy difference(without the spin Zee-
man effect)as function of the magnetic field for"v=3 meV and
various confinement energies in thez direction. The thick dashed
line shows the spin Zeeman splitting between the triplet and the
singlet states. The inset shows the low-magnetic-field region.

SZAFRAN et al. PHYSICAL REVIEW B 70, 235335(2004)

235335-4

praca 12A 131



the density integrated over thez coordinate is circular sym-
metric (cf. right panel of the contour plot in Fig. 5). For the
flat quantum dot the integration over thez coordinate does
not fill in the central local maximum as in the spherical case
(cf. Fig. 1 and inset of Fig. 2 forB=0 T). When a magnetic
field is applied, the density loses its circular symmetry and is
transformed into two maxima elongated along the direction
of the magnetic fieldsxd and becomes strongly localized in
the direction perpendicular to the field. The region in which
the probability density is nonzero at high magnetic field re-
sembles two beans put along thex axis near thez=0 plane.

Figure 6 shows the relative probability density for the
triplet state[of odd parity in the(y,z) plane and of even
parity in thex direction]. ForB=0 the y and z degrees of
freedom are decoupled and the wave function is simply of
odd parity in they direction and even inz direction.26 The
plots for B=0 T show that the density vanishes near they
=0 plane and that it forms two semiround islands parallel to
the x axis localized around thez=0 plane. Magnetic field
makes the islands thinner, longer, and less oval. ForB
=30 T the probability densities for the triplet and singlet
states become almost identical, which is the reason for the
singlet-triplet degeneracy at high magnetic field(cf. Fig. 3).

For the sake of physical interpretation it is useful to look
at the ground-state charge density in the laboratory frame of
reference. The charge density can be extracted from the two-
electron wave function by integration with Diracd functions

nsr d = kCsr 1,r 2dudsr − r 1d + dsr − r 2duCsr 1,r 2dl

= 2E dr 1uFcm(sr 1 + r d/2)u2uFrelsr 1 − r du2. s7d

Figure 7 shows the comparison of the probability densities of
the center-of-mass and relative ground states and the two-
electron charge densities(divided for comparison by two)
integrated over thez direction for the potential parameters of
Figs. 5 and 6.27 The noninteracting density(divided by two)
and the center-of-mass density come from solutions of the
same Schrödinger equations, the only difference is that the
center of mass is twice heavier, which results in a stronger
localization of the center-of-mass density. On the other hand,
the mass that enters the relative Hamiltonian is half of the
electron mass, which along with the repulsive Coulomb
potential results in a weaker localization of the relative
charge density. The interacting two-electron charge density
calculated according to expression(7) is more weakly local-
ized than the center-of-mass density but the localization
is stronger than for the relative wave function. The integra-
tion of the relative charge density with the center-of-mass
density fills the Coulomb hole visible in the relative density
(cf. right panel of Fig. 5 forB=0 T). The effect of the Cou-
lomb interaction on the electron localization can be esti-
mated from a comparison of the interacting and noninteract-
ing charge densities.

FIG. 5. Contour plots at the left side of the
figure shows the relative motion probability den-
sity for the lowest singlet state integrated over the
x direction (left panel)and over thez coordinate
(right panel)for "v=3 meV, "vz=12 meV, and
different magnetic fields. Larger values of density
are marked with darker colors. At the right side of
the figure we show the surface at which the prob-
ability density takes one-fifth of its maximum
value.
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The evolution of the ground-state charge densityfnsr dg
with the in-plane magnetic field, which is presented in Fig. 8.
The two local maxima of the probability density visible for
the relative eigenstate(cf. left plot for B=0 T in Fig. 5)

merge into a central maximum when integrated over the rela-
tive probability density with the center-of-mass density. For
B=10 T the limits of the charge pool become squeezed in the
direction perpendicular to the field. The appearance of the
maximum elongated along thex=0 axis (cf. right plot for
B=10 T) is due to the formation of the two maxima in the
relative density(cf. right plot in Fig. 5 forB=10 T). Plots for
B=20 T andB=30 T show a distinct separation of the elec-
tron charges, i. e., Wigner crystallization. The single-electron
charge islands formed under the influence of the in-plane
field form stripes elongated along the direction of the applied
field. The extent of the charge density is not essentially
changed along the direction of the field.

The magnetic-field-induced singlet-triplet degeneracy can
be conveniently explained in the single-electron picture as
due to the vanishing overlap between the wave functions of
the two electrons. In the absence of the overlap the exchange
interaction disappears leading to the observed spin degen-
eracy. The wave function separation is due to the strong lo-
calization of the single-electron charge islands in the direc-
tion perpendicular to the field. The present effect is similar to
the singlet-triplet degeneracy induced by the in-plane mag-
netic field for laterally coupled quantum dots.19,20 For
coupled dots the in-plane magnetic field induces stronger
localization in each of the quantum dots, which results in a
decreasing tunnel coupling(an increase of the effective
height of the interdot barrier), which eventually leads to the

FIG. 6. The same as Fig. 5 but now for the
lowest triplet state.

FIG. 7. Probability densities of the ground state of the center of
mass(CM) and relative(rel) Hamiltonians, and the charge density
of the noninteracting and interacting system of two electrons inte-
grated over thez direction as a function of the radial coordinater
=Îx2+y2 for "v=3 meV, "vz=12 meV, andB=0 T. The two-
electron charge densities have been divided by 2.
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separation of the single-electron wave functions. The separa-
tion accompanied with the singlet-triplet degeneracy appears
also without the in-plane field for the thick interdot barrier28

as well as in large quasi-one-dimensional quantum dots.28,29

Drouvelis et al.23 found the ground-state singlet-triplet de-
generacy for large anisotropy in asmall two-dimensional
quantum dot in the absence of the external magnetic field.
For strong anisotropy this model23 gives a strictly one-
dimensional potential, for which the Coulomb interaction is
extremely strong, leading to Wigner crystallization even for
dots of relatively small size.

Since the laboratory frame separation is accompanied by a
singlet-triplet degeneracy one can use the vanishing value of
the exchange energy to propose a criterium for the magnetic-
field-induced Wigner crystallization. Figure 9 shows the
triplet-singlet energy difference(Zeeman effect neglected)
on the("vz, B) plane for"v=3 meV. The magnetic field for
which the exchange energy becomes negligible is a distinctly
growing function of"vz. The magnetic field above which the
exchange energy falls below 0.1 meV for"vz.4 meV can
be very well approximated by a linear dependenceB
=1.6s"vz−1.266 meVdT/meV. The value of the magnetic-
field-inducing Wigner crystallization is an increasing func-
tion of "v—the confinement energy in the(x,y) plane. For

"vz.
4
3"v the exchange energy falls to 0.1 meV atB

=1.24s"vz−0.37 meVdT/ meV, B=2.1s"vz−1.72 meVd

FIG. 8. Contour plots at the left side of the
figure show the two-electron probability densities
fnsr dg integrated over thex (left panel)andz co-
ordinates (right panel) for "v=3 meV, "vz

=12 meV. The surface plots at the right side of
the figure show the surface at which the charge
density takes one-fifth of its maximum value.

FIG. 9. (Color online) Triplet-singlet energy difference as a
function of the magnetic field and vertical confinement energy for
"v=3 meV. Blue(white and red)regions correspond to the triplet
(singlet) ground state for the spin Zeeman effect neglected. The
dashed line shows the values ofB and "vz for which the triplet-
singlet energy difference is equal to 0.1 meV. Color scale is given at
the right-hand side of the figure.
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T/meV, B=2.95s"vz−3.74 meVdT/meV for "v=2, 5, and
10 meV, respectively.

In spherical quantum dots(cf. Fig. 2)as well as in circular
two-dimensional quantum dots in a perpendicular magnetic
field23,25 singlet-triplet oscillations are observed instead of
the above degeneracy. But in these systems the separation of
the electron charges appears in the inner degrees of freedom
not in the laboratory frame, so that the picture of vanishing
overlap between the single-electron wave functions does not
apply (it would imply breaking of the symmetry of the ex-
ternal potential).

In the present paper we have used a harmonic confine-
ment potential in the growth direction. The potential in real
dots has often a quantum-well or a triangular form. Although
the shape of the confinement in the growth direction should
not have a qualitative influence on the results, one should
expect quantitative differences except in the region where the
magnetic field is so strong that the magnetic length
sÎ2" /eB=36.28/ÎB nmÎTd is much smaller than the range
of the vertical confinement. In quantum wells the energy
spacings between the lowest-energy levels are larger than
that for the harmonic-confinement potential. The spacings
between the lowest-energy levels for an infinite quantum
well with width 13.75 nm(corresponding to a similar verti-
cal spread of the electron wave function for"vz=12 meV)
equal 22 meV. Therefore, the in-plane magnetic field values
inducing Wigner crystallization in dots with well-like verti-
cal confinement will be larger than the ones found in this
paper for the harmonic-confinement potential.

IV. SUMMARY AND CONCLUSIONS

We have studied the orbital effects due to the external
magnetic field oriented along thex axis on two electrons

confined within a harmonic three-dimensional quantum dot
rotationally symmetric with respect to thez axis. Calcula-
tions used explicitly the center-of-mass separation and were
performed with Gaussian trial wave functions. In flat quan-
tum dots a high in-plane magnetic field leads eventually to
spin degeneracy(in the absence of the spin Zeeman interac-
tion) instead of spin-triplet oscillations, which are obtained
for magnetic field oriented along the axis of a cylindrical
symmetric quantum dot. The spin degeneracy is due to
Wigner crystallization induced in the laboratory frame by the
in-plane magnetic field. For flat quantum dots and low mag-
netic fields the orbital effects have initially a negligible effect
on the singlet-triplet energy splitting. In the high-magnetic-
field limit, when Wigner molecules are formed, all the
singlet-triplet splitting can bestrictly attributed to spin-
related effects. Nevertheless, between the low-field and mo-
lecular regimes there exists a magnetic field interval for
which the exchange energy rapidly changes with the mag-
netic field.
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Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules
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Few-electron systems confined in quasi-one-dimensional quantum dots are studied by the configuration
interaction approach. We consider the parity symmetry of states forming Wigner molecules in large quantum
dots and find that for the spin-polarized Wigner molecules it strictly depends on the number of electrons. We
investigate the spatial spin ordering in the inner coordinates of the quantum system and conclude that for small
dots it has a short-range character and results mainly from the Pauli exclusion principle while the Wigner
crystallization in large dots is accompanied by spin ordering over the entire length of the dot.

DOI: 10.1103/PhysRevB.70.035401 PACS number(s): 73.21.La, 73.20.Qt

I. INTRODUCTION

Strong confinement of charge carriers in two directions
results in reduction of their degrees of freedom to a single
one, i.e., in quasi-one-dimensional motion. Such one-
dimensional systems are realized typically in split-gate1,2 and
cleaved-edge overgrowth3 semiconductor quantum wires, as
well as in carbon nanotubes,4 but can also be realized in
finite-size systems, i.e., in anisotropic quantum dots5 or
quantum rings.6 There is a renewed interest in the one-
dimensional systems related to the recent progress of vapour-
liquid-solid fabrication of quantum wires of very high
quality.7–9

The present paper is devoted to electron systems confined
in one-dimensional quantum dots and in particular to their
Wigner crystallization10 appearing when the electron-
electron interaction dominates over the kinetic energy.
Wigner electron solids(Wigner molecules)are predicted to
appear in large dots11 or in strong magnetic fields.12 In the
Wigner molecules the charge density separates into distinct
charge maxima each corresponding to one of the confined
electrons. Formation of Wigner molecules in the ground-state
charge density in one-dimensional quantum dots was previ-
ously obtained in exact diagonalization13–15 and the density
functional approach.16 In one-dimensional dots the Wigner
localization appears in the laboratory frame, in contrast to
the inner-coordinate crystallization appearing in circular
quantum dots,12 including quantum rings. Transport proper-
ties of Wigner crystals formed in open infinite one-
dimensional systems have also been studied.17,18 The Lut-
tinger liquid formalism has been applied19 to quantum wires
with box-like boundary conditions, i.e., to the one-
dimensional quantum dots. Melting of classical one-
dimensional Wigner crystals has recently been described.20

We study the quasi-one-dimensional quantum dots using a
configuration interaction approach with the effective
electron-electron interaction potential which we derived
recently.21 This work is a generalization of our exact two-
electron study15 to a larger number of electrons. In the weak
confinement limit the ground state becomes nearly degener-
ate with respect to the spin configuration of the electron
system.14,15 Similar approximate degeneracy has been found
in quantum rings of large radius.22 In this paper we study the

parity symmetry of the nearly degenerate states forming
Wigner molecules in large dots. We show that for spin-
polarized electrons the Wigner localization is formed only
for one (even or odd)spatial parity of the state strictly de-
pendent on the number of electrons. We present this depen-
dence in the form of a theorem for which we provide a rig-
orous analytical proof. The found dependence of the parity of
one-dimensional Wigner molecule states on the number of
electrons is similar to the appearance of the magic angular
momenta states for which Wigner crystallization is possible
in circular dots.23,24Furthermore, we discuss an inhibition of
Wigner crystallization by a perturbation of the confinement
potential through a central inversion-invariant potential well.

Magnetic spin ordering of electrons in one-dimensional
space has been extensively studied25 in Hubbard models
which, in one dimension with only nearest-neighbor hopping
interactions, predict the appearance of a low-spin ground
state.26 This is a consequence26 of the Lieb-Mattis theorem27

which implies that without spin-dependent interactions the
ground state of one-dimensional electron systems corre-
sponds to the lowest possible spin quantum number(S=0 or
1/2). This feature generally does not have to result in any
spatial spin ordering. In this paper we use the exact numeri-
cal solution of the Schrödinger equation to investigate the
spatial distribution of spins in the one-dimensional quantum
dot and the relation between the charge and spatial spin or-
dering in the Wigner crystallization limit. We find that
Wigner crystallization is accompanied by a long-range spin-
ordering in the inner coordinates of the system instead of a
spin-symmetry breaking predicted by the density functional
theory.16,28 In the ground-state this ordering has a clear anti-
ferromagnetic character.

This paper is organized as follows. In Sec. II we present
the theoretical method. Section III contains the results for the
Wigner localization and ground state degeneracy of the few
electron systems. In Sec. IV we present proof for the depen-
dence of the parity of spin-polarized Wigner molecules on
the number of electrons. Section V contains a discussion of
the effect of a central defect on Wigner crystallization. In
Sec. VI the study of spin ordering is presented. Section VII
contains our summary and conclusions.
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II. THEORY

We consider N electrons confined in a quasi-one-
dimensional quantum dot with strong lateral harmonic-
oscillator confinement potential. The Hamiltonian of the sys-
tem reads

H = o
i=1

N

hi + o
i=1

N

o
j.i

N
k

r ij
, s1d

whereh stands for the single-electron Hamiltonian

h = −
"2

2m* ¹2 +
m*v2

2
sx2 + y2d + Vszd, s2d

Vszd is the confinement potential in thez direction. For a
large lateral harmonic-oscillator confinement energys"vd
the movement of electrons in thesx,yd plane is frozen to the
harmonic-oscillator ground state. Then, one can perform
integration21 over the lateral degrees of freedom which re-
sults in the following Hamiltonian:

H = N"v + o
i=1

N

hi
1D + o

i=1

N

o
j.i

N

sp/2d1/2sk/ld

3 erfcszij /2
1/2ldexpszij

2/2l2d, s3d

wherezij = uzi −zju and

h1D = −
"2

2m*

d2

dz2 + Vszd s4d

is the single-electron one-dimensional Hamiltonian. In the
following we will neglect the first term in Eq.(3), i.e., the
lateral confinement energy which is independent of the form
of wave functions in thez direction. The last term in Eq.(3)
is the effective interaction energy21 for electrons in a quasi-
one-dimensional environment resulting from integration of
the Coulomb potential over the lateral coordinates,m* is the
effective mass,k=e2/4p«0«, « is the dielectric constant, and
l =Î" /m*v. We assumeVszd=Vwellszd, a rectangular potential
well of depthV0=200 meV, and widthd. We adopt GaAs
material parameters, i.e.,m* =0.067me0, e=12.4 as well as
"v=10 meV sl =10.66 nmdfor the lateral confinement en-
ergy. Calculations have been performed forN=2, . . . ,5 elec-
trons by the configuration interaction approach with a basis
set of Slater determinants built with single-electron spin or-

bitals. Spatial single-electron wave functions have been ob-
tained by numerical diagonalization of the finite-difference
version of the single-electron one-dimensional Hamiltonian
(4) on a mesh of points. In construction of the Slater deter-
minants with required spin and parity symmetries we use the
spatial wave functions of up to eight lowest-energy single-
electron states which results in a Slater determinant basis
size of up to 1520 elements and an accuracy better than
0.01 meV.

The present approach is based on the assumption that only
the lowest state of the lateralsx,yd quantization is occupied.
We performed test calculations for two, three and four elec-
trons to check the validity of this approach. We allowed the
electrons to occupy also thep-type lowest excited state of the
lateral quantization with angular momentum ±". Inclusion of
p states not only allows for determination of the critical well
length above which thep shell is emptied, but it is also
helpful to estimate the importance of the angular correlations
in the x-y plane. The Coulomb matrix elements were evalu-
ated using effective interaction potentials derived with the
use of the Fourier transform technique.21 We have obtained
the following results: thep shell is left empty ford.39 and
41 nm forN=3 and 4, respectively(for two electrons thep
shell is never occupied). Accounting for thex-y correlations
via inclusion of thep-type orbitals in the configuration inter-
action basis lowers the two-electron total energy estimates by
0.18, 0.12, 0.01, and 10−4 meV for d=40,50,100, and
200 nm, respectively. These “lateral correlation energies” for
the same values ofd are equal to 0.4, 0.3, 0.08, and 4
310−3 meV for N=3, and 1.18, 0.67, 0.23, and 0.03 forN
=4, respectively. The energy overestimation in the range ofd
studied further is never significant and the present approach
is nearly exact in the Wigner localization regime.

III. GROUND STATE DEGENERACY AND WIGNER
CRYSTALLIZATION

In this paper we label the states by their total spinS and
parity quantum numbers using the notation:S±, where the
positive(negative)sign stands for even(odd)parity. We dis-
cuss only the lowest-energy states for a given spin-orbital
symmetry. Figure 1(a)shows the lowest energy levels of the
two-electron system multiplied by the dot lengthd as func-
tions of d. For large dots the states 0+ and 1− as well as

FIG. 1. (a) Lowest energy levels multiplied by the dot length forN=2. Numbers close to the curves denote the total spin quantum number
of the corresponding states and signs +, − stand for even and odd parity symmetry.(b), (c), (d) Charge density of 0+, 1−, 1+, and 0− states
plotted with solid, dotted, dashed, and dash-dotted lines ford=50, 100, and 200 nm, respectively.
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0− and 1+ become mutually degenerate. For large values of
d potential energy related to penetration of electrons into the
barrier region is negligible, the kinetic energy scales as 1/d2

and the Coulomb energy as 1/d. Therefore, the product of
energy and dot length for larged behaves asfsdd=C+D /d
function, where the constantsC and D are related to the
Coulomb and kinetic energy, respectively. The energy levels
of the degenerate pairs of states tend to different constants in
the infinited limit which is apparently due to different values
of the Coulomb interaction in these pairs of states. The evo-
lution of the charge density for growing length of the dot is
shown in Figs. 1(b)–1(d). For large dots[cf. Fig. 1(d)] the
charge densities of the degenerate pairs of states become
identical. In the ground state the charge density has two pro-
nounced maxima which indicates the separation of electron
charges into two charge islands, i.e., the Wigner crystalliza-
tion. Figure 1 shows that the singlet-triplet degeneracy ob-
tained previously15 for the two-electron ground-state appears
also in the first excited state.

Figure 2(a)shows the energy levels and Figs. 2(b)–2(d)
the charge density for the lowest-energy states of the three-
electron system for increasingd. For three electrons the
Wigner molecule is formed in states 1/2−, 1/2+, and 3/2−
which become degenerate for larged. In the state 3/2+ the
charge density exhibits four maxima[cf. Fig. 2(d)], which
apparently prevents this state to be degenerate with the
ground state.

In the four-electron system the ground state corresponds
to 0+ symmetry. The states 1−, 1+, and 2+ for large dots[cf.
Fig. 3(a)]tend to the degeneracy with the ground state. The

charge densities of these states for large dots present four
distinct maxima[cf. Fig. 3(d)]. Energy levels corresponding
to states 0− and 2− are separated by a significant energy
distance from the ground state[cf. Fig. 3(a)] and in large
dots they correspond to identical charge densities with five
maxima. The ground state charge density evolution obtained
for N=3 and 4 is in a qualitative agreement with the results
of Ref. 13.

Finally, in the five-electron system the ground state of
1/2+ symmetry becomes degenerate with1/2− , 3/2+ ,
3/2−, and 5/2+ states[cf. Fig. 4(a)] forming Wigner mol-
ecules for large dots[cf. Figs. 4(b)–4(d)]. The spin polarized
state of odd parity 5/2− does not become degenerate with
the ground-state and its charge density in large dots forms six
maxima[cf. Fig. 4(d)].

In the entired range and for all electron numbers studied
the order of the lowest energy levels for given total spin
quantum numbers(neglecting the parity)follow the order of
the spin quantum numbers, which is in agreement with the
theorem of Lieb and Mattis.27 In large dots the ground-state
degeneracy appears. In Ref. 14 the degeneracy was inter-
preted in terms of a vanishing tunnel coupling between the
local minima of the totalN-dimensional potential energy.
The present results indicate that the nearly degenerate states
possess the same charge density in the laboratory frame.
Moreover, we observe the following regularities. In the limit
of Wigner localization the ground state of theN-electron
system appears forN different pairs of the spin and parity
quantum numbers.29 For even electron numbersN=2 and 4,
N charge maxima are formed only for even parity states with

FIG. 2. (a) Lowest energy levels multiplied by the dot length forN=3. (b), (c), (d) Charge density of 1/2−, 1/2+, and 3/2− states plotted
with solid, dashed, and dotted lines ford=50, 150, and 200 nm, respectively. In(d) the charge density of the 3/2+ state is shown by the
dash-dotted curve.

FIG. 3. (a) Four-electron energy levels multiplied by the dot length.(b), (c), (d) Charge density of 0+, 1−, 1+, and 2+ four-electron states
plotted with solid, dash-dotted, dotted, and dashed lines ford=100, 200, and 300 nm, respectively. In(d) the charge densities of 2− and 0+
states are marked with crosses and dots, respectively.
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S=0, while the odd parity zero-spin states possessN+1
charge maxima[cf. Figs. 1(d)and 3(d)]. The spin-polarized
Wigner-localized state can only be formed for one(even or
odd) parity. Namely, the parity of the spin-polarized Wigner
molecule state is even for four and five electrons and odd for
two and three electrons. The charge density of the spin-
polarized state of the other parity exhibitsN+1 maxima, i.e.,
the state does not form a Wigner molecule and as a conse-
quence does not become degenerate with the ground state
even for large dots. This conclusion will be cast into a theo-
rem in the next section.

IV. PARITY OF SPIN-POLARIZED WIGNER
MOLECULE STATES

Here we give an analytical proof of the theorem:for an
odd number of electrons N=2M +1 as well as for an even
number of electrons N=2M the parity of one-dimensional
spin-polarized Wigner-molecule state is even (odd) for even
(odd) value of the integer M.

We will present here the proof for an odd number of elec-
trons (the proof for evenN can be easily deduced from the
present demonstration). For oddN one of the electrons re-
sides near the center of the dot(point z0=0, cf. Fig. 5), and
the others occupy spatially symmetric sites to the left and

right of the dot around points which satisfyzk=−z−k for k
= ±1, ±2,…, ±M. In the Wigner phase the total charge den-
sity possessesN maxima corresponding to the separate
single-electron charge densities. A single-electron density
uckszdu2 is localized around pointzk. In the Wigner limit the
overlap between the single-electron charge densities vanishes
(the proof is only valid when this overlap is negligible), so
the total charge density can be expressed as their sum. Since
the total charge density is symmetric with respect to the ori-
gin the following equality holds:

ucks− zdu2 = uc−kszdu2, s5d

which results in the following relation for the single-electron
wave functions:

cks− zd = eifkc−kszd, s6d

where the phasefk is a real number. Relation(6) with
changed sign ofk reads:

c−ks− zd = eif−kckszd. s7d

Phasesfk andf−k are not independent. Changing the sign of
z in Eq. (7) and making use of relation(6) we arrive at

c−kszd = eif−kcks− zd = eisf−k+fkdc−kszd, s8d

hence,

fk = − f−k, s9d

up to an unimportant multiple of 2p. Considering relation(6)
for k=0 and reminding that we arrive at the same valuec0s0d
(nonzero for oddN) approaching the origin from both posi-
tive and negative sides we arrive atf0=0 and consequently
c0 is an even parity function

FIG. 4. (a) Five-electron energy levels multiplied by the dot length. Even(odd)parity levels are plotted with solid(dotted)lines.(b), (c)
Charge density of 1/2+, 1/2−, 3/2+, 3/2−, and 5/2+ states plotted with solid, dash-dotted, dotted, dashed, and dash-double-dot lines for
d=100 and 200 nm, respectively. In(d) the charge density of the 1/2+, 3/2−, and 5/2− state is shown by solid, dashed, and dotted lines,
respectively[charge densities of 1/2−, 3/2+, and 5/2+ are almost identical with the 1/2+ and 3/2− charge densities are therefore omitted
in (d) for the sake of clarity].

FIG. 5. Illustration to the proof that forN=2M +1 or N=2M
electrons the parity of the spin-polarized state which exhibits
Wigner localization is accordant with the parity ofM.
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c0s− zd = c0szd. s10d

Since the considered state is spin polarized the spin and spa-
tial parts of the wave function can be separated into a prod-
uct

xsz1,s1, . . . ,zN,sNd = ass1dass2d ¯ assNd

3 Csz1,z2, . . . ,zNd, s11d

where a is an eigenfunction of the single-electron spin
z-component operator. The spatial wave functionC can be
written as a Slater determinant30

Csz1,z2, . . . ,zNd

= *
c−Msz1d c−M+1sz1d . . .cM−1sz1d cMsz1d
c−Msz2d c−M+1sz2d . . .cM−1sz2d cMsz2d

. . .

c−MszNd c−M+1szNd . . .cM−1szNd cMszNd
* .

s12d

We apply the parity operator onC and make use of proper-
ties (6) and (9) obtaining

Cs− z1,− z2, . . . ,−zNd = *
e−ifMcMsz1d e−ifM−1cM−1sz1d . . .eifM−1c−M+1sz1d eifMc−Msz1d
e−ifMcMsz2d e−ifM−1cM−1sz2d . . .eifM−1c−M+1sz2d eifMc−Msz2d

. . .

e−ifMcMszNd e−ifM−1cM−1szNd . . .eifM−1c−M+1szNd eifMc−MszNd
* . s13d

Phase factors can be extracted from each of the determinant
columns, which yields

Cs− z1,− z2, . . . ,−zNd

= e−isfM+fM−1+. . .+f−M+1+f−Md

3*
cMsz1d cM−1sz1d . . .c−M+1sz1d c−Msz1d
cMsz2d cM−1sz2d . . .c−M+1sz2d c−Msz2d

. . .

cMszNd cM−1szNd . . .c−M+1szNd c−MszNd
* .

s14d

The phases in front of the determinant in Eq.(14) cancel
according to property(9). ExchangingM pairs of corre-
sponding columns in the determinant we arrive at Eq.(12)
but multiplied bys−1dM, which proofs that the parity of spin-
polarized one-dimensional Wigner molecule state is deter-
mined by the odd or even value ofM.

We have found that two- and four-electron zero-spin
states can form a Wigner-localized charge density only for
even spatial parity. We are unable to proof in general that the
zero-spin state with Wigner localization has to be of even
parity for evenN. But for N=2 such a proof is easily given.
In this case the spin and spatial parts of the wave function
can be separated as follows:

x0+sz1,s1,z2,s2d = fass1dbss2d − ass2dbss1dg

3 fc1sz1dc−1sz2d + c−1sz1dc1sz2dg.

s15d

Applying the parity operator to the spatial part of this wave
function and making use of the properties of the single-
electron wave functions given earlier we find that this wave
function is of even parity. Moreover, it follows that construc-
tion of a symmetric spatial wave function for odd-parity sin-

glet (zero-spin) two-electron statess0−d requires at least
three single-electron functions, for instance, the function

C0−sz1,z2d = c0sz1dc1sz2d + c1sz1dc0sz2d − c0sz1dc−1sz2d

− c−1sz1dc0sz2d, s16d

is of odd parity provided that we take zero phase shifts in
relation (6). Indeed, the 0− state forN=2 exhibits three
charge maxima[see Fig. 1(d)]. Moreover, construction of a
triplet antisymmetric spatial wave function with even parity
(1+) also requires at least three localized functions, for in-
stance

C1+sz1,z2d = c0sz1dc1sz2d − c1sz1dc0sz2d + c0sz1dc−1sz2d

− c−1sz1dc0sz2d, s17d

possesses the required symmetries for zero phase shifts in
relation(6). The charge density corresponding to wave func-
tions (16) and (17) is the same provided that the overlaps
between the functionsci are negligible. Figure 1(d)shows
that the charge densities of the states 0− and 1+ are indeed
indistinguishable. The area below the central maximum of
the probability density of degenerate 0− and 1+ states in Fig.
1(d) is two times larger than the area below each of the
extreme maxima, which can be interpreted by saying that
one of the electrons stays in the neighborhood of the center
of the system with 100% probability while probabilities of
finding the other one at the left or right end of the well are
equal to 50%. This feature is in agreement with the probabil-
ity amplitudes(16) and(17). Although in the wave functions
(16) and (17) the electron positions are separated, this sepa-
ration has a nonclassical character since the charge maxima
at the left and right ends of the dot correspond to subelectron
charges. Therefore, we do not refer to this separation as
Wigner localization. Average electron-electron distances in
states described by wave functions(16) and(17) are smaller
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than in states 0+, 1− with two charge maxima, which leads to
a larger value of the Coulomb interaction energy and conse-
quently to an energy separation between pairs of degenerate
states 0+,1− and 0− ,1+ presented in Fig. 1(a) in the weak
confinement limit.

V. WIGNER CRYSTALLIZATION IN THE PRESENCE
OF A DEFECT POTENTIAL

The presence of defects can significantly perturb the
Wigner crystallization in large systems. We consider here a
thin attractive cavity just deep enough to bind one electron.
The perturbed quantum dot potential is of the form

Vszd = Vwellszd + Vdefectszd, s18d

whereVdefectszd=−50 meV foruzu,1 nm andVdefectszd=0 for
uzu.1 nm. The assumption that the defect is localized in the
center of the system does not perturb the inversion invari-
ance of the total potential.

Figure 6(a)shows that contrary to the unperturbed quan-
tum well potential[cf. Fig. 1(a)] the 0− and 1+ states be-
come degenerate with the 0+ and 1− states. Figures
6(b)–6(d) show the evolution of the charge densities of the
four considered states with increasing size of the system. For
large well thickness[cf. Fig. 1(d)] the charge densities of
these states become indistinguishable. One of the electrons is
trapped by the potential of the central cavity which results in
the sharp central peak of the charge density. The probabilities
to find the other electron at the left or right side of the origin

are equal. This differs essentially from the two-electron
Wigner molecule charge density in the unperturbed dot[cf.
Fig. 1], for which the probability to find an electron in the
center of the well was negligible and for which each of the
two charge maxima could be associated with an integer elec-
tron charge. The formation of three maxima in the charge
density is possible for all states[cf. Eqs.(16) and (17), for
0− and 1+ states, similar formulas can be given for the other
two]. Therefore, the ground state tends to a fourfold degen-
eracy in contrast to the double degeneracy for the unper-
turbed dot[cf. Fig. 1(a)].

Figure 7 shows the lowest energy levels and correspond-
ing charge density evolution for the three-electron system.
Contrary to the two-electron system the central defect does
not perturb the number of charge maxima, Wigner localiza-
tion appears similarly as for the unperturbed dot[cf. Fig. 2]
for 1/2+, 1/2−, and 3/2− states which become degenerate in
the Wigner localization limit. State 3/2+, which according to
the theorem given in Sec. IV cannot form a Wigner phase
lies higher in energy, like for the unperturbed dot.

The influence of the central attractive defect is qualita-
tively different for odd and even electron number. For an odd
number of electrons it simply enhances the localization of
the central electron, and does not influence the ground state
degeneracy. While for evenN it destroys Wigner crystalliza-
tion leading to the appearance of an extra charge maximum
corresponding to subelectron charge and allows more states
to become degenerate with the ground state.

VI. SPATIAL SPIN ORDERING IN THE WIGNER LIMIT

It is interesting to look whether the low-spin ground states
exhibit any spatial antiferromagnetic ordering of the electron

FIG. 6. (a) Lowest energy levels forN=2 as functions of the
length of the well with a central attractive cavity[Eq. (18)]. Num-
bers close to the curves denote the total spin quantum number of the
corresponding states and signs +, − stand for even and odd parity
symmetry, respectively.(b), (c), (d) Charge density of 0+, 1−, 1+,
and 0− states plotted with solid, dotted, dashed, and dash-dot curves
for d=50, 100, and 200 nm, respectively.

FIG. 7. (a) Lowest energy levels forN=3 as function of the
length of the well with a central attractive cavity[Eq. (18)]. Num-
bers close to the curves denote the total spin quantum number of the
corresponding states and signs +, − stand for even and odd parity
symmetry.(b),(c),(d) Charge density of 0+, 1−, 1+, and 0− states
plotted with solid, dotted, dashed, and dash-dot curves ford=50,
100, and 200 nm, respectively.
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spins. For even number of electrons and arbitrary dot length
the ground state corresponds to zero total spin. In this case
the spin-up and spin-down densities are exactly equal to each
other, so that spin ordering is not visible in the laboratory
frame of reference. In order to investigate a possible spin
ordering in the zero-spin ground states one has to look into
the inner coordinates of the quantum system. We use here the
spin-dependent pair correlation functionssPCFsddefined for
a given state by the expectation values

FPCF
samesza,zbd =Ko

i=1

N

o
j.i

N

dsza − ziddszb − zjd

3suassidass jdlkassidass jdu

+ ubssidbss jdlkbssidbss jdudL , s19d

and

FPCF
opposza,zbd =Ko

i=1

N

o
j.i

N

dsza − ziddszb − zjd

3suassidbss jdlkassidbss jdu

+ ubssidass jdlkbssidass jdudL , s20d

wherea andb stand for spin-up and spin-down eigenstates,
respectively. Functions(19) and (20) give the probability of
finding at positionsza and zb a pair of electrons with the
same(19) or opposite(20) spins. The sum of functions(19)
and (20) gives the spin-independent PCF.

Figure 8(a)shows the PCF plots for the four-electron
ground state in a small quantum dot[cf. Fig. 3(b)] with d
=100 nm. The position of one of the electrons is fixed near
the right end of the dot[position marked by the thin vertical
line in Fig. 8(a)]. We see that the probability of finding an
electron with the same spin in the neighborhood of the fixed-
position electron is zero, which is a signature of the Pauli
exclusion principle. At the left side of the dot probabilities of
finding an electron with the same or opposite spin as the one
of the fixed position electron are nearly equal. For the total
zero-spin states in relatively small dots the spin ordering in
the inner coordinates is of short range and results from the
Pauli exclusion. We only found a long-range inner-
coordinate spin ordering in the Wigner crystallization limit.
Figure 8(b)shows the plot for the four-electron ground state

with d=300 nm. The charge density of the system exhibits
four distinct maxima[cf. Fig. 3(d)]. We fix the position of
one of the electrons at the rightmost density maximum[cf.
the vertical line in Fig. 8(b)]. The probability that the elec-
tron in the adjacent maximum has the opposite spin is nearly
100%. The spin-dependent PCFs also differ for the two
charge maxima at the left of the origin. An electron confined
at the first(second)charge maximum to the left of the origin
is more probable to have the same(opposite)spin as the one
of the fixed electron. The ordering is of a probabilistic char-
acter, so that the antiferromagnetic order of spins is the most
probable to be found, but the probability is not 100%. The
spin ordering in this state has a clearly antiferromagnetic
character and its range covers the entire length of the dot. A
similar inner-coordinate antiferromagnetic order was previ-
ously found for quantum rings.6

The 100% probability of finding the opposite spin in the
charge maximum adjacent to the maximum associated with
the fixed electron presented in Fig. 8(b)is not, as one could
naively expect, related to the Pauli exclusion. In Fig. 8(c) we
plotted the PCF for the 1− state, which becomes degenerate
with the ground 0+ state in the weak confinement limit. We
see that in this state the spin of electrons confined in the two
central maxima is independent of the spin of the electron at
the rightmost maximum. However, in this state one may ex-
pect that the electrons at the opposite ends of the dot have
the same spin, which means that also in this state a long-
range spin ordering exists, even if it is not of antiferromag-
netic origin.

For odd number of electrons the difference between
spin-up and spin-down densities appears in the laboratory
frame. This is qualitatively different from quantum rings,
which in fact are endless structures. Figure 9(a) shows the
spin densities for a relatively small dot length ofd
=100 nm[too small for the ground state Wigner localization
to appear, cf. Fig. 4(b)]. The spin-up electrons tend to gather
at the extreme left and right ends of the dot as well as in its
center. The spin-down density is minimal in the center of the
dot, and the overall spin density(difference of the spin-up
and spin-down densities) exhibits antiferromagnetic sign os-
cillations within the dot. These sign oscillations are due to
the electron-electron interaction since in the noninteracting
electron system the majority spin-up density is nowhere
smaller than the spin-down density. For larger systems[d
=250 nm, cf. Fig. 9(b)]the antiferromagnetic spin oscilla-
tions become more pronounced. However, for even largerd
[cf. Figs. 9(c)and 9(d)], for which the Wigner molecule ap-
pear in the 1/2+ ground state, the typically antiferromagnetic

FIG. 8. PCFs for four elec-
trons in state 0+[(a),(b)]and state
1− with Sz=" (c) for d=100 (a)
and 300 nm[(b),(c)]. One of the
electrons is fixed and its position
is marked by a thin vertical line.
Solid curves show the spin-
independent PCF, dashed(dotted)
curves show the opposite(same)
spin PCF.
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real-space spin ordering with the spin orientation changing
between the adjacent charge maxima vanishes.

Let us look at the spin distribution in the inner coordinates
of the 5-electron 1/2+ ground state. Figure 10(a) shows the
PCF plots ford=100 nm. Electrons of the same spin as the
fixed electron do not appear in its close neighborhood, but
are more probable to be found at the center of the dot than
electrons of opposite spin. Probability of finding an electron
at the opposite side of the dot is independent of its spin. The
spin order in this relatively small dotsd=100 nmdis clearly
short range which is similar as for the case of four electrons
in a small dot[cf. Fig. 8(a)]. The PCF plots for opposite
spins at the left end of the dot start to differentiate ford
=200 nm[cf. Fig. 8(b)]. Ford=300 nm, for which Wigner
localization is observed[cf. Fig. 4(d)], the PCF plots show a
long-range antiferromagnetic spin ordering. Notice the
growth of the PCF plot for the same spin direction in the
closest neighborhood of the fixed-position electron fromd
=200 to 300 nm in Figs. 8(b)and 8(c). Pauli exclusion plays
a less significant role for larger distances between the charge
maxima.

Density-functional studies16,28 predict the appearance of
interlocked waves of opposite spins in the laboratory frame

for long quasi-one-dimensional dots. The appearance of the
spin-density wave for even electron number amounts in spin
symmetry breaking. Recently,16 it was found that for evenN
the formation of the spin density wave in the density func-
tional theory accompanies the Wigner crystallization. But in
the present study we find that for the exact solution spin
symmetry is conserved and Wigner crystallization is associ-
ated with the inner space spin ordering. In the exact solution
the interlocked spin densities in the laboratory frame can
only be observed for odd numbers of electrons, but the pre-
sented five-electron case shows that this effect is not neces-
sarily related with Wigner crystallization. In the exact solu-
tion the electrons with opposite spins avoid one another in
the inner space. A mean field approach can only account for
this effect by symmetry breaking. The reason for the occur-
rence of spin symmetry breaking in the mean field approach
for large single-dimensional dots are similar to the origin of
the broken spatial symmetry mean field solutions for the
magnetic field induced Wigner crystallization in circular
structures.12

In large systems the spin-independent PCF plots become
identical for all states degenerate with the ground state[cf.
spin-independent PCFs for the four-electron degenerate 0+
and 1− states in Figs. 8(b)and 8(c)]. This means that in
Wigner-molecule states electrons avoid one another with the
same efficiency independently of their spins. As a matter of
fact this is the origin of the appearance of the ground state
degeneracy in the Wigner molecule regime. One-dimensional
Wigner molecules present pronounced magnetic properties
related to the long-range spin ordering in the inner coordi-
nate space. This ordering for different degenerate spin eigen-
states may be typical for ferromagnetic, antiferromagnetic or
even an other form of order. Due to the vanishing energy
spacing between the different spin states the spin magnetic
properties of Wigner molecules are of a very soft character.
The Wigner molecules should be extremely susceptible to
any spin-dependent interactions. In particular, even a weak
additional effect promoting the spin-polarized phase can re-
sult in spin polarization of the system. A possible spin polar-
ization of the one-dimensional electron gas has been found2

in transport measurements.

VII. CONCLUSIONS AND SUMMARY

We have studied the ground and excited states of electron
systems confined in quasi-one-dimensional quantum dots us-
ing an exact diagonalization approach. For large systems we
found Wigner localization which appears not only in the

FIG. 9. Spin-up(solid lines)and spin-down(dashed lines)den-
sities for the ground-state 5-electron system 1/2+ withSz=" /2 for
different system sizes.

FIG. 10. PCFs for five elec-
trons in the state 1/2+ ford=100
(a), 200(b), and 300 nm(c). The
position of the fixed electron is
marked by a thin vertical line.
Solid lines show the spin-
independent PCF, dashed(dotted)
lines show the opposite(same)
spin PCF.
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ground state but also for several excited states which even-
tually leads to the degeneracy of the ground state in the large
d limit. We have considered spin and spatial parity of states
forming Wigner molecules. We have shown that the parity of
the spin-polarized state which forms a Wigner molecule is
strictly determined by the number of electrons.

We have discussed the effect of a central attractive defect
which destroys Wigner crystallization for an even number of
electrons allowing more states to become degenerate with
the ground state in the weak confinement limit. For odd elec-
tron numbers the central defect enhances the localization of
the electron occupying the central position in the Wigner
molecule and does not affect the ground state degeneracy.

We have investigated the spin-ordering effects associated
with Wigner crystallization. We have found that for small
dots the spatial spin ordering in the inner coordinates has a
short-range character and results mainly from the Pauli ex-
clusion principle. The long-range spatial spin order appears
only in the Wigner molecule regime when the electrons oc-
cupy distinct sites within the quantum dot. We conclude that

in one-dimensional quantum dots the Wigner crystallization
is a necessary condition for the long range spin ordering to
appear. We have identified the effect of spin symmetry break-
ing observed in the density functional theory as a tendency
of the mean field method to mimic the internal-space spin
ordering present in the exact solution for the Wigner mol-
ecule regime.
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Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum do

B. Szafran,* S. Bednarek, and J. Adamowski
Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy (AGH), Cracow, Poland

~Received 22 November 2000; published 5 September 2001!

A theoretical study is presented for excitons in coupled self-assembled InGaAs quantum dots. We have
proposed a model of an isolated single quantum dot based on the assumption of the Gaussian distribution of
indium concentration. The same distribution, with the parameters fixed for the single dot, has been applied to
vertically stacked coupled quantum dots in order to study the exciton properties, which result from the interdot
coupling. The exciton lowest-energy levels have been calculated with use of the many-element variational
basis, which includes the two-particle correlation effects. We have discussed the symmetry with respect to the
parity of the exciton wave functions in the coupled quantum dots. We have shown that—in a general case—
these wave functions do not possess the definite one-particle parity. Only for very small interdot distance the
ground-state wave function exhibits the approximate one-particle parity. The nature of splitting of the photo-
luminescence lines in the coupled quantum dots is discussed. The present theory applied to a description of
photoluminescence spectra in coupled self-assembled InGaAs quantum dots leads to a very good agreemen
with the experimental data.
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I. INTRODUCTION

A three-dimensional confinement of charge car
semiconductor quantum dots~QD’s! results in a space
tization of energy levels.1 Electron systems confined in
are called artificial atoms,2,3 since they show atom
properties, e.g., their energy spectrum is discrete.
various types of QD’s, the self-assembled QD’s are
ject of an extensive study4–28 because of their possib
plications in semiconductor lasers. It is expected13 that
self-assembled QD’s used as active regions in the s
ductor lasers will provide low-threshold currents,
gain, and an improved thermal stability of the devic
coupled QD’s~Refs. 14–21!can be treated as artificia
ecules. The coupling between the QD’s should be u
optical applications, because it leads to an appea
additional spectral lines. The positions of these lines
changed by choosing different interdot distances in a
logical process.

The present study has been inspired by the
measurements21 of exciton-related radiative transitio
vertically stacked InGaAs self-assembled QD’s.21 The
perimental results,21 obtained with use of the state-
photoluminescence spectroscopy,22 show a strong de
dence of the photoluminescence spectra on the dis
tween the dots. In the state-filling spectroscopy,22 the ex
ing light of large intensity is used to fill as many ele
hole states as possible; so, all the allowed r
transitions can be detected. In recent measurement9,10 c
ried out on a single self-assembled QD, the fine stru
the luminescence spectrum has been observed as
of the excitation power, i.e., as a function of the num
the confined excitons. In the case of the coupled Q
experimental spectra21 have been taken from a samp
taining a large number of QD’s. Then, the fine stru
not observed, since the inhomogeneous broadenin
luminescence lines is larger than the fine-structure s
and the energetic positions of the lines do not sh
0163-1829/2001/64~12!/125301~10!/$20.00 64
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visible dependence on the number of confined e
Therefore, at this level of the experimental resolu
theory of a single exciton should be sufficient for th
pretation of these measurements.21

A theoretical description of the excitons in the sing
was elaborated for self-assembled InAs/GaAs QD’s~Ref.
and for InP and CdSe nanocrystals30 in the framework o
pseudopotential approach. In Ref. 31, the excitons
coupled QD’s were studied as candidates for a reliabl
ration of entangled states in solid-state systems.

The present paper is devoted to theoretical study
symmetry and spectral properties of the exciton in
and coupled self-assembled quantum dots. The pap
ganized as follows. In Sec. II, we formulate a the
model of the exciton in a single QD. In Sec. III, we
alize this approach to the case of the coupled QD’s.
IV we present the results and discussion and in Se
give the summary.

II. SINGLE QUANTUM DOT

In this section, we formulate and parametrize a mo
single QD, which will be used in the following section
description of exciton states in coupled QD’s. Most o
retical papers2,11,12,23–28dealing with the QD’s use the
dimensional model of the QD. Such a model does n
for a description of the coupling between vertically s
QD’s. In order to describe the coupling between th
aligned in the growth direction, we have proposed
dimensional model of a single, isolated InXGa12XAs Q
The present model is based on the recent understan32

the growing process of the self-assembled QD’s. Du
growing process, InAs deposited on the GaAs subst
forms a thin wetting layer and next InAs island. This
structure is subsequently covered with GaAs. Due to
dium diffusion32 the self-assembled QD’s are made
InXGa12XAs alloy with a spatially varying indium co
tration. In this paper, we propose a model that tak
©2001 The American Physical Society125301-1
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ount a spatial modulation of the indium concentration in
nanostructure. The present model is based on the assump
of the Gaussian distribution of indium concentration in

QD. Explicitly, we assume that indium concentrationX in
single isolated QD is described by the Gaussian function
e cylindrical symmetry

X~r,z!5X0exp~2r2/R22z2/Z2!, ~1!

re r25x21y2, X0 is the indium concentration at the
ter of the dot,R is the dot ’’radius,’’ andZ is the half of its
ight.’’ The real self-assembled QD’s are not symmetric

respect to the inversion of thez axis ~Fig. 1!. Therefore,
meter 2Z can be treated as the effective height of the
which partially takes into account the presence of the

ting layer~Fig. 1!. The InXGa12XAs island in the GaAs
rix is responsible for the potential confining the charge
iers in the quantum dot. The conduction-valence-band
et ratio for the InAs/GaAs interface was estimated to be
0.33 Therefore, we assume the confinement potential to
arametrized as follows:

Ve~r,z!520.7DEgX~r,z! ~2!

the electrons and

Vh~r,z!520.3DEgX~r,z! ~3!

the holes, whereDEg5Eg
GaAs2Eg

InAs , Eg
GaAs, andEg

InAs

the GaAs and InAs energy gaps, respectively. In the
ent calculations, we take onEg

GaAs51.5196 eV~Ref. 34!
Eg

InAs50.4105 eV.35

ere, we briefly comment on the choice of the confine-
t potential@Eqs.~2! and ~3!#. The application of the cy-

rically symmetric Gaussian potential allows us to de-
be the three-dimensional confinement of the charge
iers in the QD’s, and to take into account a finite depth of
confinement potential and an approximate parabolicity of
potential near the dot center. The properties of the one-

two-electron systems in the spherically symmetric,
ssian confinement potential have been studied in detail in
recent paper.36

inally, in accordance with the assumed indium-
centration distribution@Eq. ~1!#, we introduce the follow-
space dependence of the electron and hole effective
ses:

me,h~r,z!5me,h
InAsX~r,z!1me,h

GaAs@12X~r,z!#, ~4!
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IG. 1. Schematic of a single QD. Dashed line shows the con-
of the indium-concentration Gaussian distribution function
rangeZ in the growth direction,h is the height of the QD and
is the thickness of the wetting layer~WL!.
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re me
InAs50.023m0,37 me

GaAs50.0667m0,38 mh
InAs

41m0,39 mh
GaAs50.5m0,40 and m0 is the electron rest

s.
quations~2!–~4! express the effective confinement po-
ials for electrons and holes and the spatial modulation of
r band masses by a single indium distribution function
The parameters of this function (X0 , R, andZ) will be
acted from the experimental photoluminescent data for a
le isolated QD. Such a procedure implicitly takes into

ount the strain effects7 and the indium concentration
n by Eq.~1! has an effective meaning. The same param-
ation, with values of parameters fixed for a single dot,
be applied to coupled double QD’s. Therefore, the
ssian distribution function@Eq. ~1!# can be treated as an
ersal function, which allows us to include the most im-
ant effects for the real nanostructures.

the case of the position-dependent effective masses,41

Hamiltonian of the electron-hole pair confined in the
le QD has the following form~in atomic units!:

H52
1

2
“e

1

me~re!
“e1Ve~re ,ze!2

1

2
“h

1

mh~rh!
“h

1Vh~rh ,zh!2
1

«r eh
, ~5!

rere and rh are the position vectors of the electron and
, respectively, andr eh5ure2rhu. Since the dielectric
erties of GaAs and InAs are similar, we have adopted
average value5 «512.5 of the static dielectric constant
he InXGa12XAs alloy for all values ofX. Throughout the
ent paper, the conduction-band minimum of GaAs is the
rence energy level for the electron and the GaAs valence-
d maximum is the reference energy level for the hole@cf.
.~2! and ~3!#.
robabilityp of radiative transition from the exciton state
cribed by the wave functionF(re ,rh) is proportional to
integral42

p;U E dredrhF~re ,rh!d~re2rh!U2

. ~6!

e present paper, we consider the optically active exciton
es, i.e., the states, from which the radiative transitions
ctron-hole recombination! are allowed. For these transi-
s the initial states correspond to zero total angular mo-
tum, since otherwise integral~6! vanishes.
e note that Hamiltonian~5! commutes with the operator
e z component of the total angular momentum and the

ty operator. Both these quantities are conserved in the
ework of the present model. However, because of the
ence of the Coulomb-interaction potential in Eq.~5!, the
-particle operators of parity andz component of angular
entum do not commute with the Hamiltonian. Due to

small size of the self-assembled QD’s the one-particle
rgies are considerably larger than to the Coulomb-
raction contribution. Moreover, the energy separations
een the one-particle shells of different angular momenta
also large with respect to the Coulomb term. On the

trary, in the coupled QD’s, the energy spacings between
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the one-particle states of opposite parities can be a
small. Thus, it should be expected that the Coulomb
tion essentially perturbs the one-particle parity. In thi
we concentrate our attention on the problem of parity
arises for the coupled QD’s. Therefore, we construct
citon wave functions of zero total angular momentum
the eigenstates of one-particle angular momentum, w
reasonable approximation in the problem conside
shall label the exciton states by the one-particlez-compo
angular momentum quantum numberm and use the fo
ing dependence of the wave functionC(re ,rh) on azimu
angleswe andwh :

xm~we ,wh!5exp@ im~we2wh!#.

In the following, we consider the lowest-energy op
active exciton states withm50, 1, 2, and 3 labeled bys,p
and f, respectively. In Eq.~7!, the signs of the angula
mentum quantum number for the electron and the
chosen to be opposite, i.e.,z component of the total an
momentum for the exciton is zero. All the states con
are symmetric with respect to the in-plane inversion,
change of sign ofx and y coordinates of both the par
Therefore, the total parity of the exciton is entirely
mined by thez parity.

The eigenvalue problem for the exciton confined
single QD has been solved by variational means
trial wave function of the form

F1~re ,rh!5re
mrh

mxm~we ,wh!

3(
jkln

cjkln f jkln~re ,rh ,ze ,zh ,zeh!,

which is expanded in the Gaussian basis

f jkln~re ,rh ,ze ,zh ,zeh!5exp~2a j
ere

22ahrh
22bk

eze
2

2b l
hzh

22gzzeh
2 !,

wherezeh5ze2zh . In Eq.~9!, variational parametersa j
e

ah (bk
e andb l

h) describe the localization of the electr
the hole in thex-y plane (z direction!, andgz accounts
the correlation of the relative motion in thez direction. W
function F1 partially includes the radial correlation be
the electron and hole, since it cannot be separate
product ofre and rh dependent functions. However,
glects the angular correlation.

In order to check a quality of trial wave function~8!
have performed test calculations for the exciton grou
energyE0 using a more general variational wave fu
which explicitly includes the in-plane electron-hole di
For m50 this wave function has the form

F0~re ,rh!5 (
jklnp

cjklnpexp~2a j
ere

22ak
hrh

22b l
eze

22bn
hz

2gp
rreh

2 2gzzeh
2 !, ~

where reh
2 5(xe2xh)21(ye2yh)2 and variational pa

etersgp
r are responsible for the in-plane correlation.
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gp
r50 in Eq. ~10! we obtain wave function~8! for m5

The results of the test calculations reported in Table
that the neglect of the angular correlation yields the
state energy estimate with the uncertainty less than
For comparison the estimated widths of photolumin
peaks21 amount to several meV. Therefore, basis~8! with
neglected angular correlation and smaller number
ments~cf. Table I! is sufficient for the present purpose
results presented in this paper have been obtained
use of basis~8!, in which the sums run overj ,k,n51,
51, . . . ,3, andp50 ~cf. Table I!. The energy eigenv
Em calculated for given angular momentum quantum
m are used to determine the energy of the radiative in
transition, which is defined ashnm5Eg

GaAs1Em .
The values of the parameters describing the

concentration distribution in Eq.~1! have been obtained
the adjustment of the calculated transition energie
experimental data21 for the isolated QD’s. For this pu
we have used the photoluminescence spectrum21 taken a
interdot distance of;15 nm, for which the QD’s ca
treated as spatially separated and uncoupled. The v
tained areX050.66, Z50.92 nm, andR524.9 nm.
comparison of the calculated and measured21 radiat
transition energies for the isolated quantum dot is p
in Table II. The further description of the vertical co

TABLE I. Convergence of ground-state energy estimateE0

an exciton confined in a single QD with increasing number
elements. In the first five columns, the upper limits of th
sponding sums in Eq.~10! are listed. According to Eq.~10!, la
j , k, l , n, and p denote the different Gaussians depen
re ,rh , ze , zh , andreh , respectively.N is the total number of
elements used in the calculations. The numbers in the
correspond to basis~8! used in the latter part of the presen
Energy is expressed in meV.

j k l n p N E0

2 2 3 2 24 2241.9
3 3 4 4 144 2242.2
3 3 4 4 1 144 2243.
3 3 4 4 2 288 2243.
3 3 4 4 3 432 2243.

TABLE II. Calculated energy eigenvaluesEm of the optic
active exciton states for the single QD, energy spacingsDE
tween the consecutive energy levels, and calculated
transition energieshncalc . The measured transition energieshn
are extracted from the photoluminescence-peak positions~Ref.
taken for the separated QD’s (a515 nm). The states involv
the transitions are quoted in the first column. Energy is exp
meV.

Em DE hncalc hnexp

s-s 2241.9 1277.7 1278
p-p 2197.2 44.8 1322.4 132
d-d 2159.7 37.5 1359.9 135
f - f 2125.9 33.8 1393.7 139
25301-3
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een the QD’s requires an accurate modeling of the con-
ment in the growth direction. In this context, we have to
hasize that the value ofZ we have obtained from our fit
well agrees with the experimental result.21 The heighth

the dot was estimated by the transmission-electron
ctroscopy21 to be smaller than 2 nm, whereas the wetting-
r thicknessTWL50.54 nm~Ref. 21! ~cf. Fig. 1, where

2Z2TWL). Table II shows that the differences between
calculated and measured radiative-transition energies do
exceed 0.5 meV, which is considerably less than the ex-
mental uncertainty.
able II shows that energy spacingsDE between the sub-
uent energy levels decrease with the increasing energy of
interband transitions. According to our interpretation,
e effects of comparable importance are responsible for
behavior. If the energy of the electron-hole pair state

eases, the charge carriers become more weakly localized
in consequence~i! the effect of the nonparabolicity of

confinement potential becomes stronger,36 ~ii! the elec-
and hole effective masses become larger with the in-
sing distance from the dot center@cf. Eq. ~4!#, ~iii! the
lomb interaction between the confined charge carriers
reases. In Table III, we have listed the energy levels of
quantum-dot confined electron and hole calculated with
neglect of their mutual Coulomb interaction. The spac-
between the hole energy levels are much smaller than

e for the electron, which results from the larger effective
s of the hole. We also see that—contrary to the case of
parabolic confinement—the energy levels are not equally
ced. The effective nonparabolicity of the confining poten-
is consideraby smaller for the hole, which results from
larger localization of the heavy hole near the dot center.

III. COUPLED QUANTUM DOTS

he parametrization obtained in Sec. II for the single QD
bles us to discuss exciton states in coupled QD’s. For this
ose we have extended the model formulated in Sec. II to

case of vertically stacked QD’s. Accordingly, the indium-
centration distribution in the two coupled, vertically
ked QD’s has been expressed as follows:

X~r,z!5X0exp@2r2/R22~z2a/2!2/Z2#

1X0exp@2r2/R22~z1a/2!2/Z2#, ~11!

rea is the distance between the centers of the QD’s. We
that the model of the coupled QD’s does not contain any

ne
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ABLE III. Calculated lowest-energy levels of the electron,Ee ,
hole,Eh , states in the single QD~the mutual Coulomb inter-
n omitted!. The separationsDEe,h between the consecutive en-
levels are also quoted. Energy is expressed in meV.

Ee DEe Eh DEh

2118.3 2101.4
289.0 28.3 293.0 8.5
264.1 25.9 284.7 8.3
240.7 23.4 276.6 8.1

th
ce
tia
tw
125301-4
praca 14A 149
fitting parameter. The shape of the potential confining
charge carriers in the coupled QD’s, obtained from Eqs.
and ~11!, is schematically displayed in Fig. 2~a!. Figure
shows the geometry of the coupled-dot nanostructure. In
~11!, the values of parametersX0 , R, andZ are the same
or the single QD~Sec. II!. In this section, we are using
same formulas for the confinement potentials, effective
ses, and Hamiltonian as those given in Sec. II. In these
ulas, we substitute concentration distribution function
y Eq.~11!. For the exciton confined in the coupled quan-
dots we propose the following trial wave function:

re ,rh!5re
mrh

mxm~we ,wh!

3 (
ne50

1

(
nh50

1

(
jkln

cjkln
nenhf jkln@re ,rh ,ze

1~21!ne~a/2!,zh1~21!nh~a/2!,zeh#, ~12!

h is a generalization of the form given by Eq.~8!. Wave
tion ~12! allows for a description of the electron and
states of both even and odd parity. Due to the presence
e Coulomb-interaction term in Hamiltonian~5!, the ex-

wave functions arenot eigenfunctions of the one-particle
ty operators. Therefore, they do not possess a definite
metry with respect to the change of sign of thez coordi-
of one particle only. However, Hamiltonian~5! is invari-

with respect to the simultaneous change of sign of both
coordinatesze and zh . Thus, the electron-hole wave
tions possess a definitetotal parity. The symmetry with
ect to the total parity applied to Eq.~6! yields the fol-
ng selection rules: radiative transition is allowed~forbid-
!for the initial state of even~odd!parity. Therefore, only
states of the even total parity are optically active.
he thickness of the barrier between the QD’s is a more
ropriate parameter for a description of the interdot cou-
g than the distance between the dot centers, since the
-assembled QD’s do not possess well-defined centers. In
framework of the present model, thicknesst of the inter-
barrier is defined as follows:t5a22Z @cf. Fig. 2~a!#,
re a is the interdot-center distance. The experimental
lts21 have been given as functions of spacer thicknessd.
se two parameters are related byt5d1TWL22Z

IG. 2. Schematic of coupled QD’s. The barrier and spacer
nesses are denoted byt and d, respectively,a is the interdot-
er distance. Plot~a! shows the profile of the confinement poten-
n the growth direction and plot~b! shows the geometry of the
coupled dots.
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@cf. Fig. 2~b!#, which yields the following relation
tween the spacer thickness and the interdot-center
d5a2TWL .

IV. RESULTS AND DISCUSSION

In Fig. 3, we have plotted the calculated energy le
the electron and hole confined in the coupled QD’s~with
electron-hole Coulomb interaction omitted! as function
the barrier thickness~interdot-center distance!. For lar
terdot distances the energy levels are twofold deg
When the distance between the dots decreases, th
eracy with respect to the parity is lifted. The ener
even- ~odd-! parity states decrease~increase!with the
creasing interdot separation. The resulting splitting
energy levels is much larger for the electron than for
and only weakly depends on the angular-momentu
tum number.

Figure 4 presents the dependence of the eight
energy levels for thes andp states of the exciton confin
the coupled QD’s~with the Coulomb interaction incl
on the barrier thickness. The solid curves correspon
optically active states of even total parity and the
curves corespond to the states of odd total parity, fro
the radiative transitions are forbidden. For large
thickness the lowest-energys and p levels as well as
higher-energy levels are twofold degenerate. This
eracy is lifted by the interdot coupling for small in
separations. In the limitt→` the exciton ground-stat
ergy becomes equal to the ground-state energy of th

FIG. 3. Calculated one-particle energy levels of the
~solid curves!and the hole~dashed curves!as functions of b
thicknesst ~distancea between the centers of the dots!. Sign
and 2 correspond to the states of even and oddz parity, res
tively, and symbolss, p, d, and f denote the angular mom
quantum numbersm50, 1, 2, and 3, respectively.
1
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exciton

confined in the single QD~cf. Table I!. Similarly, the en
of lower p level becomes equal to the energy ofp state o
exciton in the separated QD~cf. Table II!. In the same
the higher-energy levels of both angular symmetries
the corresponding sums of the energies for the nonin
electron and hole confined in the separated QD’s~cf. Ta
II!. These limit values marked by the dotted lines in
correspond to the dissociated exciton.

Figures 5, 6, and 7 display the contours of the pro
amplitudes, i.e., the electron-hole wave functionsF2
5(0,0,ze),rh5(0,0,zh)… for the four lowest-energy sta
s symmetry. In these figures, the coordinates corres
to the centers of the QD’s are marked by the dashed
lines and the white~dark gray!areas correspond to the
~highest!values of the wave functions@in plots ~a! thro
~d!, the shades of gray do not correspond to the sam
of the wave function#. Figures 5, 6, and 7 show the a
try in the electron and hole probability distribution,
results from the stronger localization of the hole du
larger mass.

Let us consider the case of large interdot distanc~F
5!. In the two lowest-energy degenerate states@Figs. 5~a!
5~b!#, the values ofF2 differ only in signs, i.e., these
are characterized by the same probability density. T
tical property holds true for the two degenerate excite
@cf. Figs. 5~c!and 5~d!#. The probability amplitudes f

ectron
rier

c-
tum

FIG. 4. Calculated energy ofs andp states of the exciton
fined in the coupled InXGaAs12X QD’s as a function of b
thicknesst ~interdot-center distancea). Solid ~dashed!curves s
the results for the even-parity optically active~odd-parity opti
inactive!states. Dotted lines~labeled byEs

e1Es
h andEp

e1Ep
h)

play the sums of the energies of the electron and the hole
in the different infinitely separated QD’s.DEs and DEp are
electron-hole Coulomb-interaction energies fors and p states
spectively.
25301-5
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FIG. 5. Contours ofs exciton wave functions
F2„re5(0,0,ze),rh5(0,0,zh)… for interdot-center
distancea516 nm, plotted along thez axis as
functions of the electronze and holezh coordi-
nates for~a! the ground state and the~b! first, ~c!
second, and~d! third excited state. White~dark
gray! areas correspond to the lowest~highest!
values of the wave functions. The shades of gray
express the relative values of the wave functions,
but are not the same in plots~a!–~d!. In plots~a!
and~d! @and also in 6~a!and 7~a!#, the wave func-
tions equal zero in the white areas, whereas in all
the other plots the contours corresponding to the
wave function equal to zero are denoted by 0.0.
Dashed straight lines correspond to the coordi-
nates of the dot centers.

FIG. 6. Contours ofs exciton wave functions
for interdot-center distancea57 nm. The sym-
bols have the same meaning as in Fig. 5.
125301-6
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FIG. 7. Contours ofs exciton wave func
for interdot-center distancea54 nm. The s
bols have the same meaning as in Fig. 5
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degenerate ground state possess extrema on the st
ze5zh and those for the degenerate excited states
extrema on the straight lineze52zh . This means tha
twofold degenerate ground state corresponds to the
hole pair confined in the same quantum dot, wherea
twofold degenerate excited state, the electron is con
one QD and the hole is confined in the other. There
the limit of large interdot distances, the two pairs of
erate states correspond to essentially different phys
ations, i.e., the bound exciton and the dissociated
The ground-state wave functions inside a single Q
the inversion symmetry with respect to the dot cente@F
5~a! and 5~b!#. The excited-state wave functions are
spread out in the direction of the other QD, in wh
oppositely charged particle is localized@Figs. 5~c!and 5
We note that for large interdot distances the excito
functions do not show any trace of the symmetry w
spect to the one-particle parity. Obviously, these wa
tions are symmetric with respect to the simultaneous
of sign of both theze andzh coordinates.

If the distance between the dots decreases, the e
the excited state slightly lowers~cf. Fig. 4!, which re
from the increasing attraction between the electron a
localized in different dots. This effect is not observed
ground state, in which both the charge carriers are
in the same QD. Therefore, in the case of large inte
tances, the only effective coupling is the long-rang
lomb coupling between the charge carriers localize
different QD’s. Figure 4 shows that for the barrier th
t&8 nm the higher-energy branches begin to grow
degeneracy is lifted. In Fig. 6, we have plotted the
wave function for the four lowest-energy states in the
1
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intermediate distance between the dots (a57 nm). The
sults of Fig. 6 show that the correlation in the r
electron-hole motion is weaker than in the case of l
terdot distances. In the two lowest-energy states@Figs.
and 6~b!#, both the particles still prefer to occupy th
QD, but there appears a nonzero probability of occup
different dots. In the third and fourth excited states@F
6~c! and 6~d!#, both the particles exhibit the tende
avoiding each other, but with the nonvanishing proba
occupation of the same QD.

In Fig. 7, the shapes of the exciton wave functio
shown for a small interdot-center distance (a54 nm)
this case, the wave functions begin to exhibit a definit
with respect to the change of sign of the singlez coordin
The ground-state wave function is approximately e
both theze and zh coordinates@Fig. 7~a!#. The first ex
state@Fig. 7~b!#corresponds to the even-parity electro
and odd-parity hole state. On the contrary, in the
excited state@Fig. 7~c!#, the electron possesses the od
and the hole possesses the even parity, whereas in
excited state@Fig. 7~d!# both the particles possess th
parity.

According to the results of Figs. 5, 6, and 7, th
particle description of the parity symmetry is approx
true only for small interdot distances, i.e., in the limit
strong interdot coupling. In a general case, the one
parity is not well-defined. Therefore, one has to be ve
ful when describing the symmetry of the exciton
coupled QD’s, especially when using one-particle m
e.g., LDA approach,18 which cannot reproduce the tot
citon parity. In particular, we can expect that—for so
25301-7
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ot distances—the broken-parity self-consistent solutions
sess a lower total energy.28

he parity of the exciton state strongly affects the prob-
ity of radiative transitions, i.e., the electron-hole recom-
tion. In Fig. 8, we have plotted the radiative-transition
ability calculated according to formula~6! for the opti-

y active exciton states withm50 (s states!and even
l parity. The probabilities of the radiative transitions from
grounds state take on fairly large values for all the dis-
es between the QD’s. In the ground state, the probability
he electron and the hole to be localized in different QD’s
eases with the decreasing interdot distance@cf. Figs. 5
6~a!, and 7~a!#, which leads to the decreasing probability
he electron-hole recombination. The behavior of the
bability of the recombination from the excited even-parity
ate is just opposite. In this state, the charge carriers are
tially separated for large interdot distances@cf. Fig. 5~d!#.
refore, the exciton wave function under integral~6! is
al to zero, which causes the probability of the radiative
sition from the excited state to vanish. When the distance
een the dots decreases, the charge carriers can be local
in the same QD and the excited-state recombination

bability takes on nonzero and increasing values~Fig. 8!.
ever, the probability of the radiative transition from the

ited state always remains smaller than that from the
und state.

e have performed similar calculations for the exciton
es with higher angular momentum quantum numberm.
results~not presented here!show that the properties of
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IG. 8. Estimated probability of the radiative transitions from
even-parity ground and excited state of the exciton withm50
fined in the coupled QD’s as a function of barrier thicknesst
tance between the dot centersa). The transition probability is
ressed in arbitrary units.

ex
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energy levels and relative recombination probabilities for
states of higherm are qualitatively the same those for the
tes. This means that the vertical interdot coupling is only
kly affected by the in-plane motion.
s we have shown the radiative transitions are forbidden

the odd-parity initial states and are less probable for the
ited even-parity states~cf. Fig. 8!. This leads to the con-
ion that the dominant contribution to the photolumines-
ce spectrum of the coupled dots originates from the
st-energy even-parity exciton states for givenm. The

rdot coupling shifts the energies of these states towards
lower values~cf. Fig. 4!.
ased on these results, we can now compare the predic-
s of the present model with the experiment.21 In Fig. 9,
have plotted the energies calculated for the allowed ra-
ive transitions. The experimental data,43 marked by the
circles, have been extracted from Ref. 21. Figure 9
ws that the calculated transition energies agree very well

the measured positions of the photoluminescence
s.21 The exciton recombination lines exhibit the pro-
nced redshift with the decreasing interdot distance. The
wing physical interpretation of this redshift can be
n: the decrease of the interband transition energy means
the exciton binding energy increases with the decreasing

rdot separation. This effect mainly results from the low-
g of the one-particle energies~cf. Fig. 3!, i.e., the stron-
quantum confinement of the electron and the hole in the
ble quantum well with the growing effective range.

the experimental spectra,21 taken for the QD’s with

IG. 9. Energyhn of radiative transitions from the even-parity
ton states with one-particle angular-momentum quantum num-
m50 (s),1 (p),2 (d), and 3 (f ) as a function of spacer thick-
d (a is the interdot-center distance, whereasd5a2TWL).
curves show the results of the present calculations and full

es show results of the experimental data@Ref. 21#.
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height h.2 nm, no additional photoluminescence
were observed. The appearance of additional photolu
cence lines was reported21 for the coupled QD’s of the la
height (h53 nm). Unfortunately, the evolution of thes
ditional lines with the varying interdot distance was no
sented, probably because of a strong overlap of the lu
cence maxima. The authors suggested21 that thes excit
line does not split and that the splitting becomes co
ably larger for the highly excited exciton states. Based
results of the present calculations, we argue that the
gestions are not correct. The calculated spacings betw
energy levels of the even-paritys andp states are compar
~cf. Fig. 4!and the dependence of the relative recomb
probability on the barrier thickness is similar for bot
states. Therefore, if the higher-energyp state is observed
higher-energys state should also be observed.

Let us discuss a possibility of an experimental obse
of the energy-level splitting for the exciton in the co
QD’s. As we have shown above~cf. Fig. 4!, in the limit
large interdot distances, for givenm the two pairs of ene
levels are twofold degenerate. These levels are as
with the twofold parity-degenerate ground and excited
In each pair, only one state~of even total parity!is optica
active and can be detected experimentally. This fea
independent of the interdot distance. Therefore, a p
removal of the degeneracy of the two exciton states w
different total parity cannot be observed experimenta

The higher-energy exciton states of even total par
be observed under certain conditions. The even-parit
corresponding to the same angular momentum arealway
i.e., for all interdot distances, energetically separated~cf. F
4!. In the limit of large interdot distances, the higher-e
exciton states cannot be detected, since the electron
hole occupy different dots~cf. Fig. 5!and the transition p
ability vanishes~cf. Fig. 8!. The recombination from the
cited states can be observed only for small interdot di
~Fig. 8!. If the additional photoluminescence lines con
with the higher-energy states of even parity appear
spectrum, they are already blueshifted by at least 1
with respect to the lines corresponding to the lowest-
states for givenm ~cf. Fig. 4!. The new peaks~with increa
ing transition energies!can occur in the photoluminesc
spectrum if the distance between QD’s is sufficiently
n
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According to our results, one of the new peaks w
lowest energy should correspond to the exciteds state of
even total parity.

V. SUMMARY

In the present paper, we have introduced a the
model of a single QD based on the assumption of the
ian distribution of indium concentration. We have g
ized this model in order to describe the coupling betw
vertically stacked self-assembled QD’s. The eige
problem for the exciton in the coupled QD’s has been
with the use of the many-element variational basis
partially takes into account the two-particle correlat
fects. A good agreement has been obtained between
culated and measured positions of photoluminescen
for different interdot distances. This agreement supp
hypothesis of the negligible influence of the inter-e
interaction on the photoluminescence spectra in t
assembled quantum dots. The present results show
proposed Gaussian concentration distribution with
rameters fixed for the single QD is a universal fu
which implicitly includes the most important effects
QD’s and properly describes the electronic properties
the isolated single QD and coupled double QD’s.
coupled QD’s we have studied the symmetry with res
the parity of the exciton states. The present resul
that—in a general case—the exciton wave functions
possess a definite one-particle parity and only the to
particle parity is conserved. For very small interdot di
the ground-state exciton wave functions exhibit th
particle parity, but in an approximate manner only. W
also suggested that the recent assignment of the a
photoluminescence lines observed for the small inter
tances should be revised.
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Exciton and negative trion dissociation by an external electric field
in vertically coupled quantum dots
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We study the Stark effect for an exciton confined in a pair of vertically coupled quantum dots. A single-band
approximation for the hole and a parabolic lateral confinement potential are adopted which allows for the
separation of the lateral center-of-mass motion and consequently for an exact numerical solution of the
Schrödinger equation. We show that for intermediate tunnel coupling the external electric field leads to the
dissociation of the exciton via an avoided crossing of bright and dark exciton energy levels which results in an
atypical form of the Stark shift. The electric-field-induced dissociation of the negative trion is studied using the
approximation of frozen lateral degrees of freedom. It is shown that in a symmetric system of coupled dots the
trion is more stable against dissociation than the exciton. For an asymmetric system of coupled dots the trion
dissociation is accompanied by a positive curvature of the recombination energy line as a function of the
electric field.

DOI: 10.1103/PhysRevB.71.205316 PACS numberssd: 73.21.La, 71.35.Pq, 73.21.Fg

I. INTRODUCTION

Strained self-assembled InAs/GaAs quantum dots grown
on subsequent layers stack spontaneously one above the
other1,2 forming artificial molecules with spatially extended
states due to the tunnel interdot coupling. The photolumines-
cencesPLd spectrum of the coupled dots consists of a num-
ber of lines which are blue or redshifted by the coupling2,3

depending on the way the single-particle electron and hole
wave functions contribute to the exciton states in question.4

Application of an electric field oriented along the growth
direction offers the possibility of external control of the
strength of the tunnel coupling. Recent experimental results5

on the Stark effect for vertically coupled pairs of nonidenti-
cal dots showed the effect of tunnel coupling through the
appearance of avoided crossings between states localized in
different dots. Previously, tunnel-coupling related Stark shift
of the electroabsorption spectra has been observed in vertical
stacks of several quantum dots.6

Stark effect on the exciton states in vertically coupled
self-assembled quantum dots has previously been studied in
Refs. 7 and 8. An anomaly in the ground-state Stark shift was
found7 by the k·p method accounting for the strain effects
and realistic shapes of the dots. This anomaly consists in
deviation of the ground-state energy line from the usual qua-
dratic dependence9 on the external field

EsFd = EsF0d − psF − F0d − bsF − F0d2, s1d

where F0 is the electric field for which the overlap of the
electron and the hole wave functions is the largest and for
which the recombination energy is maximal,p is the dipole
moment andb.0—the polarizability. The shift calculated7

for coupled dots can only be approximated with two parabo-
las: one forF,F0 and the other forF.F0, amounting in a
cusp atF0. Although this deviation was attributed7 to the
strain distribution it was shown that such a behavior can also

be obtained in a single band model of coupled quantum disks
neglecting the strain.8 Actually, as we discuss below analyz-
ing the Stark shift of the first excited state, this deviation is
due to a near degeneracy of the ground-state aroundF0 re-
sulting from the weakness of the hole tunnel coupling. In the
present paper we report on another deviation of the Stark
shift from quadratic form related to the exciton dissociation
via a ground-state anticrossing of a bright state with both
carriers in the same dot and a dark state with separated car-
riers.

Quantitative modeling10–19 of single quantum dots re-
quires taking into account the valence band mixing, the gra-
dient in the indium distribution, strain effects, and confine-
ment geometry which are very different for quantum dots
fabricated at various laboratories. In this paper we present a
qualitative study of the effects of the external electric field on
the interdot tunnel coupling visible in the Stark shifts of the
bright energy levels, which should be universal for various
types of coupled dots. In particular we focus on the effect of
the electron-hole interaction which was neglected7 or treated
in an approximate manner8 in previous work. For a single
quantum dot the Coulomb interaction may have a small ef-
fect on the Stark shift since the interaction energy only
weakly changes with the small displacement of the electron
and hole wave functions inside a single dot. On the other
hand, the role of the interaction for the Stark effect in
coupled dots is essential since the effect of the external field
on the exciton consists in breaking the electron-hole binding
and segregation of carriers into different dots.

In the present work we use a simple model potential25

with a square quantum well for the vertical confinement and
parabolic lateral confinement adopting the single band ap-
proximation for the hole. Due to the applied idealizations the
model is exactly solvable. Our results fully account for the
interparticle correlations due to the Coulomb interaction and
cover also the excited states.
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A recent experiment5 on the Stark effect in a vertically
coupled system of quantum dots was performed on a charge
tunable structure, similar to the one used in studies of nega-
tively charged excitons.20 A spectacular change in the spec-
trum was observed,5 when an electron was trapped in the dot
closer to the electron reservoir. Namely, a sudden drop of the
recombination energy and an unexplained positive curvature
of the recombination line as a function of the electric field
was observed.5 This observation motivated us to look at the
Stark effect for the negatively charged trion. For the negative
trion we apply the approximation that the lateral degrees of
freedom are frozen. The validity of this approximation is first
verified for the Stark shift of the exciton energy levels. In
nanostructures the trion binding energies with respect to the
dissociation into an exciton and a free electron are consider-
ably increased.21 However, the trion binding energy is usu-
ally substantially smaller than the exciton binding energy.
We report here that for a symmetric system of vertically
coupled quantum dots the trion ismore stable for dissocia-
tion by the external electric field than the exciton. The study
of the dissociation mechanism shows, that for the pair of
identical dots the trion is dissociated into a pair of electrons
confined in one dot and a hole in the other. Only for the
asymmetric system of coupled dots a dissociation into an
exciton and a free electron is obtained as an intermediate step
before the final separation of the hole from the two electrons.
In this case, the trion is more easily dissociated than the
exciton. The positive curvature of the recombination energy
as a function of the electric field is obtained for the trion
ionization process into an exciton and a free electron.

Previously, trions in vertically coupled dots were studied
in the absence of the external field22 and neglecting tunnel
coupling between the dots.23

This papers is organized as follows, the next section con-
tains the description of the theoretical approach, the results
are given in Sec. III, their discussion is presented in Sec. IV.
Section V is devoted to the summary and conclusions.

II. THEORY

We assume a parabolic lateral confinement potential with
equal electron and hole confinement energys"vd. Vertical
confinement for the electronfVeszedg and the holefVhszhdg is
taken as double well potentials of depthVe

0 for the electron
and Vh

0 for the hole and of widthw=6 nm separated by a
barrier of thicknessb. Isolated quantum dots may possess a
built-in strain-induced electric field pushing the hole to the
top of the dot as found in the photocurrent measurements of
the Stark effect on buried quantum dots.24 However, in
coupled quantum dots the built-in electric field has the op-
posite orientation.5 Therefore, this intrinsic electric field is
neglected in the present calculationssin fact, such a build in
electric field can also be interpreted as a shift of our applied
fieldd. For self-assembled quantum dots the assumption of
harmonic lateral confinement is not valid, however, it should
not essentially modify the susceptibility of the carriers to the
electric field oriented vertically.

In the present model the Hamiltonian of the system can be
written as

H = −
"2

2me
¹e

2 −
"2

2mh
¹h

2 +
mev

2

2
re

2 +
mhv2

2
rh

2 + Veszed + Vhszhd

−
e2

4pee0reh
+ eFszed − eFszhd, s2d

wherere
2=xe

2+ye
2, sxe,ye,zed and sxh,yh,zhd are the position

vectors of electron and the hole, respectively.reh is the elec-
tron hole distance,me smhd is the electronsholed effective
band mass,e is the dielectric constant, andFszd is the po-
tential of the external electric field taken as

Fszd = 5Fzmax for zmaxø z

Fz for zmin , z, zmax

Fzmin for zø zmin
6 , s3d

whereF is the value of the electric field assumed to be uni-
form betweenzmin and zmax swhich can be identified as the
positions of the electrodesd. In the calculations we leave a
space of 10 nm between the dots and the pointszmin andzmax
beyond which the electric field is assumed to be zero.

The model of the coupled quantum dots used in this paper
was previously applied25 to describe the exciton coupling
between dots in the absence of an external electric field. The
authors25 used the configuration interaction scheme to ac-
count for the lateral correlations between the electron and the
hole. The configuration interaction approach for the electron-
hole systems is computationally much more challenging than
for the electron systems due to its slow convergence.26

Therefore, in this paper we will make explicit use of the
lateral separability of the center of mass. After introduction
of the lateral relativereh=sxe−xh,ye−yhd and lateral center-
of-massrcm=smexe+mhxh,meye+mhyhd /M coordinates, the
Hamiltonian can be expresses as a sum of the lateral center-
of-mass HamiltoniansHcmd and the Hamiltonian for the rela-
tive lateral—and the single-particle vertical—motionsHrvd,
which are given by

Hcm= −
"2

2M
¹rcm

2 +
Mv2

2
rcm

2 s4d

and

Hrv = −
"2

2m
¹reh

2 −
"2

2me

]2

]ze
2 −

"2

2mh

]2

]zh
2 +

mv2

2
reh

2 + Veszed

+ Vhszhd −
e2

4pee0reh
+ eFszed − eFszhd, s5d

with M =me+mh, m=memh/ sme+mhd, ¹r
2 stands for the La-

placian in thex-y plane. The exciton wave function can be
written as

Csr e,r hd = xsreh,ze,zhdccmsrcmd, s6d

wherex and ccm are the eigenfunctions of theHrv and the
Hcm Hamiltonians, respectively. Functionsccm are simply the
eigenfunctions of a two-dimensional harmonic oscillator.
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The eigenstates of Hamiltonians5d have definitez com-
ponent of total angular momentum and forF=0 also have
definite parity with respect to a change of sign of thez
coordinates.4 The absorption/recombination probability for
statem is proportional to the integral

pm = UE d6rCmsr e,r hdd3sr e − r hdU2

= UE dxedyeccmsxe,yed E dzexms0,ze,zedU2

. s7d

In the present paper, we consider only states whose symme-
try does not prevent them to be bright, i.e., states in which
both the relativex and the center of massccm eigenstates
possess zero angular momentum. In the following we show
and discuss only results for states in which the center of mass
is in the ground state. The spectrum withs-symmetry center-
of-mass excitations is simply a replica of the spectrum cor-
responding to the ground state of the center of mass shifted
by the energy 2"v. The recombination probabilities for the
states corresponding to zero angular momentum center-of-
mass excitations areexactlyequal to the corresponding states
with the ground-state center of mass, since integrals of all the
s type wave functions of a two-dimensional harmonic oscil-
lator are equal, which is due to a property of Laguerre poly-
nomials. For potentials, in which the parity is a good quan-
tum number, i.e., for identical quantum dots without an
external field, we consider only states of even parity, the odd
parity states being dark.

The eigenfunctionsx of Hamiltonians5d are calculated on
a three-dimensional finite-difference mesh with the imagi-
nary time technique.27 We use the material parameters for an
InxGa1−xAs quantum dot embedded in a GaAs matrix with a
uniform concentration of indium in the quantum dotx
=0.66.4 We take the following parameters for the alloyed
quantum dot materiale=12.5, me=0.037m0, mh=0.45m0,
where m0 is the free electron mass,Ve

0=−0.508 eV, Vh
0

=−0.218 eV, and we take for the lateral confinement"v
=20 meV. We note, that in the limit of"v=0 the present
problem reduces to the Stark effect for an exciton in coupled
quantum wells.28

For a particle of massm confined in a harmonic oscillator
potential of energy"v0 the localization radius defined as the
square root of the expectation value ofx2+y2 is equal to
Î" /mv0. For the assumed center-of-mass separation the hole
is therefore more strongly localized than the electron by a
factor ofÎmh/me. In InAs/GaAs quantum dots the hole con-
finement is stronger than the electron confinement which is
due to the finite quantum well effect29 and the electron-hole
interaction which localizes the heavy hole much more
strongly than the light electron. In Fig. 7 we show that a
change in the strength of the hole and electron lateral con-
finement does not influence the qualitative features of the
spectra in an external electric field. It merely leads to shifts
of the energy levels along the energy axis.

For the negative trion in quantum dots with a rectangular-
well confinement the effect of a stronger hole localization
leads to a larger electron-hole interaction energy than the
electron-electron interaction energy.30 This produces a red-

shift of the negative trion recombination line which increases
with decreasing size of the dot and consequently leads to a
decrease of the redshift due to the tunnel effect in coupled
quantum dots.22 In two-dimensional quantum wells the ex-
perimentally observed31 positive and trion recombination en-
ergies for zero-magnetic field are nearly equal, although in
strictly21 two-dimensional confinement significantly lower
recombination energy for the positive trion was predicted.
This effect is explained31–33 by stronger hole localization.
Therefore, the adopted confinement potential takes into ac-
count the electron-hole interaction enhancement22,30–33with
respect to the electron-electron interaction.

III. EXCITON IN VERTICALLY COUPLED DOTS

A. Stark effect

For F.0 the electric field pushes the electron to the left
and the hole to the right dot. The dependence of the energy
spectrum on the external electric field forb=2 nm is plotted
in Fig. 1sad. At zero electric field the first excited state is of
odd parity and corresponds to the excitation of the holefsee
the inset to Fig. 1sad—excitation energy is just 0.25 meVg.
The electric field breaks the parity symmetry of the system
and the excited state becomes optically activefcf. the inset to
Fig. 1sadg. The dependence of the wave functions on the
electric field is displayed in Fig. 2sad. In order to explain the
field dependence of the spectrum we have plotted in Fig. 2sbd
the probability densities integrated over the lateral degrees of
freedom, which gives more accurate information about the
localization of particles than the wave function on the axis
fwhose integral overze andzh gives the recombination prob-
ability, cf. Eq. s7dg. In the ground state the hole becomes
entirely localized in the right quantum dot for a relatively
weak electric fieldfsee the plots forF=30 kV/cm in Figs.
2sad and 2sbdg. The ground-state localization of the electron
in the left dot appears at a much higher electric field, leading
eventually to the extinction of the recombination intensity. In
the excited part of the spectrum one observes two bright
energy levels which tend to degeneracy at high electric field
fcf. levels labeled bybl andbr in Figs. 1sad, 2sad, and 2sbdg.
In these two energy levels the electron and the hole occupy
the same quantum dotfit is more clearly visible in Fig. 2sbd,
for the wave function plots presented in Fig. 2sad this ten-
dency is apparent only at high electric field, cf. the plots for
the third and fourth excited states forF=90 kV/cmg. In the
bright energy levels marked bybl the carriers become local-
ized in the left quantum dot which is favorable for the elec-
trostatic energy of the electron and unfavorable for the elec-
trostatic energy of the hole. In the higher bright energy level
marked bybr the electron and the hole are localized in the
right quantum dot, favorable for the hole and unfavorable for
the electron. Thebl level increases when the electric field is
switched on. On the other hand thebr energy level decreases
with field. This behavior is due to a reaction of the electron
on the field which is delayed with respect to the reaction of
the hole being more easily localized in one of the dots by the
field fcf. Fig. 2sbdg.

Figure 1sadshows that the two bright energy levels exhibit
avoided crossings and anticrossings with the dark energy lev-
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els for which the carriers are separated by the electric field in
the same way as in the ground state. The lowest excited dark
energy levelfmarked byl in Figs. 1sad, 2sad, and 2sbdgcor-
responds to a lateral excitation. In the second excited dark
energy levelfmarked byv in Figs. 1sad, 2sad, and 2sbdgthe
hole in the right quantum dot is in a state excited in the
vertical direction. Forb=2 nm the first anticrossing in the
low-energy spectrum appears between the brightbr and the
dark l energy levels aroundF=40 kV/cm at about
−555 meV. This anticrossing is wide and is due to the elec-
tron tunnel coupling of the left and right dotssthe hole is
entirely localized in the right quantum dot in both statesd.
The dark energy levell goes below the lower bright energy
level bl via a crossing. A crossing instead of anticrossing is
observed here because in thebl energy level the hole is in the
other sleftd dot. The dark statev with a hole excitation
crosses thebr level and goes below thebl level in a very
narrow anticrossing.

For weaker tunnel coupling, i.e., forb=4 nm fcf. Fig.
1sbdg the two bright energy levels become degenerate already

at aboutF=90 kV/cm. All the avoided crossings become
narrower with respect to the stronger tunnel coupling case of
Fig. 1sad. The most pronounced anticrossing is the one be-
tween thebr and l energy levels, like forb=2 nm fcf. Fig.
1sadg. The curvature of the degenerate bright energy levels at
high electric fields results from the electric-field-induced de-
formation of the electron and hole wave functions within
each of the quantum dots.

The most interesting spectrum is obtained for larger bar-
rier thickness. Figure 1scddisplays the electric-field depen-
dence of the exciton energy spectrum forb=7 nm. For
F=0 the twofold degenerate ground state corresponds to
both carriers in the same quantum dotfcf. Fig. 2sbdg, while in
the nearly degenerate excited state the carriers occupy differ-
ent quantum dots. The degenerate ground state energy is not
affected by the electric field, since the electrostatic energy
gained by the electron is lost by the hole andvice versa. The
electric-field dependence of both the split excited energy lev-
els, which correspond to spatially separated charge carriers,
is strictly linear. This energy level anticrosses thebr bright
energy level aroundF=9 kV/cm. After the avoided crossing
the state with carriers separated by the external electric field
becomes the ground state. The bright statebl is not involved
in the anticrossing and its energy is independent ofF. For
larger b the discussed anticrossing becomes narrow and
barely visible.

Figure 2scd for F=5 kV/cm shows that in the ground-
state the charge of the hole is considerably shifted to the
right dot and that a part of the electron charge is also trans-
ferred to the right dot. In order to present the movement of
the carriers between the dots in more detail we plotted in Fig.
3 the charge accumulated in the left dot as a function of the
electric field for different barrier thicknesses. We see that the
dependence of the hole charge on the external field is mo-
notonous. On the other hand the electron initially follows the
movement of the hole to the right dot. Forb=10 nm the
electron charge transferred to the right dot is exactly equal to
the hole charge forF smaller than 6 kV/cm. Up to this field
both quantum dots remain neutral and the dipole moment
ssee inset to Fig. 3dis zero. When both particles become
completely localized in different dots the dipole moment
reachesesb+wd.

B. Nonidentical quantum dots

The confinement potential of vertically stacked dots usu-
ally exhibits asymmetry, which even for identical dots can be
induced by the strain effects.7 Let us consider the effect of
the asymmetry of the confinement potential on the exciton
spectrum. It was established7 that for stacked strained trun-
cated pyramids the ground state of the hole is completely
localized in one of the dots, while the electron
snoninteracting7 with the holedstill forms bonding and anti-
bonding states.

Here, we simulate this type of localization assuming un-
equal depths of the quantum wells for the hole. The effect of
the electric field on the spectrum of asymmetric coupled dots
for b=6 nm is presented in Fig. 4sadfor the right dot deeper
by 3 meV for the hole. Two bright energy levels around

FIG. 1. Exciton energy spectrum as a function of external elec-
tric field F for barrier thicknessb=2 nm sad, b=4 nm sbd, b
=7 nmscd. The area of the dots is proportional to the recombination
probability. The insets insad andsbd show zooms of regions marked
by rectangles.
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−563 and −560 meV are obtained. In the lowersupperdof
energy levels both the carriers are localized in the deeper
sshallowerd of the dots. The lowest dark energy level de-
creasing linearly in energy withF has the hole localized in
the right dot fcf. Fig. 5sadg so it crosses the higher bright
energy level with both the carriers in the left dot. The inter-
change of the energy order of this dark state with the lower
bright energy level appears via an avoided crossing, since in
both these states the hole is localized in the rightsdeeperddot
fcf. Fig. 5sadg. ForF,0 the hole in the lowest energy dark
state is localized in the shallower of the dots. For this reason
the corresponding energy level anticrosses the higher bright
energy level and crosses the lower one.

Let us now suppose that the left dot is shallower for the
electronsby 3 meVd and that the hole confinement is sym-
metric. Figure 4sbdshows the spectrum for this case. Surpris-
ingly the spectrum for the electron confinement asymmetry

is just shifted by +2.5 kV/cm with respect to the spectrum
for the hole confinement asymmetryfcf. Fig. 4sadg. In the
lower supperdof the bright energy levels the electron stays in
the deepersshallowerdof the dots and the Coulomb interac-
tion binds the hole in the same dotfcf. Fig. 5sbdg. The
crossing/anticrossing mechanism is the same as for the hole
confinement asymmetry.

For smaller barrier thickness the anticrossings of the dark
and bright energy levels become wider and as a consequence
the region nearF=0 in which the two lowest energy levels
are nearly independent ofF is narrower. The spectra for the
hole asymmetry forb=4.5 and 3 nm are displayed in Figs.
6sad and 6sbd, respectively. The two parallel energy levels
nearF=0 observed for weak tunnel coupling in Fig. 4 are
now ssee Fig. 6dconverted into a crossing at a small negative
F. This feature results in the cusp of the ground-state energy
reported previously7 for a thin s1.8 nmd interdot barrier. For
the electron asymmetry the spectra are still shifted to higher
values of the field by about 2.5 kV/cm with respect to the
hole asymmetry, like in the weak coupling case of Fig. 4.
The crossing of the bright energy levels still appears atF
,0. The reason of this similarity is that in the ground state at
F=0 the dipole moment induced by the electron and hole
asymmetry is the same in sign and not very different in size.
For smallb the electron charge is smeared overbothdots. If
the right dot is deeper for the electron it binds alarger part of
its charge. Consequently, theentire charge of the hole is
pulled to the right dot. On the other hand, for the hole con-
finement asymmetry the dot which is deeper for the hole
localizes its charge completely even for smallb since the
hole tunnel coupling is negligible. The localization of the
hole in the right dot results in a larger localization of the
electron in the right dot. In this way the asymmetry of the
confinement for one particle is translated into an asymmetry

FIG. 2. sad, scd contour plots of wave functions at the axisr=0 of the system andsbd probability density integrated over the lateral
degrees of freedome0

`drruxsr ,ze,zhdu2 for different values of the electric field for barrier thicknessb=2 nmsad, sbd andb=7 nmscd. Lower
plots correspond to lower energies. Shaded area show the quantum wells for the electron and for the hole. Dashed line shows the nodal
surface of the wave function.

FIG. 3. Electronsdotted linedand holessolid lined charge accu-
mulated in the left quantum dot as function of the electric field for
different barrier thicknesses. Inset shows the dipole moment as
function of the field.
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of the potential felt by the other particle via the Coulomb
interaction. Although it is possible experimentally to deter-
mine which of the dots is deeper by looking at the electric-
field dependence of the bright energy levels one cannot de-
duce from theF dependence of the exciton energy levels
alone which of the carriers is responsible for the asymmetry.

C. Frozen lateral degrees of freedom

The exact separability of the center of mass used in the
previous calculations was possible because of the assumption
of identical lateral confinement energies for the electron and
the hole. When the center of mass is not separable26 the exact
calculations become much more complex. However, as long
as the interest of calculations relies in a qualitative descrip-
tion of the influence of the electric field applied in the growth
direction the actual form of the lateral confinement is not
essential. In this case one may try to integrate out the lateral
degrees of freedom.34,35 Such an adiabatic approximation is
valid for strong lateral confinement, as in the case of self-
assembled quantum dots. Thus we assume that the electron
and hole lateral wave functions can be identified with the
ground-state of the harmonic oscillator. This assumption al-
lows us to integrate35 over the lateral degrees of freedom and
arrive at the effective Hamiltonian for the vertical motion

Heff = −
"2

2me

]2

]ze
2 −

"2

2mh

]2

]zh
2 + Veszed + Vhszhd

− Veffsuze − zhud + eFszed − eFszhd + 2"v, s8d

with Veffszd the effective potential35 of one-dimensional in-
teraction given by

Veffszd =
e2

4p1/2ee0l
erfcxsuzu/ld, s9d

with l =Î"s1/me+1/mhd /v. The solution to the eigenequa-
tion of the effective Hamiltonians8d describes the effects
appearing in the growth direction at the expense of a simpli-
fied picture of the lateral motion.

Figure 4 shows the comparison of the exact resultsssolid
linesd obtained with the separated center-of-mass and ap-
proximate results calculated for frozen lateral degrees of
freedomsdashed linesdfor identical quantum dots separated
by a barrier of thicknessb=4 nm, as considered above in
Fig. 4sbd. The approximate method reproduces the correct
qualitative shape of the energy lines. Also the recombination
probability dependence on the electric field does not signifi-
cantly differ. However, the approximation of the frozen lat-
eral state eliminates the lateral excitations. The avoided

FIG. 4. Stark effect for the asymmetric system of quantum dots
at b=6 nm. Insad the electron confinement is symmetric and the left
dot for the hole is shallower by 3 meV. Insbd the hole confinement
is symmetric and the left dot for the electron is shallower by
3 meV. The insets insad and sbd show a schematic drawing of the
vertical confinement forF=0.

FIG. 5. sad Contour plots of the wave functions at the axisr
=0 corresponding to the energy levels shown in Fig. 4sad. sbd simi-
lar as for Fig. 4sbd. Higher plots correspond to higher energies.
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crossings of the bright energy levels with the dark energy
levels with lateral excitations are therefore overlooked in the
present approximation fcf. avoided crossing at F
=50 kV/cm missing for lines marked with dashed linesg.
The accuracy of the approximate method is better for dark
states with separated charge carriers than for the bright en-
ergy levels for which the electrons and hole wave function
overlap.35 The discussed approximation can be applied to
evaluate the qualitative dependence of the bright energy lev-
els on the external field when lateral excitations are absent.
In the following section we will use this approach to study
the effect of the external field on the negatively charged trion
in coupled dots.

The dotted lines in Fig. 7 show the results of frozen-
degree-of-freedom calculations performed for the electron
confinement unchanged but weakened hole confinement for
which the lateral confinement radii of the electron and the
hole are equal. For weakened hole confinement the electron-
hole interaction energy is smaller, which leads to a blueshift
of the energy levels forF=0 with respect to the equal con-
finement energies casesdashed lines in Fig. 7d. The interac-
tion energy of the dissociated electron-hole pair is less
strongly affected by the change of the hole localization
strengths. Figure 7 shows that the electric-field dependence
on the electric field is essentially not altered by the strength
of the hole localization, which justifiesa posteriori the as-
sumption of the adopted center-of-mass separability.

IV. STARK EFFECT FOR NEGATIVE TRION

We consider the effect of the electric field on the ground
state of a negatively charged trion in which the electron sub-

system is in the singlet state. The approximation of the fro-
zen lateral wave functions will be used with the
quasione-dimensional35 electron-electronsVeff

eed and electron-
hole interaction potentialfEq. s9dg. Electron-electronVeff

ee po-
tential is obtained formh replaced byme in formula s9d. The
Hamiltonian for the trion reads

Heff
X− = −

"2

2me
S ]2

]ze1
2 +

]2

]ze2
2 D −

"2

2mh

]2

]zh
2 + Vesze1d + Vesze2d

+ Vhszhd − Veffsuze1 − zhud − Veffsuze2 − zhud

+ Veff
eesuze2 − ze1ud + eFsze1d + eFsze2d − eFszhd + 3"v,

s10d

where ze1 and ze2 are coordinates of the first and second
electron, respectively.

Figure 8sadshows the difference of the trion ground state
energy and the ground state energy of a single electron as
function of the electric field for different values of the barrier
thickness and identical pair of quantum dots of width 6 nm.
The energy difference presented in Fig. 8sad can be
identified22 with the energy of the photon released when the
hole recombines with one of the electronsscalculated with
respect to the GaAs energy gap similarly as for the excitond.
For comparison the exciton ground state energy calculated
with the same approximation of the frozen lateral states is
also shown by the dashed lines. In the absence of the electric
field the recombination line of the negative trion has a lower
energy than the exciton recombination energyfcf. the inset to
Fig. 8sadg. We found that the redshift of the trion line is
smaller for smaller barrier thickness. This behavior as ob-
tained by neglecting the lateral correlations is in perfect
qualitative agreement with extensive variational calculations
accounting for both vertical and lateral correlations in a
nearly exact way.22 Inset to Fig. 8sadshows that for highF
the energy difference of the trion and exiton energy lines is
an increasing function ofb. This is due to the fact that the
interaction energy between the electrons confined in the
same dot is larger than the Coulomb interaction between the
hole and electron separated by the barrier.

For larger barrier thicknessfcf. plots forb=6 and 8 nm in
Fig. 8sadg the recombination line of the trion is independent

FIG. 6. Stark effect for the asymmetric hole confinement of Fig.
4sad for b=4.5 nmsad andb=3 nm sbd. The area of the dots shows
the recombination probability.

FIG. 7. The exact results solid lines and the results with the
frozen degree of freedom for equal hole and electron confinement
energiessdashed linesdand with equal hole and electron confine-
ment lengthssdotted linedfor the parameters of Fig. 4sbd.
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of the electric field forF lower than about 13 kV/cm. The
flat part of the plots corresponds to both the electrons and the
hole staying in the same quantum dotsas discussed above for
excitond. We can see that the ground state of the trion is more
resistant to the dissociation by the electric field than the
exciton ground state. The exciton energy decreases faster
than the trion recombination line, which results in the rever-
sal of the order of the lines atF=14 kV/cm forb=4 nm and
F=10 kV/cm for b=6 and 8 nm. For large values ofF for
which the hole and the electron charges in both the exciton
and the trion ground states are completely separated, the
trion and exciton energy lines for eachb run parallel to each
other.

To explain the large stability of the trion ground state in
the symmetric coupled dots against dissociation by the elec-
tric field we plotted in Fig. 8sbdthe hole and the electron
charge accumulated in the left dot as a function of the elec-
tric field for different barrier thicknesses. For largeb the
distribution of the electron and the hole charges between the
dots before the dissociation of the trion is qualitatively dif-
ferent than in the exciton casescf. Fig. 3d. ForF=0 the hole
selectrondcharge in the right dot is 0.5s1d due to the sym-
metry of the system. For large barrier thicknesssb=8 nmd
the electrons become localized in the left dot already under
the influence of a weak electric field. The hole initially fol-
lows the electrons into the left dotscf. the local maximum of
the solid line forb=8 nmd. We remind the reader that for the
exciton an opposite behavior was observedscf. Fig. 3d: the

electron initially followed the hole for weak electric fields.
The trion becomes dissociated around 13 kV/cm, when the
field moves the hole from the left to the right dot. The reac-
tion of the carriers on the electric field is the most complex
for b=6 nm fcf. Fig. 8sbdg. We have illustrated this in Fig. 9
by additional plots of the probability densities integrated
over the vertical coordinate of one the three particles. For
zero electric field there is a nonzero probability of finding the
electrons in different dotsscf. the left plot forF=0 in Fig. 9d,
and the probability of finding an electron in a different quan-
tum dot than the holescf. the right plot forF=0 in Fig. 9d is
much smaller. Forb.8 nm all the three particles are found
in the same dot. The leakage of particles to the other dot seen
in Fig. 9 is a result of the electron tunnel coupling which is
already nonzero forb=6 nm. In contrast to the case ofb
=8 nm, forb=6 nm a part of the electron charge stays in the
right dot when the field is switched onscf. the left plot for
F=6 kV/cm in Fig. 9d. When the hole is transferred to the
right dot scf. the plots forF=13 kV/cm, part of the electron
charge follows it, which results in a local minimum of the
electron charge accumulated in the left dot forF around
13 kV/cm fcf. Fig. 8sbd for b=6 nmg. For largerF the par-
ticles become separated. For stronger tunnel coupling be-
tween the dots, i.e., forb=5 and 4 nm the hole charge accu-
mulated in the left dot depends on the external field
monotonically fcf. Fig. 8sbdg, and a part of the electron
charge attempts to follow the hole when it leaves the left dot.
Therefore, for smallb the mechanism of the trion resistance
to dissociation becomes similar to the one observed for the
exciton scf. Fig. 3d. The present results show that for sym-
metric quantum dots the trion becomes dissociated into a pair
of electrons in one dot and the hole in the other without the
intermediate step consisting of an exciton confined in the
right dot and an electron in the left dot. This mechanism is
more clearly pronounced for largerb. The Coulomb interac-
tion of the electrons with the hole stabilizing the complex
against field-induced dissociation without the intermediate
step is two times larger than for exciton.

FIG. 8. sad Difference of the ground-state trion energy and the
electron ground statestrion recombination energy with respect to
GaAs energy gap—solid linesd and the exciton ground-state energy
sexciton recombination energy—dashed linesd. The curves are la-
beled by the barrier thicknessb in nanometers. Inset shows the
difference of the exciton and trion energy lines.sbd Electronsdotted
linesd and holessolid linesdcharge on the left side of the origin as
function of the electric field. Inset shows the dipole moment.

FIG. 9. Probability density integrated over the vertical coordi-
nate of one of the electronssright paneldand the vertical coordinate
of the hole sleft paneld for b=6 nm and different values of the
electric fieldF. The shaded areas show the positions of the quantum
dots.
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Note that for the trionfcf. Fig. 8sbdg the barrier thickness
has the opposite effect on the sensitivity of the electrons and
the hole to the electric-field induced localization. For smaller
b the electric field is less effective in localizing the electrons
in the left dot but more effective in localizing the hole in
the right dot. The effect for the electrons is obviously due to
the strong electron tunnel coupling. For smallerb a smaller
F localizes the hole in the right dot because the energy of its
interaction with electrons changes less drastically after the
dissociation and the hole tunnel coupling is negligible.

The inset to Fig. 8sbdshows the electric dipole moment
for the trion as a function of the electric field. For highF,
when the particles are separated into different dots the dipole
moment takes the value 3esw+bd /2.36 Note, that for a thick
barrier the dipole moment develops a plateau for the region
of fields in which the hole accompanies the electrons to the
right dot. For a thick barrier the recombination energyfcf.
inset of Fig. 8sadgstarts to change only when the second
plateau of the dipole moment is reached.

We found a qualitatively different dissociation mechanism
of the trion in an asymmetric system of coupled dots. Sup-
pose that the right quantum dot has a thickness of 6 nmsas
anywhere else in the present paperd and that the left dot has
a thickness of only 4 nm. Figure 10sad shows the trion re-
combination energies for different barrier thicknesses. The
charge accumulated in the rightswiderd dot is plotted in Fig.
10sbd. ForF=0 the three carriers stay in the right dot. For
strongly coupled dotssb=4 nmd the electrons resist strongly
to being removed to the thinnest dot. ForF=90 kV/cm less
than one elementary charge is localized in the left dot. On the

other hand the negative electric field removes abruptly the
hole to the thinnest dot atF,−25 kV/cm. For thicker inter-
dot barrier the trion recombination energy develops a local
maximum for positive electric fieldsfsee the plots forb=6,
8, and 10 nm in Fig. 10sadg. Let us analyze the origin of
these maxima for the case ofb=10 nm. For positive electric
field up to 50 kV/cm both the electrons are confined in the
right dot fcf. Fig. 10sbdg. Then betweenF=50 kV/cm and
F=55 kV/cm one of the electrons is transferred to the right
dot. In this electric field range the trion is dissociated into an
exciton confined in the right dot and a spectator electron in
the left quantum dot. The final state after the trion recombi-
nation, i.e., the ground state of a single electron, is localized
in the left quantum dot forF.50 kV/cm, i.e., for the same
value of the electric field which induces the transition of the
first electron from the trion state to the left quantum dot.37

After the trion dissociation the recombination energy almost
reaches the recombination energy of the excitonfcf. dotted
line in Fig. 10sadg. The slight redshift of the dissociated trion
line with respect to the exciton in this electric field range is
due to the Coulomb perturbation of the exciton remaining in
the right quantum dot by the spectator electron in the left
quantum dot. The second electron is removed from the right
dot between 60 and 65 kV/cm.

Note, that the observed mechanism of dissociation of the
trion into an exciton and an electron does not occur in the
system of symmetric quantum dotsscf. Fig. 8d. For asym-
metric quantum dots the stronger confinement energy in the
thinner of the dots prevents the second electron from enter-
ing it simultaneously with the first one. In the asymmetric
system the exciton becomes dissociated into an electron and
a hole forlarger electric fields than the one inducing disso-
ciation of the trion into an exciton and a free electronfcf.
Fig. 10sbdg. On the other hand the exciton created in the right
quantum dot after the trion dissociation is more resistant to
the electric field induced dissociation than the exciton. The
electron remaining in the right dot is less willing to pass to
the left quantum dot if it is already occupied by an electron.

The recombination energy lines of the trion in the asym-
metric system of coupled dots present a positive second
derivative with respect to the electric field for a certain range
of F. Namely, for b=6 nm the second derivative is posi-
tive for the electric field rangeFP s61,71d, FP s57,60d, and
FP s50,52dkV/cm for b=6, 8, and 10 nm, respectively.

For symmetric dots the mechanism behind the trion dis-
sociation into an electron pair confined in one dot and the
hole in the other, without an intermediate step consisting of
an exciton in one dot, and the electron occupying the other
quantum dot, is easily explained when considering largeb
using a simple reasoning in which the tunnel effect and the
interdot Coulomb interactions are neglected. In this model
the dependence of the energy of the trion on the external
field can be written asEX−=−2Eeh+Eee−Fbe/2, whereEeh
sEeed is the absolute value of the electron-hole interaction for
the particles localized in the same dot. The trion is localized
in the dot in which the electron localization is favored by the
field. The lowest energy level corresponding to the exciton
confined in one dot and the electron in the other isEX
=−Eeh−Fbe/2, and the energy level corresponding to a
completely dissociated system isEd=Eee−3Fbe/2. For

FIG. 10. sadThe trion recombination energies as functions of the
electric fieldssolid linesd for a pair of coupled quantum dots. The
curves are labeled by the barrier thickness in nanometers. Right dot
has a width of 6 nm and the width of the left dot is 4 nm. Dotted
line shows the exciton recombination energy forb=10 nm.sbd The
electronssolid linesd and the holesdashed linesdcharge accumu-
lated in the right dot forb=4 and 10 nm
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Eeh,Eee the trion is bound atF=0 and at nonzero field the
ground state energy equals eitherEX− or Ed. The energy split-
ting of EX− andEX is not affected by the field which explains
the absence of an exciton as an intermediate step of trion
ionization. A similar simple reasoning can be used for
coupled asymmetric dots where the intermediate step of trion
dissociation is now found.

V. DISCUSSION

As mentioned in the introduction previous ground-state
calculations7,8 for the Stark effect in vertically coupled dots
detected a deviation of the energy dependence on the electric
field from the expected quadratic form obtained within the
second order perturbation theory.9 The inset to Fig. 1sad
shows that for identical quantum dots this deviation, i.e., a
cusp of the recombination energy in function of the electric
field, is due to a narrow avoided crossing of two lowest
energy levels. In the absence of the electric field these two
energy levels are nearly degenerate. This near degeneracy
results from the smallness of the hole tunnel coupling be-
tween the dots. For the case presented in Fig. 1sad these two
energy levels correspond to opposite parity of the holefcf.
Fig. 2sad for F=0g. The electric field easily mixes the two
energy levels localizing the hole in the right dotsin the
ground statedand in the left quantum dotsin the first excited
stated. When the confinement potential is asymmetric the dis-
cussed anticrossing of the two lowest energy levels are re-
placed by a crossingscf. Fig. 6d. This is due to a nearly
complete localization of the hole in left or right quantum dot
in the two states. The cusp of the ground-state is produced by
two energy levels crossing or nearly crossing. It is therefore
clear that second order perturbation theory for a singlenon-
degenerateenergy level given9 for a single quantum dot is
not applicable to the ground state in coupled quantum dots.
There is therefore no reason for which the ground state
should follow the quadratic formula and the deviation from
parabolicity does not really deserve to be called an anomaly.

In the present paper we have found another deviation
from the common quadratic Stark shift, also involving two
energy levels. This deviation appears for an intermediate bar-
rier thickness and is due to an avoided crossings of a bright
energy level with both carriers in the same dot and a dark
energy with separated charge carriers. This unusual Stark
effect, shown in Fig. 2scdfor a symmetric dot, should be
visible in low-excitation PL spectroscopy.3 The observation
of the excited exciton states should be facilitated by a rela-
tively weak tunnel coupling between the quantum dots. In
the corresponding PL spectrum, one of the lines should be
independent of the electric field in both energy and intensity.
The additional structure below and above the constant-
energy line should be observed in the form of an anticross-
ing. The intensity of the constant-energy line should be re-
duced in the region, in which the anticrossing appears.

Real InAs/GaAs quantum dots exhibit a strain-induced
intrinsic dipole moment atF=0.24 The intrinsic dipole mo-
ment has been neglected in the present calculations. How-
ever, the unusual Stark shift for the coupled dots is predicted
for quite small electric fieldsslower than 15 kV/cmd, for

which the effect of the intrinsic dipole moment is negligible.
For comparison in the experiment the intrinsic dipole mo-
ment leads to a shift of the transition energy by about 5 meV
for F=100 kV/cm.24 Therefore, the intrinsic dipole moment
should not modify the qualitative features of the effect pre-
dicted in the present paper. The second order effect of the
polarizability related to the electric-field induced deforma-
tion of the electron and hole wave function for the discussed
low electric field range should be even smaller. Similar
mechanism of the exciton dissociation via an avoided cross-
ing has been found for asymmetric dotsfcf. Figs. 5sadand
5sbdg. The difference between the ideally symmetric system
and the more realistic asymmetric one is that the bright state
which does not participate in the avoided crossing is shifted
to a different energy, lower or higher depending on the di-
rection of the electric field. The mechanism of the exciton
dissociation via an avoided crossing of a dark and a bright
energy level described here has been recently confirmed
experimentally38 after the present paper has been submitted.

Second-order perturbation theory for a single nondegen-
erate energy level9 predicts a nonpositive curvature of the
energy level as a function of the electric field. Although the
curvature is indeed nonpositive in the ground state, a positive
curvature is obtained for the excited bright energy levels in
the presence of the avoided crossings with lower energy lev-
els fsee Figs. 4sad–4scd, 9, and 10g. A nondegenerate pertur-
bation theory for a single level9 obviously does not apply for
the the energy level interaction.

In view of the present results the pronounced drop of the
recombination energy for a bias voltage for which an elec-
tron is trapped in the quantum dot5 closer to the electron
reservoir can be understood provided that the recombination
signal in the observed range of wavelengths comes from this
dot. Otherwise, the charge of the electron trapped in the dot
closer to the reservoir would have a negligible influence on
the energy of exciton recombination in the other dot sepa-
rated by a barrier of 12 nmfcf. the small energy spacing
between the exciton recombination lines with and without a
spectator electron in the other dot forb=10 nm in Fig.
10sadg. The drop would result from the electrostatics of the
negative trion in which the energy of the electron-hole attrac-
tion is larger than the electron-electron repulsion due to a
difference of the strength of lateral localization of the carri-
ers ssee the discussion given in Ref. 22d. The observed
growth of the recombination energy for the smaller absolute
value of the bias voltage could be related to a passage of one
of the electrons to the upper dot. The presented calculations
for the trion were limited to the ground state. However, the
PL line observed in the experiment which we here attribute
to the trion recombination in thelower of the dots does not
correspond to the ground state since the quantum dot in the
upper layer arelarger. Therefore, in the experiment the dis-
sociation of the trion localized in the lower dot could be
associated with an avoided crossings with lower energy
states, which as obtained for the exciton, can produce a posi-
tive curvature of the recombination line over a wide range of
electric field values.

VI. SUMMARY AND CONCLUSIONS

We have studied the exciton and negative trion states in a
simple but exactly solvable model of vertically coupled
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quantum dots allowing for a description of the effects related
to the modification of the electron-hole interaction by an
electric field applied in the growth direction. The effect of
the tunnel coupling between the dots and the confinement
potential asymmetry was considered. The mechanism of the
electric-field induced exciton and trion dissociation was de-
scribed.

We have shown that the previously7,8 found deviations
from the quadratic Stark effect are due to energy levels
crossingssor very narrow avoided crossingsd. For weaker
tunnel coupling we have found another nonquadratic feature
due to an avoided crossing of bright and dark energy levels.
This feature appears also in the presence of the asymmetry of
the coupled dots and is due to the Coulomb interaction. Posi-
tive curvature of the bright excited exciton energy levels is
obtained in the range of electric fields corresponding to
avoided crossings with lower levels.

Although in the presence of asymmetry of the coupled
dots the trion is dissociated into an exciton and an electron
by the electric field, for symmetric dots the dissociation
mechanism is different, i.e., the trion is directly separated
into an electron pair in one dot and the hole in the other. The
trion is more stable against this mechanism of dissociation

than the exciton. The process of trion dissociation into an
exciton and a free electron that we obtain for the case of
asymmetric coupling leads to a positive curvature of the PL
line as a function of the electric field which has never been
observed for the exciton ground state.
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Abstract. A theoretical study of excitonic trions, X− and X+
2 , in semiconductor quantum dots

is presented. The model of a spherical quantum well of finite depth is applied to determine the
influence of the three-dimensional quantum confinement on the recombination energies of the
excitonic trions. A new type of variational wave function, expanded in a Gaussian basis, has been
proposed. It is shown that the blue-shift of the recombination induced by the quantum confinement
is much stronger for the positive trion X+

2 than for the negative trion X−.

Excitonic trions (charged excitons) are electronic excited states of semiconductors, which
are created when an additional electron or a hole is bound to a pre-existing exciton. The
existence of negatively (X−) and positively (X+

2 ) charged excitons in bulk semiconductors was
predicted theoretically [1–5] and observed experimentally in Ge [6], Si [7], and CuCl [8, 9]
bulk crystals. In the bulk crystals, the recombination energies of neutral and charged excitons
are very close. Moreover, the binding energies of charged excitons are small compared to
the thermal excitation energies. Therefore, the identification of the excitonic trions in the
bulk materials is rather difficult. In quasi-two-dimensional quantum wells (QWs), a strong
increase of both the binding energy of the charged excitons and the energy separation between
the neutral- and charged-exciton recombination lines has been theoretically shown by Stébé
et al [10]. The charged excitons have been experimentally observed in CdTe/CdZnTe [11]
and in GaAs/GaAlAs [12–14] semiconductor QWs. The negatively charged excitons have
been observed [15] in InAs self-assembled quantum dots (QDs). The binding energies of
charged excitons in pyramidal QDs have been calculated by Lelong and Bastard [18]. Wójs
and Hawrylak [19] have studied the X− confined in a two-dimensional harmonic potential in
an external magnetic field. It is well known that the quantum confinement results in a blue-shift
of the exciton-related photoluminescence lines [20, 21].

In the present paper, we study the influence of the three-dimensional quantum confinement
on the recombination energy of excitonic trions X− and X+

2 in QDs. We take into account the
fully three-dimensional character of the Coulomb interaction, which has been recently shown
to be important even for quasi-two-dimensional QDs [22].

The effective-mass Hamiltonian for the confined negatively charged exciton (X−) can be
written as follows:

H = − h̄2

2m∗
e

(∇2
1 + ∇2

2 )−
h̄2

2m∗
h

∇2
h + Ve(r1) + Ve(r2) + Vh(rh) +

e2

ε

(
1

r12
− 1

r1h
− 1

r2h

)
(1)

wherem∗
e (m∗

h) is the effective electron (hole) band mass, ε is the effective dielectric constant,
Ve (Vh) is the confinement potential for the electrons (holes), r1, r2, and rh are the position
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vectors of the two electrons and the hole with respect to the dot centre, r12, r1h, and r2h are the
electron–electron and electron–hole distances. The energy of the electrons (holes) is measured
from the conduction band minimum (valence band maximum) of the QD material. We assume
that the effective masses as well as the dielectric constants are the same in the well and barrier
materials. The Hamiltonian for the positively charged exciton X+

2 can be obtained from (1) by
interchanging the electron and hole masses and the confinement potentials.

The confinement potentials result from the conduction and valence band offsets at the
QD/barrier interface. Therefore, we have approximated them by spherically symmetric
quantum wells of radius R. The barrier height is equal to V e0 for the electrons and V h0 for
the holes. The present model is fully three-dimensional and applies to confinement potentials
of finite range and depth, i.e., it is adequate for QD nanocrystals embedded in an insulating
medium, e.g., GaAs [23] and InAs [24]. Contrary to the usually applied harmonic oscillator
model potential [19,25], the quantum-well potential does not commute with the kinetic energy
operator of the centre-of-mass motion. Therefore, Hamiltonian (1) cannot be separated into
the centre-of-mass and relative-motion Hamiltonians. Hence, the ground-state wave function
for the trion confined in the spherical quantum well has to be dependent on the six distances
appearing in Hamiltonian (1). In the present paper, we propose the following variational trial
wave function for the singlet ground state of the X− trion:

�(r1, r2, rh) = ψ1(r1, r2, rh) + ψ2(r1, r2, rh) (2)

where ψ1 and ψ2 are expanded in the following two Gaussian bases withN1 andN2 elements,
respectively:

ψ1(r1, r2, rh) = exp(−br2
1h − br2

2h)(1 + P12)

N1∑
i1i2i3

ci1i2i3 exp(−αei1r2
1 − αei2r2

2 − αhi3r2
h) (3)

and

ψ2(r1, r2, rh) = exp(−aer2
1 − aer2

2 − ahr2
h)(1 + P12)

×
N2∑
j1j2j3

dj1j2j3 exp(−γj1r
2
12 − βj2r

2
1h − βj3r

2
2h). (4)

In equations (3) and (4), P12 is the permutation operator interchanging the electron indices
1 ↔ 2; ci1i2i3 , dj1j2j3 , αei , α

h
i , βj , γj , ae, ah, and b are the variational parameters. The trial

wave function for the positively charged exciton X+
2 has been chosen in a similar way.

Trial wave functionψ1 describes the trions in a strong-confinement regime [26], for which
the interparticle correlations are weak. In the weak-confinement regime (bulk limit) [26], the
correlations between the three particles are of crucial importance. They are described by
trial wave function ψ2. The choice of the double basis in formula (2) enables us to obtain
reliable energy estimates in both the limiting cases, i.e., in the strong- and weak-confinement
regimes. The applicability of the Gaussian basis to the few-particle problem for the spherically
symmetric quantum dot of finite depth has been discussed in detail by Bednarek et al [27].
The Gaussian basis was proved to be useful in the variational calculations of bulk and confined
exciton complexes [28, 29]. Moreover, we have performed test calculations with the use of
variational wave function (2) and obtained a ground-state energy equal to −0.2611 (in double
atomic rydbergs: 2 Ryd = 27.2116 eV) for X− in a bulk material with m∗

e = m∗
h. For

comparison, the ‘exact’ value obtained by Frost et al [30] is equal to −0.2620.
The three-dimensional nanocrystals of nearly spherical shape were fabricated from GaAs

in organic solvents [23] and other three-dimensional GaAs/GaAlAs nanostructures were
experimentally studied by Ugajin et al [31]. In the present paper, we consider the excitonic
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trions in the spherical GaAs quantum dot embedded in the Ga0.8Al0.2As matrix. We apply the
GaAs effective masses and dielectric constant for the confined charged excitons and neglect
the discontinuities of both the parameters at the QD boundary. In our previous paper [32], we
have shown that the influence of effective-mass discontinuity on the ground-state energies of
electrons and neutral donor impurities is negligibly small for the spherical GaAs/Ga0.8Al0.2As
QDs. The neglect of the dielectric constant discontinuity is justified by the similarity of the
dielectric properties of the GaAs and Ga0.8Al0.2As materials. Throughout the present paper,
we use the following values of the barrier heights [33]: V e0 = 140.1 meV for the electron
and V h0 = 105.7 meV for the hole; and the effective masses [34]: m∗

e/m0 = 0.0665 for the
electron andm∗

h/m0 = 0.34 for the hole, wherem0 is the electron rest mass, and the dielectric
constant [35] ε = 12.5.

We have performed systematic test calculations with an increasing number of basis
elements in expansions (3) and (4). The results of table 1 show that convergence is nearly
reached for N1 and N2 � 100. In the following calculations, we have used the trial wave
function with N1 = 75 and N2 = 84 terms, which provides quite reliable estimates.

Table 1. Test of the convergence of the variational basis (equations (2)–(4)) with N1 and N2
terms in ψ1 and ψ2, respectively. The results are given for the GaAs/Ga0.8Al0.2As quantum dot
with R = 2 aD. The calculated ground-state energy of the X− (X+

2 ) trion is quoted in the third
(fourth) column and the corresponding recombination-energy shifts are listed in the fifth and sixth
columns. In this quantum dot, the electron, hole, and exciton confinement energies are equal to
1.021 77, 0.218 92, and 0.256 70, respectively. The energy is expressed in double donor rydbergs
(2RD = 11.4 meV) and the length in donor Bohr radii (aD = 99.47 Å).

N1 N2 E(X−) E(X+
2 ) �E(X−) �E(X+

2 )

40 42 1.12290 0.37539 0.15556 0.10023
75 84 1.10928 0.36788 0.16918 0.10773

126 144 1.10230 0.36284 0.17616 0.11278
196 225 1.09914 0.35663 0.17932 0.11899

The energy estimates obtained with the use of only ψ1 or ψ2 are quoted in table 2. These
results enable us to give a physical interpretation of both the trial wave functions. Wave function
ψ1 yields the dominant contribution to the ground-state energy in the strong-confinement
regime, whileψ2 yields that in the weak-confinement regime. In the intermediate-confinement
regime, the contributions originating from the two wave functions are comparable. Table 2
also provides the test of the reliability of the present results for the intermediate-confinement
regime.

Table 2. Ground-state energy of the X− complex confined in the GaAs/Ga0.8Al0.2As quantum dot
as a function of quantum-dot radius R calculated with the use of trial wave functions ψ1, ψ2, and
�. The units are the same as for table 1.

R/aD ψ1 ψ2 �

20 −0.3087 −0.4220 −0.4308
10 −0.2937 −0.3676 −0.4054

5 −0.1615 −0.0907 −0.2609
2 1.2114 1.3021 1.0928
1 5.8065 8.2818 5.7016

We have determined the amount of energy released in an electron–hole recombination
process for the positive (X+

2 ) and negative (X−) trions confined in a QD. The recombination
energy is the difference between the energies of the initial and final states. The ground state of
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the trion is the initial state. The final state, after the electron–hole recombination, corresponds
to the confined hole (electron). Thus, the recombination energies are given by

hνX+
2

= εg + EX+
2
− Eh (5)

hνX− = εg + EX− − Ee (6)

for the positive and negative trions, respectively, where εg is the energy gap of the QD, EX+
2

and EX− are the ground-state energies of the confined charged excitons, Ee and Eh are the
energies of the confined electron and hole. The recombination energy of the neutral exciton
hνX = εg + EX, where EX is the ground-state energy of the exciton confined in the QD. We
define the recombination-energy shifts

�EX+
2

= hνX − hνX+
2

(7)

�EX− = hνX − hνX− . (8)

The calculated energy shifts are shown in figure 1 as functions of the inverse square of the
dot radius R for the weak-confinement regime of the GaAs/GaAlAs QDs. In the bulk crystal,
i.e., for R → ∞, the recombination-energy shift for the X+

2 is larger than that for the X−,
which agrees with the results of the previous studies [3–5]. This results from the fact that
the binding energy of X+

2 is larger than that of X− for m∗
e/m

∗
h < 1. However, figure 1 shows

that the quantum confinement changes the order of the recombination-energy shifts for the dot
radiusR ∼ 12 aD, which—for small QDs—leads to the recombination-energy shift for the X−

being up to ∼50% larger than that for the X+
2 . In figure 2, we have plotted the energy shifts

for a wider range of QD radii, which includes the strong-confinement regime. The energy
shift �EX− for the negative trion increases with the decreasing QD radius. The behaviour of
the energy shift for the positive X+

2 trion is more complex. In the weak-confinement regime,
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2
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Figure 1. Calculated recombination-energy shifts for the trions X− and X+
2 confined in a

GaAs/Ga0.8Al0.2As quantum dot as functions of the inverse square of the dot radius R in the
weak-confinement regime. The unit of energy is twice the donor rydberg (2RD), the unit of length
is the donor Bohr radius (aD) for GaAs.
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Figure 2. Recombination-energy shifts for the trions X− and X+
2 confined in a GaAs/Ga0.8Al0.2As

quantum dot as functions of the inverse square of the dot radius R in the intermediate- and strong-
confinement regimes. The units are the same as for figure 1. Solid (dashed) curves show the
variational (perturbation theory) results.

the energy shift �EX+
2

increases if the QD radius decreases. In the intermediate-confinement
regime (aD � R � 2 aD), this shift is almost independent of the dot size. In the strong-
confinement regime, i.e., for R < aD,�EX+

2
decreases, which leads to the blue-shift of the X+

2
line with respect to the neutral-exciton line.

In order to get physical insight into this surprising behaviour of the confinement-induced
shift of the X+

2 recombination line, we have used the first-order perturbation theory. In the
strong-confinement limit, the Coulomb interactions between the charge carriers can be treated
as a perturbation when determining the qualitative properties of the confined electron–hole
systems [26]. According to the first-order perturbation approach, energy shifts (7) and (8)
result from the Coulomb interactions only and can be expressed as follows:

�EX+
2

= Veh − Vhh (9)

�EX− = Veh − Vee (10)

where Veh, Vhh, and Vee are the Coulomb integrals

Veh = 〈ϕe(r1)ϕh(r2)| 1

r12
|ϕe(r1)ϕh(r2)〉 (11)

Vhh = 〈ϕh(r1)ϕh(r2)| 1

r12
|ϕh(r1)ϕh(r2)〉 (12)

and

Vee = 〈ϕe(r1)ϕe(r2)| 1

r12
|ϕe(r1)ϕe(r2)〉. (13)
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Here, ϕe and ϕh are the exact wave functions of the electron and the hole confined in spherical
potential wells of depths V e0 and V h0 , respectively. Integrals (11)–(13) can be evaluated in a
semi-analytical way. The localization of the hole in the quantum well is—due to the larger
effective mass—much stronger than the localization of the electron. This leads to the following
inequalities:

Vee < Veh < Vhh (14)

and

�EX+
2
< 0 < �EX− . (15)

Finally, we obtain the following blue-shift:

hνX− < hνX < hνX+
2
. (16)

The energy shifts calculated with the help of the first-order perturbation theory have been
plotted in figure 2 as dashed curves. We see that—in the strong-confinement regime—the
qualitative predictions of the perturbational and variational methods agree with each other. We
can therefore conclude that the predicted blue-shift of the X+

2 recombination line with respect
to the lines for the neutral exciton and negatively charged exciton is caused by the strong
localization of holes in the QD.

Recently, evidence for both the X− and X+
2 trions in CuCl QDs has been claimed by

Kawazoe and Masumoto [16, 17]. Due to the use of the donor units of energy and length,
the present results (figures 1 and 2) can also be applied to these QDs (although in a rather
qualitative sense because of the ionic character of these structures). The authors of [16, 17]
have argued that they observed the confined excitonic trions in CuCl quantum cubes embedded
in a NaCl crystal in a luminescence hole-burning experiment. The interpretation in [16,17] is
based on the application of energy-conservation formulae [16] to the measured recombination-
energy shifts [16]. Unfortunately, in the formulae used by the authors of [16], the energies
of the confined electron and hole have been omitted in the final states. If we include these
energies, which are necessary for the energy conservation, we obtain dramatic changes of the
slopes of the Stokes shift versus burning-energy dependence (cf. figure 4 in reference [16]).
The accurate slopes are 3.88 and 26.5 times greater than those calculated in reference [16] for
lines A and B, respectively. The correct application of the energy-conservation law leads to a
complete disagreement with the experimental data in [16] and to the change of order of the lines
attributed to the X+

2 and X− trions. In view of the above arguments, the lines in [16,17] cannot
be interpreted as resulting from the excitonic trions, but could be tentatively attributed to the
excited-state recombination of neutral excitons or neutral-exciton complexes [36]. Therefore,
experimental evidence for trions in these QDs awaits further research.

Finally, we briefly discuss the influence of different material parameters on the present
results. The change of the electron and hole confinement potentials fundamentally changes
the recombination energies. However, the recombination-energy shifts, calculated as energy
differences (7) and (8), change only slightly. The recombination energies of X, X−, and X+

2
tend to the same value if dielectric constant ε increases. For equal electron and hole band
masses, i.e., for m∗

e = m∗
h, the X− and X+

2 recombination energies are equal to each other.
In summary, we have calculated for the first time the ground-state and recombination

energies for X− and X+
2 excitonic trions confined in spherical quantum dots. We have predicted

a confinement-induced change of order of the X− and X+
2 recombination lines and a strong

blue-shift of the X+
2 recombination line.
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[11] Kheng K, Cox R T, Merle d’Aubigné Y, Bassani F, Saminadayar K and Tatarenko S 1993 Phys. Rev. Lett. 71

1752
[12] Buhmann H, Mansouri L, Wang J, Beton P H, Mori N, Eaves L and Henini M 1995 Phys. Rev. B 51 7969
[13] Finkelstein G, Shtrikman H and Bar-Joseph I 1996 Phys. Rev. B 53 12 593
[14] Shields A J, Osborne J L, Whittaker D M, Simmons M Y, Pepper M and Ritchie D A 1997 Phys. Rev. B 55 1318
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Excitonic trions in single and double quantum dots
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Excitonic trions in quantum dots with Gaussian confinement potential are studied by the variational method.
We show that the photoluminescence line associated with the negative trion is always shifted towards lower
energies with respect to the exciton line, and that this shift is larger for smaller dots. The qualitative behavior
of the photoluminescence line of the positive trion is the same only in dots which resemble quantum wells or
quantum wires. In other dots the size dependence of the positive-trion shift is more complex. In particular, we
show that the order of the positive-trion line and the exciton line can be changed. The present approach has
been generalized to the trion states in vertically coupled dots. We discuss the trion energy-level splitting
induced by the coupling between the dots, as well as the relation between the photoluminescence-line shift with
the binding energy of the trion in the double quantum dots.

DOI: 10.1103/PhysRevB.66.165331 PACS number~s!: 78.67.Hc
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I. INTRODUCTION

he excitonic trions are charged exciton complexes com-
ed of either two holes and one electron~positive trion

or two electrons and one hole~negative trionX2).
se complexes have been a subject of an extensive
retical1–17 and experimental study.18–24In bulk semicon-

tors the excitonic trions are stable against dissociation
an exciton and a free carrier. However, their binding

rgies in bulk materials are very small. The confinement of
trions in two-dimensional quantum wells increases these
ing energies by an order of magnitude.2 The enhance-
t of the trion binding energy in quantum wells allows for

erimental observation18 of this complex. The excitonic
s confined in quantum dots~QD’s! are observed in

rge-tunable nanostructures.23,24

he first observations of QD-confined charged excitons
e performed on ensembles of QD’s.23 The results of these
eriments were perturbed by the inhomogenous broaden-
caused by the variation of the sizes of the dots. Recently,
surements of the photoluminescence~PL! spectra of

rged excitons from a single self-assembled QD were
rted.24 This technique, which allows for selection of a
le dot as a signal source, may be used in order to deter-
e the dependence of the trion PL lines on the size and
metry of the dots. A theoretical study of this dependence
be useful in the interpretation of the experimental data.
aim of the present paper is to furnish this study. The
ent work is also motivated by the measurements of the

iton spectra in coupled self-assembled QD’s.25 The
ent results for the splitting of the trion-energy levels in-

ed by the coupling between the dots should be useful for
tification of the trion-related lines in the PL spectra of

pled dots. The present paper is a continuation of our pre-
s research on neutral26 and charged15 excitons. In Ref.

we studied the exciton trions in spherical quantum dots
square-well confinement potential. Here, we generalize
study to more realistic cylindrical symmetry. In Ref. 26
studied the neutral-exciton spectra in vertically coupled
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s. The present paper extends the previous work26 to the
lem of charged excitons.
he exciton PL peak, as well as peaks corresponding to
iton complexes are blueshifted~i.e., shifted towards
er energies!by the confinement in quantum wells, wires,
dots.27 Here, we present a theoretical study of the exci-

c trions confined in single and double QD’s. In particular,
are interested in the confinement-induced shift of the ex-
nic trion PL line with respect to the exciton line. This
t is a basic quantity of experimental interest for the exci-
c trions. The excitonic trion PL line is shifted with re-
ct to the exciton PL line by15

SX
2
15hnX2hnX

2
15EX1Eh2EX

2
1 ~1!

he positive trion and by

SX25hnX2hnX25EX1Ee2EX2 ~2!

he negative trion. IfS.0, the energy of the trion PL line
aller than the energy of the exciton line. Then, we speak

ut the redshift of the trion PL line with respect to the
iton line. If the energy difference is negative (S,0), the

line is blueshifted with respect to the exciton line. We
shortly refer to energy differences~1! and ~2! as the
itive-trion energy shiftSX

2
1 and the negative-trion energy

t SX2. In bulk materials, quantum wells and quantum
s, energy shifts~1! and ~2! can be identified with the
ing energy of the trions. However, it is not the case for
s15 ~cf. a discussion of the binding energy ofD2 center
e QD28!.
his paper is organized as follows. In Sec. II we present
model of the single QD, introduce the variational wave
tions for the exciton and excitonic trions, and discuss the
ence of the shape and geometry of the QD on the trion
ine shifts. In Sec. III we generalize the approach of Sec.
the trions in double QD’s. Section IV contains conclu-
s and the summary.
©2002 The American Physical Society
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II. EXCITONIC TRIONS IN A SINGLE QUANTUM DOT

A. Confinement potential and variational wave function

In the present paper we adopt the Gaussian mod
confinement potential,29 which was successfully applie2

a quantitative interpretation of the exciton spect25

InxGa12xAs self-assembled QD’s. The confinement p
in InxGa12xAs QD’s embedded in the GaAs matrix
derived from spatial distribution of indium concen
within the QD’s.30 We assume that this distribution c
described by a cylindrically symmetric Gaussian fun

X~r,z;R,Z!5X0 exp~2r2/R22z2/Z2!,

wherer25x21y2, R is the radius of the QD,Z is half o
height, andX0 is the concentration of indium at the ce
the QD. In accordance with Eq.~3!, we take the confine
potential for electrons

Ve~r,z;R,Z!520.7DEgX~r,z;R,Z!

and for holes

Vh~r,z;R,Z!520.3DEgX~r,z;R,Z!,

whereDEg is the energy-gap difference between Ga
InAs. We assume that the band offset ratio is 7
Throughout the paper, we take the conduction-ban
mum of the barrier material as the reference energy
the electrons and the barrier valence-band maximu
reference energy level for the holes. The calculatio
been performed forDEg51.11 eV26 and the material pa
eters of GaAs, i.e., the static dielectric constant«512.5,
band mass of the electronme50.0667, and the band m
the holemh50.5.

In order to determine the trion-energy shifts we
know the trion ground-state energy, as well as the
state energies of the exciton, electron, and hole con
the QD. For this purpose we use the confinement p
~4! and~5! and assume the effective-mass approxima
electrons and holes. The ground-state energy of a sin
tron and a single hole confined in a QD with radiusR
height 2Z is determined by the variational method
Gaussian trial-wave-function

fe(h)~re(h) ;R,Z!5 (
i 51

Ne(h)

(
j 51

Me(h)

ci j exp~2a i
e(h)r22b j

e(h)z2

where ci j are the linear variational parameters,a i
e(h)

b j
e(h) are the nonlinear variational parameters, wh

scribe the localization of the particles radial and ver
rections, respectively. In this paper, we takeMh51,
52, Me52, andNe54, which ensures that the one-p
energies are determined with a precision of 0.1 meV

The Hamiltonian of the exciton confined in the Q
the form
1
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HX52
\2

2me
¹e

22
\2

2mh
¹h

22
1

4p«0«r eh
1Ve~re ,ze ;R,Z

1Vh~rh ,zh ;R,Z!,

wherer eh5ure2rhu. The ground-state energy of the e
confined in the QD can be determined with the fo
variational wave function

CX
(1)~re ,rh!5 (

i e51

Me

(
j e51

Ne

(
j h51

Nh

(
i eh51

Meh

(
j eh51

Neh

ci ej ej hi ehj eh

3exp~2a i e
e re

22b j e

e ze
22ahrh

22b j h

h zh
2

2a i eh

ehreh
2 2b j eh

eh zeh
2 !,

where reh
2 5(xe2xh)21(ye2yh)2, zeh5ze2zh , a i eh

eh

b j eh

eh are the variational parameters, which describe t

tive position of the electron and the hole inx-y plane a
direction, respectively. The other variational param
Eq. ~8! play the same role as in wave function~6!. The c
vergence of variational basis~8! with respect to the nu
of the Gaussians applied was verified for the valu26

parameters corresponding to InxGa12xAs self-assem
QD’s,25 i.e.,X050.67,R524.9 nm,Z50.92 nm. The v
tional estimates of the exciton ground-state energy
with various numbers of terms in Eq.~8! are listed in Tab
We note, that the convergence of these estimates is
The results are not significantly improved if one introd
secondbeh exponent or a thirdaeh parameter. The ele
and hole wave functions are stiffened inz direction du
the strong confinement and react only weakly to the
Coulomb interaction. The change of the one-partic
functions under the influence of the interaction is mo
nounced inx-y plane, where the confinement is wea
this paper we consider not only the QD’s in form
disks, but also QD’s of different shape and size. Th
we have takenMeh5Neh53 in the following calculatio

The results of Table I show, that variational wave fu
~8! is an effective tool in the calculations for the co
exciton ground state. However, this wave function is n
able for a direct generalization to the problem of trion
the number of basis elements grows very fast with th

TABLE I. Ground-state energyEX ~in meV! of the exciton
fined in the single QD calculated with wave function~8! with
52, Ne54, andNh52 quoted for several numbers of exp
describing the relative electron-hole position inx-y planeMeh

in z direction Neh . The parameters of the QD areX050.67
524.9 nm, andZ50.92 nm. The total number of basis el
(N5Me3Ne3Nh3Meh3Neh) is listed in the third column.

Meh Neh N EX

1 1 16 2261.47
2 1 32 2262.19
2 2 64 2262.20
3 2 98 2262.23
3 3 144 2262.25
65331-2
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of particles. Therefore, we have elaborated another ap-
ch to the problem of the QD-confined trions, which we
first demonstrate on the example of the confined
tron-hole pair. The dependence of the wave function on
relative interparticle positions will be referred to as the
relation between the particles.’’ In wave function~8!,
correlation is directly described by the exponents with
andbeh. However, even if the parametersaeh andbeh

set equal to zero, wave function~8! cannot be separated
a product of one-particle functions. Therefore, even

out aeh andbeh exponents, a part of correlation is indi-
ly included in wave function~8!. Now, we introduce an-
r trial wave function for the QD-confined exciton, which
s into account the correlation between the particles in the
ct way only,

)~re ,rh!5fe~re ;Re ,Ze!fh~rh ;Rh ,Zh!

3 (
i eh51

Meh

(
j eh51

Neh

ci ehj eh
exp~2a i eh

ehreh
2 2b j eh

eh zeh
2 !.

~9!

l wave function~9! is applied to the exciton confined in
QD with radiusR and height 2Z. It is composed of the
nd-state wave functions of the electron (fe) confined in
ntial ~4! with effective parametersRe and Ze and the
(fh) confined in potential~5! with effective parameters

ndZh . The double sum in Eq.~9! describes the electron-
correlation. The parametersRe , Ze , Rh , and Zh are

ted as variational parameters. In this way, the one-particle
e functionsfe andfh are allowed to change their spatial
nsion under influence of the Coulomb interaction be-

en the particles.
he results obtained with wave function~9! are listed in
le II, which shows that the energy estimates obtained

the values of the variational parametersRe(h) , Ze(h)
d at the physical values of the QD sizeRe(h)5R and
)5Z converge to a value, which is larger by 0.2 meV

the energy obtained with basis~8! ~cf. Table I!. How-
r, if we perform the optimization with respect toRe(h) and
) , we obtain results equivalent to those obtained with
e function~8!. Although wave function~9! does not re-
e less numerical effort than function~8!, the number of
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ABLE II. Ground-state energyEX ~in meV! of the exciton
fined in the single QD calculated with trial function~9!. The
meters of the QD are the same as in Table I. In the first two
mns, the number of elements taken in sum~9! is listed. In the
column, the energyEX8 calculated with the fixed variational

metersRe(h)5R and Ze(h)5Z is quoted. The number of basis
ents is equal toMeh3Neh . The results in the fourth column

obtained with optimized parametersRe(h) andZe(h) .

Neh EX8 EX

1 2261.17 2261.34
2 2261.17 2261.36
1 2261.93 2262.19
1 2262.03 2262.22
165331-3
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is elements is much smaller and less memory consuming,
it can be easily generalized to the problem of excitonic
s.
he Hamiltonian for the negatively charged trionX2 con-
d in a QD has the form

HX252
\2

2me
¹1

22
\2

2me
¹2

22
\2

2mh
¹h

2

1
1

4p«0« S 2
1

r 1h
2

1

r 2h
1

1

r 12
D1Ve~r1 ;R,Z!

1Ve~r2 ;R,Z!1Vh~rh ;R,Z!, ~10!

rer1 and r2 are the position vectors of the electrons,rh
rmines the position of the hole,r 125ur12r2u, r 1h5ur1
u, and r 2h5ur22rhu. The Hamiltonian for the positive
X2

1 can be obtained from Eq.~10! by interchanging the
cese↔h and ascribing the indices 1 and 2 to the holes.

the negative-~positive!trion ground state, the electron
e! subsystem is a spin singlet. This means that the
nd-state spatial wave function of the negative~positive!
is symmetric with respect to the interchange of the po-

n vectors of the electrons~holes!. Therefore, we apply
following trial wave function for the negative trion

CX2~r1 ,r2 ,rh!

5fe~r1 ;Re ,Ze!fe~r2 ;Re ,Ze!fh~rh ;Rh ,Zh!

3 (
i 1i 2i 12

(
j 1 j 2 j 12

ci 1i 2i 12j 1 j 2 j 12
~11P12!

3exp~2a i 1
ehr1h

2 2a i 2
ehr2h

2 2a i 12

eer12
2 !

3exp~2b j 1

ehz1h
2 2b j 2

ehz2h
2 2b j 12

eez12
2 !. ~11!

presence of the sum in wave function~11! introduces the
elation for the three particles. In Eq.~11!, the summa-
s start from 1 and run toMeh over indicesi 1h andi 2h , to
over j 1h and j 2h , and toM12 andN12 over i 12 and j 12.
is the operator which exchanges the coordinates of the
electrons. The factor (11P12) ensures, that the electron
system is in the symmetric spatial state and enables us to
ce the number of the basis elements. Namely all the

is elements, for whichj 15 j 2 and i 2. i 1 are omitted in
summation~11!. Re , Ze , Rh , andZh are treated as varia-
al parameters like in wave function~9! for the exciton.
the positive trion we apply an analogous trial wave func-
. Similarly as in the case of the exciton confined in the
QD, a single Gaussian is sufficient for the description of
correlations inz direction. The convergence of the varia-
al results with the increasing number of Gaussians de-
bing the in-plane correlation is displayed in Table III. In
following section we discuss the influence of the size and
pe of the dot on the relative shifts of trion PL peaks. This
ussion goes beyond the flat QD geometry, so the corre-
n in z direction should be described with the same pre-
n as the in-plane correlation. The results presented in the
wing section have been obtained with 90-element basis
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generated byMeh5Neh52 andM125N1253. We estim
that the trion ground-state energies are determined
cision of 0.2–0.3 meV.

B. Results

Figure 1 displays the energy shifts of the PL lines
trions confined in a spherically symmetric (R5Z) QD w
respect to the line of confined exciton. In bulk Ga
trion PL peaks are only slightly shifted with respect
exciton PL line (SX

2
1'0.4 meV andSX2'0.25 meV4,15!

large QD’s~with radiusR larger than;100 nm), the sh
the positive-trion line is not significantly changed w
spect to the bulk-limit value. If the radius of the d
creases below 80 nm,X2

1 PL line approaches the e
line, i.e.,SX

2
1 decreases to 0. ForR.40 nm the recom

tion of the electron-hole pair in the positive trion relea
same amount of energy as the exciton recombinat
R,40 nm SX

2
1 takes on negative values; so, the orde

exciton and X2
1 PL lines changes. The behavior

negative-trion line is just opposite. The quantum confi
shifts X2 line deep below the exciton line on the
scale. The opposite behavior of the positive- and n
trion energy shifts was reported in our previous pap15

spherical quantum dots with the square-well confinem
tential. In the strong confinement limit this effect
explained in the framework of the perturbation theory
approach,15 the trion-energy shifts are expressed in t
the energies of the Coulomb interaction between the
forming the trion complexes, as follows:SX

2
15Veh2V

and SX25Veh2Vee, where Veh , Vee, and Vhh are
electron-hole, electron-electron, and hole-hole interac
ergies, respectively. The quantum confinement in th
leads to the localization of the charge carriers, which
stronger for the holes. Therefore, the absolute valu
Coulomb interaction energy between the holes in
more than the electron-hole and electron-electron in
energies, i.e.,Vhh.Veh.Vee, which explains the quali
difference in the confinement-induced changes ofX2

TABLE III. Ground-state energyEX2 ~in meV! of the neg
excitonic trion calculated with trial wave function~11!. The
column shows the number of Gaussians taken for the desc
the electron-hole correlation inx-y plane. The number of Gau
describing the electron-electron in-plane correlation is liste
second column. In these calculations, a single Gaussian d
the correlation inz direction was applied. The third column
the total number of basis elements. The parameters of th
the same as in Table I.

Meh M12 N EX
2

1 1 1 2396.45
2 1 3 2397.91
2 2 6 2398.48
2 3 9 2398.59
3 3 12 2398.70
4 4 40 2398.71
1
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1 energy lines in spherical QD’s (SX

2
1,0,SX2). The

sults of the present calculations show, that the sam
occurs also for spherical quantum dots with the G
potential profile.

The problem is more complex if the QD is aniso
Then, the strength and range of the confinement po
x-y plane and the growth direction are different. W
performed the calculations of the trion-energy shifts
ferent values ofR andZ. Figure 2 shows the calculated
energy shifts as functions ofZ ~half of the QD height
several values of the QD radiusR. We have considered
with very different height-to-radius ratios. The left~rig
end of horizontal axis of Fig. 2 corresponds to the Q
form of a flat disk~elongated cylinder!. Each of the cu
Fig. 2 passes through the point, for which the QD has
cal symmetry. These points are marked by circle
curves for the negative-trion exhibit the following
regularity: the smaller is the QD, the stronger is the
of X2 PL line with respect to the exciton line. The d
dence of the positive-trion energy shift is more comp
QD’s of large height, the movement of the confined
carriers inz direction is nearly free. We can say tha
QD’s resemble the quantum wires. We note, that
peaks of both the negative and the positive trions
shifted with respect to the exciton PL line if the radius
‘‘wire-like’’ dot decreases. ForR5100 nm, the pos
trion line is monotonously redshifted with the dec
height of the QD. This dependence on the height is
tively the same as in the case of the two-dimension
tum wells, in which both the positive- and negative-tr
peaks are redshifted with respect to the exciton pea
width of the quantum well decreases.16 In contrast toS

shift for R5100 nm, the curve forR550 nm is nonmon
nous. WhenZ decreases below 120 nm theX2

1 PL line

FIG. 1. Energy shiftsS of the trion PL line with respect
exciton PL line calculated for the spherical QD as a fun
radiusR5Z for X050.67. The solid~dashed!curve correspon
the negative-~positive-!trion-energy shift (SX25EX1Ee2EX2

SX
2
15EX1Eh2EX

2
1).

ive
st
ption of
ians
in the

scribing
ows

QD are
65331-4
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EXCITONIC TRIONS IN SINGLE AND DOUBLE . . . PHYSICAL REVIEW B 66, 165331~2002!
ches the exciton PL peak. The curve forR550 nm ex-
ts a flat minimum forZ between 50 and 80 nm. The
ima of the curves forR525 and 15 nm are distinctly
e pronounced and appear atZ520 andZ510 nm, re-
ctively. We note, that these minima correspond to quan-
dots with nearly spherical shapes. The PL line of the

itive-trion confined in the QD with radiusR550 nm has
ller energy than the exciton line regardless ofZ. In other
ds,SX

2
1 is always positive forR550 nm. This is not the

e of QD’s with smaller radii, for which the value of the
t can be negative. The PL peak of the positive-trion con-
d in the dots with radius 25 or 10 nm can be blue shifted
edshifted with respect to the exciton line depending on
height of the QD.
igure 3 shows the shifts of the trion PL lines with respect

he exciton line as functions of the radius of the dot for
d values of its height. The points for which the QD po-
ial is spherically symmetric are marked by circles. Again,
negative trion is redshifted more strongly for smaller

’s, while the dependence of the positive-trion shift is
e complex. In Fig. 3, the QD with the radiusR
50 nm can be treated as a quasi-two-dimensional quan-
well. In this QD, the redshift of the PL lines is largest for
lowest value of the height of the well. On the other hand,
QD with the largest value of the height (Z5100 nm)
s like a quantum wire and the redshift of the PL lines
s, when the radius of this ‘‘wire-like’’ QD decreases.
curve for Z550 nm shows a flat minimum atR

0 nm. This minimum is more pronounced for QD’s with
ller height. We note, that the minima ofSX

2
1 can corre-

nd to negative values of the shift.
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IG. 2. Trion-energy shiftsSwith respect to the exciton PL line
ulated as a function ofZ ~half of the QD height!for several
es of the QD radiusR. The solid curves show the results for the
ative trion, and the dashed curves show the results for the posi-
trion. Open circles correspond to spherical symmetry of QD’s.
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C. Conclusions

this section, we have studied the dependence of the
rgy shifts of the trion PL peaks with respect to the exciton
k on the size and geometry of the QD’s. The obtained
lts indicate, that the negative-trion PL peak is always
hifted with respect to the exciton line. The stronger is the

finement ~the smaller is the QD!the larger is this
hift. The positive-trion line behaves qualitatively in the
e manner only in the cases, where the QD geometry re-
bles a quantum well or a quantum wire. For the ‘‘well-
’ QD’s the redshift ofX2

1 PL line is larger for the small
ht of the quantum well, while for the ‘‘wire-like’’ QD’s
redshift is more pronounced for the small radius of the
e.’’ For the QD’s with the diameter 2R comparable to
height 2Z, the size dependence of the positive-trion en-

shift is more complex. This energy shift plotted as a
tion of the radius or the height of the QD exhibits

ima nearR/Z51, i.e., close to the QD’s with the spheri-
symmetry. If the values ofR or Z are of order of 25 nm or
ller, these minima correspond to negative values of the
rgy shift. Then, the order of exciton and positive-trion PL
s is opposite that in the bulk limit. The results presented
is section are in a qualitative agreement with the present

wledge on the trions in quantum wells,4,16 and with the
ious study of the trions in spherically symmetric QD’s.15

eover, based on the present results for the ‘‘wire-like’’
s, we can predict that the PL lines for both the negative
the positive trions in quantum wires should be redshifted
respect to the exciton line if the quantum-wire radius is

reased.

IG. 3. Trion-energy shiftsS calculated with respect to the ex-
PL line as a function of radiusR of the QD for several values

~half of the QD height!. The solid~dashed!curves correspond
e negative~positive!trion. Open circles correspond to spherical
.
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III. EXCITONIC TRIONS IN VERTICALLY
COUPLED QUANTUM DOTS

A. Theory

The energy shiftsSX2 andSX
2
1 for the trions confined

single quantum dot cannot be identified with the trio
ing energy.15 However, if the QD is not single, i.e., if th
another identical QD at a distance large enough to
the coupling between the dots, the trion-energy sh
exactly equal to the energy needed to transfer one
~for X2) or one hole~for X2

1) from the QD occupied b
three charge carriers to the other empty QD. Let us
that the charge carriers have at their disposal two i
remote QD’s. Since in a single QDSX2 is always pos
the ground state of a system composed of two elect
one hole will always correspond to a state, in which
particles are confined within the same QD~this is
confined-trion state!. However, this is not the case
trion. For QD’s in which the energy shiftSX

2
1 is negative

ground-state corresponds to the electron-hole pair
in one dot~confined exciton!and one hole confined
other QD. If the QD’s are closer, the coupling betwee
can essentially change the energies of the exciton co
and the type of the localization of particles.26 The coup
between vertically stacked InxGa12xAs self-assembled
was observed in the PL spectroscopy25 in the shifts of th
peaks as functions of the thickness of the interdot b

In this section we study the effect of the vertical co
between the QD’s on the trion states. We assume
coupled dots have identical shapes and sizes, and
common axis of the rotational symmetry. We apply
lowing confinement potentials for the electrons a
holes:

Ve(h)
c ~re(h) ,ze(h)!5Ve(h)~re(h) ,ze(h)2a/2;R,Z!

1Ve(h)~re(h) ,ze(h)1a/2;R,Z!,

~

whereVe andVh are the given by Eqs.~4! and ~5!, res
tively, anda is the distance between the centers of th
The thickness of the barrier between the QD’s can
pressed in terms of the distance between the QD ce
the height of the QD as follows:t5a22Z. We adop
values of the QD parameters corresponding to InxGa12

self-assembled QD’s:X050.67, R524.9 nm, Z50.92
~same as in the test calculations of Sec. II!. The grou
wave function of a single-particle confined in potent~
possesses an even parity with respect to the change
z coordinate. We calculate the one-particle ground-s
ergy using the wave function

fe(h)
c ~re(h) ,ze(h)!5fe(h)~re(h) ,ze(h)2a/2;R,Z!

1fe(h)~re(h) ,ze(h)1a/2;R,Z!,

~

wherefe(h) is wave function~6! of the ground state o
electron ~hole! confined in the single isolated QD.
1
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function ~13! is a good approximation of the exact g
state wave function for the studied range of the barrie
ness between the dots, i.e., fort5a22Z.2 nm.
ground-state energy of the electron-hole pair in the
dots is determined variationally with the following tria
function:

CX
c ~re ,rh!5 (

ke ,kh50

1

(
i eh51

Meh

ci ehkekh
fe

@re ,ze1~21!ke~a/2!;Re ,Ze#fh

@rh ,zh1~21!kh~a/2!;Rh ,Zh#

3exp~2a i eh

ehreh
2 2behzeh

2 !, ~

whereci ehkekh
are the linear andRe ,Ze ,Rh ,Zh ,a i eh

eh ,beh

the nonlinear variational parameters. This function is
generalization of trial wave function~9! for the exciton
fined in an isolated QD withNeh51. In Eq. ~14! the s
mations overke and kh take into account all the po
distributions of the charge carriers over the two QD’s
direction correlation between the particles confined
same self-assembled QD is weak~cf. Tables I–II!; so
neglect it almost totally in wave function~14!. The inte
correlations are introduced via the two-center localiz
the products of the one-particle functionsfe(h) .

We have calculated the lowest-energy levels
negative-~positive!trion assuming that the electron~ho
subsystem is the spin singlet. For the negative trion
the following wave function:

CX2
c

~r1 ,r2 ,rh!

5 (
k1k2kh

(
i 1i 2i 12

ci 1i 2i 12k1k2kh
~11P12!fh

@rh ,zh1~21!kh~a/2!;Rh ,Zh#

fe@r1 ,z11~21!k1~a/2!;Re ,Ze#fe

@r2 ,z21~21!k2~a/2!;Re ,Ze#

3exp~2a i 1
ehr1h

2 2a i 2
ehr2h

2 !

3exp~2a i 12

eer12
2 2behz1h

2 2behz2h
2 !, ~

where the summations overk1 andkh run from 0 to 1,
k2 from 0 to k1, over i 12 from 1 to Mee, and overi 1 an
from 1 to Meh . The terms withk15k2 and i 2. i 1 are
cluded from the sum, because of the symmetrizatio
basis elements (11P12). Basis ~15! takes into accoun
the possible distributions of the three particles betw
two QD’s. In the calculations, we takeMee53 and M
52, like in the case of the trion in the single QD. In
quence, basis~15! consists of 60 elements. The trial
function for the positive trion has been chosen in th
way.
65331-6
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B. Results

igure 4 shows the four lowest-energy levels forX2

es, in which the electron subsystem is the spin singlet.
corresponding barrier thicknesst is marked on the upper

zontal axis. Since the confinement potential of the
pled QD’s~12! is invariant with respect to the reflection
ughz50 plane, the wave functions of the three-particle
plex possess a definite~even- or odd-!parity symmetry
respect to the operation of a simultaneous change of

s ofz coordinates for all the particles. The parity prop-
s of considered states result from the symmetries of the
ulated three-particle wave functions, cf. the detailed dis-
sion of the parity symmetry for the electron-hole pair in
ically coupled self-assembled QD’s given in Ref. 26. The
e functions associated with the energy levelsA and C
id lines!possess even parity, while the energy levelsB
D ~dashed lines!correspond to the wave functions with
parity. Fora. 14 nm all the energy levels are indepen-

t of the interdot distance. Then, the QD’s can be treated
eparate~uncoupled!. In this limit, the distribution of the

rge carriers between the QD’s is a definite property of all
eigenstates, i.e., in all the eigenstates, the charge carriers
upy with a 100% probability either the same QD or dif-
nt QD’s.26 At large interdot distance, the degenerate
esA andB correspond to the trion localized in one of the
’s. In these states all the charge carriers are confined
in the same QD. The energy of these states is equal to
energy of the negative-trion confined in the single iso-
d QD~cf. Table III!. The ground state is twofold degen-
e, because the trion can be located in one of the two
’s.
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IG. 4. Lowest-energy levels of the negative excitonic trion in
double QD as functions of the distancea between the centers of
QD’s ~thickness t of the barrier between the QD’s!. Solid
hed!lines correspond to the energy levels of the even-~odd-!
ty states. Thin dotted (X1e) line shows the sum of the ground-
e energies of the exciton and the single-electron confined in the
ble QD. The meaning of symbolsA,B,C, andD is explained in
text.
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or a,14 nm both the degenerateA andB energy levels
t to decrease, which is a signature of the tunnel coupling
een the QD’s. The presence of the tunnel coupling
ns, that in statesA andB there is a nonvanishing prob-

ity of finding one of the particles in the other QD than the
aining two charge carriers. However, the tendency of all
particles to occupy the same QD is still visible in these
es.26 The degeneracy of the energy levelsA andB is lifted
a,6 nm. For a54 nm (t'2 nm) the QD’s are
ngly coupled. In the strong coupling limit the trion wave
tions exhibit an approximate one-particle parity, i.e., par-
ith respect to the change of the sign ofz coordinate of

h of the particles separately.26 Due to the difference of the
tron and hole masses, the effective height of the barrier
een the dots is much larger for the hole than for the
tron. In consequence, the even-odd energy-level splitting
the electron is considerably larger than the splitting for
hole. BothA andB states correspond to an approximate
n parity of both the electrons. Moreover in stateA, the
is in the even-parity state, whereas in stateB, the hole is
e state with an approximate odd parity. In both the ex-

d statesC andD, one of the electrons is in the even-parity
e and the other is in the odd-parity state. The correspond-
C and D energy levels split fora,6 nm. Similarly as
esA andB, statesC andD differ by the parity of the hole,
h is even inC state and odd inD state. In the limit of the

arate QD’s,C and D states have the same energy and
espond to the electron-hole pair confined in one of QD’s,
e the second electron is confined in the other QD.
he thin dotted line marked by (X1e) in Fig. 4, shows
sum of the ground-state energies of the following two
ems: the electron-hole pair and a single electron in the
ble QD structure. In the limit of largea, this sum coin-
s with the degenerateC andD energy levels. The differ-
e between the sum of energies (X1e) and the ground-
e energy of the trion is equal to the shift ofX2 PL peak
respect to the exciton line, i.e., toSX2. In the limit of

arate QD’s, the energy shiftSX2 becomes identical with
difference of the energies between the trion ground state

energy levels!and the excited state (C,D energy lev-
. Then, this difference can be interpreted as the binding
rgy of the trion in the double QD structure, i.e., as the
unt of energy needed to remove one of the electrons
the QD occupied by the trion and transfer it to the other
On the other hand, in the strong coupling limit, the

ble QD can be treated as a single QD with enlarged
ht~larger vertical extension!. The trion energy shiftSX2

reases with the decreasing distance between the QD’s.
effect is consistent with the results of the preceding

tion, which show that the negative-trion energy shift is
er for smaller QD’s.
he results for the lowest-energy states ofX2

1 trion are
layed in Fig. 5. We restrict our study to the singlet states

he hole subsystem. The energy levels corresponding to
states with even~odd! total parity are plotted by the solid
hed!lines. In the limit of separate dots~large a), the
nd state is twofold degenerate~cf. degenerate energy-
ls marked byA andB). In the ground-state all the three
icles occupy the same QD, while the other dot is empty.
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In other words, for separate QD’s the ground stat
sponds to the positive trionX2

1 localized in one of the Q
In the limit of the separate QD’s, the first-excited st
ergy level (C,D) is also degenerate. In the statesC andD
electron-hole pair is confined in one QD and the seco
is confined in the other QD. For comparison, the sum
ground-state energies (X1h) of the exciton and hole is
ted by the thin dotted line. For smaller values of the
thickness, the relative distribution of the charge carr
tween the QD’s is uncertain as a consequence of
pling. Nevertheless, even for the coupled QD’s, inA an
states, all the particles exhibit a tendency to occupy t
dot, while in the excitedC andD states, the holes exh
tendency to occupy different QD’s.

The degenerate excited-state energy level (C, D) sp
for larger values of the interdot distance than (A,B) le
The electron inA, B, andC states possesses an appr
even parity, therefore the corresponding energy le
crease when the barrier thickness decreases. InD state
electron has an approximate odd parity, and in con
statesA,B and C, its energy grows when the barrier
ness decreases. The stateC corresponds to both the ho
even-parity states. In the stateA ~B! one hole~two ho
occupies the odd-parity state. The degeneracy ofA,B ene
levels is lifted fora.6 nm as the result of the splittin
tween the even- and odd-parity energy levels of the h
most interesting feature of the positive-trion spectrum
fact, that the energy ofC state passes below that ofA an
states fora,;10 nm. This change of order of energy
can be understood in context of Fig. 2. In the single

FIG. 5. Lowest-energy levels of the positive excitonic
the double QD as functions of the distancea between the cent
the QD’s. Solid~dashed!lines present the energy levels of th
with the even~odd! parity. Thin dotted (X1h) line shows the
of the ground-state energies of the exciton and the single
fined in the double QD. The meaning of symbolsA,B,C, andD
explained in the text.
1
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energy shiftSX
2
1 for R525 nm andZ50.92 nm is pos

but decreases if the height of the QD increases. In p
for 10<Z<40 nm the energy shiftSX

2
1 is negative~cf. F

2!. As we have noted before, the coupled QD’s corres
a single dot with a larger height. This explains why th
C, in which the holes tend to occupy different QD
comes the ground state ofX2

1 trion under influence o
interdot coupling. We note, that the change of orderA
and C energy-levels appears for the specific value
height of the dot. In the limit of separate dots,C energy-l
should correspond to the ground state for these valu
height for which the positive-trion shiftSX

2
1 is negative

Fig. 2!.

IV. CONCLUSIONS AND SUMMARY

We have presented the results of variational calc
for the excitonic trions confined in the single and ve
coupled QD’s with the Gaussian confinement poten
have proposed the trial wave function expanded
Gaussian basis, which takes into account both the
particle confinement effects and interparticle corre
We have studied the influence of the shape and geo
the confinement potential on the shifts of the trion P
with respect to the exciton line. We have considered
geometries of the cylindrically symmetric QD from
flat QD, which resembles the two-dimensional quantu
to an elongated wire-like QD. We have shown, t
negative-trion PL line is always redshifted with respec
exciton line and that this shift is larger for smaller QD
positive-trion exhibits qualitatively the same behavio
in these QD’s, which resemble quasi-one-dimension
tum wire or quasi-two-dimensional quantum well. Ho
in the nanostructures with similar height and diame
positive-trion line can be blueshifted with respect to
citon line, if the linear size of the QD is sufficiently
The limit cases of the present results are in a qu
agreement with the results of previous studies of t
binding energy in quantum wells,4,16 and also with the s
of the trion PL lines found for the spherical QD’s.15 Base
these results we can also formulate predictions a
binding energy of the trions in quantum wires. Nam
present results indicate that the binding energy of b
negative and the positive trions should increase w
radius of the quantum wire is decreased.

Moreover, we have extended our study to the e
trions in the vertically coupled InxGa12xAs self-assem
QD’s. We have considered the low-energy spectrum
system of two electrons and one hole, as well as the
of two holes and one electron in a couple of ve
stacked QD’s. We have shown, that the shifts of the
lines with respect to the exciton line obtained for a
isolated QD can be identified with the binding energy
trion complexes for a pair of identical remote QD’s. W
studied the splitting of the trion-energy levels unde
ence of the coupling between the QD’s. We have fou
the interdot coupling decreases the redshift of the n
trion PL line with respect to the exciton line. Moreov

on in
s of
states
um
le con-
is
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e shown that the coupling may induce a redistribution of
charge carriers between the dots in the positive-trion
nd state. These effects have been explained on the basis
ur studies for the single QD, since—in the strong-

pling limit—-the coupled QD’s can be treated as a single
with an enlarged extension in the vertical direction.
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Stébéand A. Ainane, Superlattices Microstruct.5, 545~1989!.
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