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Abstract

The present study responds to the poor treatment given to dilatancy in classical rock mechanics post-failure problems such as
tunnel or mine pillar design. A comprehensive review of the literature and observations in regard to published test results would
indicate that dilatancy is highly dependent both on the plasticity already experienced by the material and confining stress; moreover,
it also appears that scale may play a non-negligible role. In our article, we provide a detailed analysis of published test data with a
view to proposing a sufficiently significant but conveniently simple formulation of the dilatancy angle that reflects these
dependencies and that can be readily implemented in numerical codes. The model is then tested, demonstrating that it is capable of
representing rock sample strain behaviour in compressive tests. Finally, the model is applied to the resolution of ground reaction
curves for tunnels in poor-to-average-quality rock masses, showing a good correlation with results obtained using practical rock

engineering techniques.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of a thorough knowledge of the
complete stress—strain curve in rock and rock masses has
frequently been underlined in the rock mechanics, and
most particularly, in earlier breakthroughs [1-3] in the
discipline. In the last 30 years, significant success has
been obtained in terms of methodologies for estimating
reasonably good elastic parameters and failure criteria
in rocks, joints and rock masses. However, the
difficulties associated with defining a model that
adequately reflects observed complete stress—strain
curves have affected the possibilities of developing
suitably valid approaches for handling post-failure
strength behaviour and dilatancy. This problem con-
sistently attracted the attention of early researchers in
rock mechanics [2,4,5], and continues to do so in more
recent years [6—8]. In routine engineering applications,
however, dilatancy seems to receive a great deal less
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attention, which is hardly surprising since, first of all,
many problems in rock mechanics are solved by
avoiding failure, and secondly, because of the inherent
difficulties in estimating dilatancy.

The aim of the present study is to develop a consistent
model for estimating rock mass dilatancy, with potential
applications in tunnel and mine design. In view of
present trends in modelling [9], the purpose of the study
is not to obtain highly accurate values, provide a mirror
image of reality, or consider all elements in accurate
proportions, but rather to focus on the issues that affect
the question of dilatancy in practical engineering
problems. The idea follows on from authors like Kudoh
et al. [10], who—after modelling a large underground
cavern—indicated the need for the plastic properties of
the rock mass to be evaluated by including an estimation
of dilatancy. Previous studies by the same authors [11]
also indicated that limited knowledge of dilatancy was
an impediment to understanding particular mechanisms
and to achieving modelling objectives.

With the increase in the use of numerical modelling in
rock engineering in recent decades, excavation design
has come to rely, at least partially, on numerical studies.
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A review of a number of publications on this topic
reveals that dilatancy angle () is seldom taken into
consideration; and when it is considered, the approach is
poorly developed and simplistic, generally consisting of
an associated flow rule (¢ = ) or a non-associated flow
rule with = 0°. Nevertheless, some researchers have
remarked that an associated flow rule does not
necessarily represent post-failure rock behaviour [7].
Moreover, Detournay [12]—alerting the rock mechanics
community as to possible calculation errors when
constant dilatancy is assumed—proposed a shear plastic
strain-dependent formulation. Although Detournay
points out that his proposed flow rule is speculative,
the shear plastic strain dependence of dilatancy is,
nonetheless, an observable fact. The confining stress-
dependent nature of dilatancy has also been pointed to
by the same author, among others [12—14], and can also
be inferred from a detailed analysis of triaxial tests on
rock samples performed in servo-controlled presses
[14-16]. What is not so obvious is the scale dependence
of dilatancy, which is a hypothesis that remains to be
tested [13,17], although largely accepted for rock joint
dilatancy [18,19].

In their efforts to improve on existing techniques for
obtaining significant rock mass parameters, Hoek and
Brown [20]—who have had vast experience in the
numerical analysis of a variety of practical problems—
recommend the use of dilatancy angle values related to
the friction angle and rock mass quality, in the range
Y = ¢/4 for good-quality rock to yy = 0 for poor-quality
rock. The interesting fact about this approach is that it
reflects the significant error induced in a design
calculation when a simple associated flow rule is
considered. In regard to post-failure behaviour of the
material, Hoek and Brown also suggest a transition
from brittle to perfectly plastic rock masses for
decreasing rock mass quality [21].

Correctly estimating dilatancy is of paramount
interest in order to resolve certain post-failure rock
mechanics issues, such as the practical problem of
modelling underground excavations, as also more
theoretical issues, such as shear-band orientation [22].
This explains the interest in developing a methodology
that is simple enough for engineering applications and
yet provides realistic dilatancy angle values.

2. Definitions
2.1. Constitutive models for rocks and rock masses

A constitutive model of a rock or a rock mass
incorporates a series of stress—strain relationships that
mark the stress—strain behaviour of the material.
Irrespective of the simple elastic part and based on the
incremental theory of plasticity [23-25], a material is

characterized by a failure criterion f = 0 and a plastic
potential g. In the broadest sense—in other words, if the
model includes hardening or softening—the failure
criterion and plastic potential depend not only on the
stress tensor ¢;;, but also on what is denominated a
plastic or softening parameter #, in other words, on the
plasticity already experienced by the material.
The failure criterion can be defined as follows:

flozn) =0. (1

Since perfectly plastic behaviour is characterized by a
failure criterion that does not depend on the plastic
parameter, there is no need to take # into consideration.
Strain-softening behaviour is characterized by a gradual
transition from a peak failure criterion to a residual
failure criterion (located below the peak failure), a
transition that is governed by the softening parameter 5
and which can be implemented in a variety of ways
[21,26].

There is a fundamental difference between perfectly
plastic models and strain-softening models. Perfectly
plastic models can, theoretically, be considered
constitutive models, given that they fulfil Drucker’s
stability postulate [27], which states that the work
of the external agency on the displacement produced
must be positive or zero. The strain-softening
models, on the other hand, do not fulfil this
stability postulate, and so observations will be the
result of substantial modifications from testing or
stressing the material [28]. On this basis, some
authors [29-31] do not consider strain softening as
specific to the material, but rather the consequence of
the behaviour of a structure formed principally
by most of the material (rock) being subjected to
limited strain and also by narrow bands of
another material (broken rock) where large plastic
strains occur. Vardoulakis and Sulem [31], for
instance, indicate that strong softening behaviour and
strong dilatancy are not intrinsic to the material,
but are due to the post-bifurcation behaviour of the
mechanical system. This does not necessarily contradict
the strain-softening continuum approach, since both
acknowledge a loss in strength. The question is which
type of behaviour model is more suitable. Certain
non-associative flow rules can force localization to
occur, with the result that a reduction in strength
capacity is observed. We propose to incorporate strain
softening in our model, thereby demonstrating that it
can reproduce the deformational phenomena observed
in rock sample testing.

Duncan Fama et al. [32] presented a strain-softening
model for analysing coalmine pillar stability that was
based on FEM techniques and a modified Hoek and
Brown failure criterion, where softening was introduced
in accordance with the plasticity level controlled by a
softening parameter y’ = & —&;.
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The plastic strain increments can be obtained from
the plastic potential:

9(aij,n) 2

in accordance with

v oy’

(€)

where / is a plastic multiplier and unknown. Eq. (3) is
the constitutive equation for the plastic regime and is
usually denominated by the flow rule. Incremental
plasticity involves the consideration of a fictitious ‘time’
variable, even if it does not have physical meaning. This
variable controls the evolution of plasticity. This ‘time’
variable called 7, controls the plastic strain increments in
the following manner:

et
=22 @)

The final constitutive equation of the plastic regime
according to Hill [23] is

1 0 0
Gij = { 5 ( >< d G, / Cfsklﬂékh ©)

ikl H \00,, i 00 s

where (1) stands for 0 or 1, depending on whether the
increment is purely elastic (4 =0) or also contains
plastic terms (4> 0). H is the plastic modulus and it can
be subdivided into two, in such a way that H = Hy +
H,; where H coincides with the plastic modulus of the
perfectly plastic behaviour and H, is known as the
hardening/softening modulus
of 9y of

Hy=C,— ——, H;=-——. 6
0 ijkl aO'ij ao'kl’ t 677 ( )

The classification of the post-failure behaviour is
made according to the value taken by these plastic
moduli in such a way that if H,>0 the material is a
strain-hardening one, if H,<0 the material is a strain-
softening one, if H, = 0 the material is perfectly plastic
and finally if H = Hyo + H, = 0 the material is purely
brittle.

Obviously, these moduli depend on the failure
criterion and on the flow rule selected, and according
to the cases, a material can behave differently for
different levels of confinement.

If the plastic potential coincides with the failure or
yield criterion (f=g), then the material is said to obey the
normality rule, since the plastic strain increment vector
is normal and moves outwards from the failure surface.
Alternatively, a material can be said to obey an
associated flow rule when the nature of the deformation
is linked to the failure surface. Normality and associated
flow are equivalent terms; naturally, when working with

material behaviour models, it is clearly useful if we can
assume the failure criterion and plastic potential forms
to be the same, since the number of functions needed to
model the plastic response will be reduced by one. Some
authors [7] disregard associated flow rules since,
theoretically, these involve plastic deformation without
energy dissipation, which is inconceivable.

Although normality (or minor deviations from
normality) can be reasonably assumed for clayey soils
[33,34], it is clear that for many materials—such as
granular soils, rocks and rock masses—the plastic
potential and failure criteria that are usually proposed
cannot be considered identical [7,33]. Non-associated
plasticity entails the introduction of a dilatancy angle v,
which controls inelastic volume changes. This angle
would appear to be useful not only for soils, but also for
rocks [7].

One of the simplest and most commonly used plastic
potential assumptions states that

g(o-ijarl)z()-l _Kl//(o-ijvn)'o-% (7)
where

1 4 sin (o, 1)

1 — sin (o, 1) ®)

Kl//(o-ij’ 17) =

and where y is the dilatancy angle.

In strain-softening behaviour models, a softening
parameter 5 controls strength capacity [32]. However,
if we hold Detournay’s [12] statements on dilatancy to
be valid, then this parameter also controls the flow rule.
Although # can be defined in a number of ways, so far
there has not been wide support among researchers for
any single one of its possible forms, and on many
occasions, they are computed in parallel.

Two of the more common definitions of this para-
meter are that it is a function of internal variables and
that it is incremental [7,26]. In the former, for planar
deformations in which & = &) = 0, the plastic parameter
is based on internal variables. The most widely used
variable is shear plastic strain, obtained as the difference
between the major and minor principal plastic strains, as
follows:

P =gl — & )

It is appropriate to indicate that we use the sign
conventions of traditional rock mechanics (compression
and contraction are taken as positive stress and strain
values). To avoid sign convention problems, some
authors [7] have applied the above formula in absolute
value terms, as follows:

PP =] — 5. (10)

For incrementally defined plastic parameters, the
literature provides examples of incremental softening
parameters 77 [7] that depend on plastic strain
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increments, with the most widely used defined as

. An
= At
The FLAC code [26], based on FDM, implements an

incremental plastic parameter e and focuses on plane
strain conditions, whose incremental form is

2
Ve s+ 2] an

AeP = {;(Aslfs — AP + %(Asgf)z

m

1 1/2
+§(As‘3’5 — Asps)2} , (12)

where Ay = J(Ae]” + Ael’) and Agl® j = 1,2,3 are the
principal shear plastic strain increments. This incre-
mental plastic parameter can be correlated with the
more standard (” or plastic shear strain. If an
elastoplastic strain-softening material with a constant
dilatancy angle is considered—characterized by a plastic
potential as in Egs. (8), (9) and (12)—then the following

relationship between yPand eP* can be deduced [35]:

NE P
P = 1+ Ky + K, ——. 13
For null dilation, as proposed by some authors [20]
for particular rock masses, Eq. (13) becomes

ePs =P /2. (14)

When dilatancy is not considered to be constant, this
relationship should be calculated only as the deforma-
tion process unfolds. Nonetheless, from our analyses we
can conclude that the use of Eq. (14) produces negligible
errors.

2.2. Dilatancy

Dilatancy can be defined as a change in volume
resulting from the shear distortion of an element in a
material. As Egs. (7) and (8) demonstrate, the dilatancy
angle  is a suitable parameter for describing the
behaviour of a dilatant material, since it represents the
ratio of plastic volume change to plastic shear strain.
Strictly speaking, this definition of  is only valid in the
case of pure shear [7], as the flow rule is then totally
controlled by i, which at the same time defines the
volume increase or dilation of the rock or rock mass
following failure.

For granular soils, rocks and concrete, Vermeer and
de Borst [7] point to a dilatancy angle that is
significantly smaller than the friction angle. These
authors proposed the following equation for assessing
the dilatancy angle in its more general form:

5P
Y = arcsin ¢

(15)

v
_2.gP P
2.8 + &

The advantage of this formulation, as the authors
have indicated, resides not only in the fact that it
commences with the plastic volumetric strain rate and is
also valid for the interpretation of triaxial tests, but that
it can be applied to the analysis of plane strain
conditions, and even in true triaxial situations. It should
be pointed out that the fraction denominator represents,
in absolute terms, the plastic parameter defined from
internal variables (as in Eq. (9)).

For a standard triaxial test in which confining stress is
applied to a sample peripherally, it is clear that, under
homogeneous deformation conditions, & = ¢3, and so
& = € + 2 - &3. In this case the value of the relationship
—def /del equal to 1+ siny/1—siny, is now equal to
2Ky. Thus, dilatancy in triaxial tests can be also
computed from

sin =— (16)

from which we obtain (for triaxial tests only):

ll+sintp

o Ky, .
5 m(_?}f) = 7(_85))- (17)

& =

Hence, the formula — (&% /&}), which gives the slope of
the curve that relates plastic radial and axial strains in
the plastic deformation stage in the complete stress—
strain curve (Fig. 1), can be interpreted in accordance
with

def 1l1+siny K, 18

de  21—siny 2 (1%

From triaxial test results for rock samples, it is thus
possible to analyse dilatancy starting from the values a1,
03, &1 and &3, and provided that Young’s modulus £ and
Poisson’s ratio v are known. Decomposition of total
strains into their elastic and plastic parts & = & + &
should be taken into account, as also the possibility of
obtaining the elastic parts for these strains starting from
the elastic constants.

Nevertheless, the analysis of dilatancy angles from a
standard triaxial compression test perspective encoun-
ters difficulties associated with: the inelastic behaviour
of the stress—strain curve; variability in the elastic
parameters; and the occurrence of non-homogeneous
deformation modes (bifurcation and subsequent axial
splitting and shear banding). This would indicate that
the results of such tests should be used with caution.
This problem has led to the definition of new tests
specifically designed to estimate dilatancy [36].

For the case of plane strain, for instance, in order to
interpret measurements for a section of tunnel, if the
measured strains are ¢, and ¢, and given & = 0, then
& = & + ¢&3. So the value of the relationship —def /de}
will be equal to 1 +siny//1 — siny and therefore to K,
which is the slope of the relationship between the plastic
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Fig. 1. Complete stress—strain curve for a test on rock. It includes the axial stress vs. axial, radial and volumetric strain on the one hand and the total,

elastic and plastic radial strain vs. the axial strain on the other.

hoop and radial strains (See [7] for further details of this
formula).

It is important at this juncture to be aware of some of
the issues raised as a result of investigating complete
stress—strain curves in rock masses [1,3]. Between the
initiation of stable fracture propagation and the onset of
unstable fracture propagation, &} is a negative value,
whereas ¢} is null—in other words, there is no inelastic
axial strain (Fig. 1). For initial small values for the
plastic parameter, what this means is that the dilatancy
angle tends to minus infinity. Other inelastic and non-
strictly plastic effects—such as crack closure in the early
stages of stress application (resulting in the initial
concave form of the stress—strain curve), and rock
damage over long-term peak stress (see Fig. 2)—add to
the difficulty of obtaining ‘accurate’ dilatancy values.
Given that our aim is to identify general behavioural
trends rather than highly accurate values, these effects
will be ignored in our analysis. The concept of dilatancy
as defined above only makes sense in the post-failure
zone, even if at the peak strength point, the plastic
parameter is in the order of some mstrains and the
inelastic volumetric strain attains values in the range
0.04% to over 0.1% (according to the tests in certain
rocks [37]).

3. Preliminary observations

To provide some background to the dilatancy
approach developed in this paper, we review here
observations and proposals made by a range of authors
in regard to dilatant behaviour and dilatancy angles in
rocks, rock joints and rock masses.

3.1. Rocks

The earliest proposals concerning dilatancy focused
on an associated flow rule (probably due, at least
in part, to the simplicity of this hypothesis), which can
be observed, for instance, in descriptions of material
behaviour models for the axisymmetric tunnel
problem [38].

Vermeer and de Borst [7] analysed various rock
sample tests and tested different constitutive rock
models in order to show that plastic yielding accom-
panied by a plastic volume increase can describe rock
behaviour reasonably well. They concluded that the
dilatancy angle is at least 20° less than the friction angle,
a conclusion that lends to the use of a non-associative
flow rule. This explains the common practice of applying
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Fig. 2. Stress—strain relationships (axial stress—axial strain in the upper part and volumetric strain—axial strain in the lower part) for a compressive
test on a strain-softening coal sample with three unloading—loading cycles. The last graph represents the curve relating the plastic components of the
volumetric and axial strain or irrecoverable strain loci, together with the formulation on which it is based. The peak and residual failure criteria are

also included (upper right-hand side). Source: Adapted from Ref. [16].

a rule-of-thumb dilatancy angle value in the range y =
¢ —20° [39].

Detournay [12] was the first to point to the unrealistic
and misleading nature of a constant dilatancy angle
assumption. He argued that dilatation must of necessity
be a function of plastic strain and confining stress, and
subsequently proposed a dilatancy factor K that decays
from an initial value Ky in accordance with an
exponential function of plastic shear strain, as follows:

Ky =1+(Ks—1)-e7"", (19)

where the parameter yP* can most usefully be related to
the maximum inelastic volume increase A4* as

PP* = A*/ln (K¢271) (20)

The author comments on the fact that the number of
parameters necessary for the model is the same as for the
constant dilatancy case. This interesting and relatively
simple flow rule does not appear to be much used in
practice.

In his doctoral thesis, Medhurst [40] performed a
large number of triaxial tests on multi-scale coal samples
(61, 101, 146 and 300 mm in diameter). He pointed to

the steady decrease in dilation as confining pressure was
increased, and attributed this decrease to the transition
from an axial splitting mode to a shearing failure mode
in the samples. Other authors [22,41] observed similar
effects, but arrived at the opposite conclusion, i.e. they
attributed failure mode and shear-band inclination to
decreasing dilatancy with confining stress.

Medhurst [40], moreover, did not observe scale
dependence in the deformation behaviour of the three
largest sample sizes in his study. Concluding that coal
samples behave in a non-associated manner, he observed
a tendency towards a greater departure from the
normality condition as confining pressure increased.
The inclusion of loading—unloading cycles in Medhurst’s
triaxial tests represented an experimental evaluation of
the division of volumetric strain into its elastic (or
recoverable) and plastic (or irrecoverable) parts (Fig. 2).
Results were plotted in terms of de} /de} vs. o3 so as to
provide sufficient evidence for developing a stress-
dependent non-associated flow rule. He used a function
of the plastic potential taking the same form as the
modified Hoek and Brown failure criterion.

Ribacchi [39], who carried out a large number
of standard triaxial tests on limestone samples
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characterized by variable fractures, treated the rock
sample he tested as a small-scale model of a jointed rock
mass. The overall dilatancy angle averages obtained
revealed a regular decrease in the dilatancy angle as
confining stress was increased. Peak dilatancy angles of
roughly 24°, 19°, 16° and 11° were estimated for confining
pressures of 2.5, 5, 10 and 20 MPa, respectively.
Medhurst’s results [40], as also those of Farmer [15],
among others [39], are reinterpreted in the following
sections in order to obtain dilatancy angle values and
assess dilatancy dependencies on different parameters.

3.2. Joints

It has been observed that failure in rock or rock
masses takes place in joints, shear zones or bands. The
macroscopic behaviour of the rock or rock mass must,
thus, be related in some way to shear zone or joint
behaviour.

Barton and his colleagues [18,19] studied natural rock
joints in detail. From a classic graph showing the
dilatant behaviour of a joint in a shear test (Fig. 3) [41],
it was peak dilatancy that appeared to be associated
with joint peak shear strength, and could, moreover, be
defined for joints as the peak slope of the relationship
ov/Sh, where 6h and Jv are, respectively, shear and

normal displacements measured for the discontinuity.
Beyond peak strength, this relationship flattens out.
Hence, joint dilatancy can be calculated for each point
in the graph as

h

d, = arctan (%) 2D

According to Barton and Bandis [19], peak joint
dilatancy angle can be estimated using the expression:

JCS

>
On

dppeak = JRClog, (22)
where the actual values of the joint roughness coefficient
(JRC) and the joint compressive strength (JCS) should
be scale-corrected, according to the expressions:

1.\ ~0:02JRCo
JRC, = JRC, (—n> and
Ly

—0.03 JRC,
L,1> 0
ran 5

JCS, = JCS, (L (23)

0
where L, is the actual joint length and L is the reference
joint length (equal to 1 m).

From this formulation it can be deduced that, for the
case of a joint (and, as we shall see below, extrapolation
to the study of rock masses is also possible), peak joint
dilatancy decreases when normal stress o, (o3 for rocks)

4 /\

)
A \3
T Tpel
7
’f,.esidual
w1
> —>
T T
— oy o, 4
8h cn
\ dnl T q
—> | L
S
0l’l

Fig. 3. Stress—strain curves of a rock joint for increasing normal stress and including the relationship between normal and shear displacement.

Source: Adapted from Ref. [42].
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is increased, with increasing joint scale (sample diameter
for rocks), decreasing JCS (a. for rocks) and decreasing
JRC (grain size, failure mode and friction angle). For
larger scales, the impact on JCS and JCR is usually
negligible. These relationships are all coherent from a
mechanistic perspective. Finally, even if the Barton—
Bandis model [19] deals only with peak dilatancy, it
seems reasonable to suppose that joint dilatancy tends
to a null value, given that the volume of a sample cannot
increase to infinity.

Although it may seem odd that we propose extra-
polating—as suggested above—from joints to rock
masses, we are, in fact, following Archambault et al.
[13]. These authors reviewed the different factors
contributing to progressive failure in rock and rock
masses and demonstrated how shear or tension dis-
continuity anastomosing structures and scale effects in
shear rock strength are the result of a progressive
softening of the rock or rock mass. Moreover, the
application of shear stresses generates simple shear
strains that are non-homogeneous and non-coaxial with
the medium. This produces a concentration of shear or
tensile stress in thin bands or zones where deformation is
localized and where the tensile or shear fracture
propagation commences. The development of these
fractures corresponds to a hardening stage characterized
by increased dilatancy that involves the growth of the

shear zone. Following a full propagation of these
discontinuities up to an upper shear-stress limit, an
unstable softening region is entered and new disconti-
nuities appear. When residual strength is attained,
anastomosed discontinuity structures, in which soft-
ening is concentrated, start to form. Furthermore, the
same authors show how these conclusions are valid for
scales ranging from millimetres to thousands of miles.
The macroscopic behaviour of the whole rock mass
responds to Fig. 4 in terms of stress, strain and dilatancy
for different scales.

3.3. Rock masses

Most of the researchers who have studied dilatancy in
rock and rock masses have acknowledged the need to
use non-associative flow rules [7,12,15,17,20,43].

Given that the performance of significant tests on
rock masses is a complex matter, dilatancy studies
should be based on field experiments and back-analysis,
even though it has to be acknowledged that neither is
particularly convenient. Based on wide practical rock
engineering experience and probably inspired by the
idea of providing the rock mechanics community with
parameters for feeding numerical models, Hoek and
Brown [20] recommended the use of constant dilatancy
angle values based on rock mass quality; they proposed,

%

A/ cak
/ residual
<»
Oy
P
Oy
S,
= atan &+
d, 5
G,

n

Fig. 4. Shear stress—strain behaviour of rock masses with increasing scale, based on Archambault et al. [13]. Note that these authors indicate that this
behaviour can be observed for all scales, ranging from millimetres to hundreds of kilometres. The top four graphs are based on Ref. [13] and the two

lower graphs were extrapolated from these.
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thus, values of y = ¢/4 for excellent- and good-quality
rock masses, |y = ¢/8 for average-quality rock masses
and Y = 0 for poor-quality rock masses. This is not, in
fact, a general proposal, but a calculated guess applied
to particular rock mass cases on the basis of expert
opinion on dilatant behaviour in rock masses.

Referring to the post-failure behaviour of rock
masses, Hoek and Brown’s [20] general guidelines
recommend attributing brittle post-failure behaviour to
excellent- and good-quality rock masses, strain-soft-
ening behaviour to average-quality rock masses and
perfectly plastic behaviour to poor-quality rock masses.
This affects the issue of a coherent representation of
dilatancy, as a suitable definition of the evolving and
decaying failure criteria that define strain softening
requires a reference plastic parameter to which these
criteria can be associated [32].

4. Test reinterpretation

The test procedure typically adopted in triaxial
testing is not suitable for assessing rock dilation
characteristics. This is because volumetric strains
are not directly determined but must be estimated on
the basis of the transversal strain along one diameter.
Moreover, stress—strain curves from triaxial tests have
peaks that are partially a consequence of thin shear
bands. Strain measurements for such macroscopic
non-uniform deformations are not objective, unlike
those for the axial strain—volumetric strain curve,
which are much more accurate. Although it may not
be possible to accurately measure the magnitude
of the strain increment, the strain ratio is not so
strongly affected by the effects resulting from the
location of a shear band [7]. Hence, even though tests
have been defined [36] that accomplish this task in a
more rigorous way, dilatancy angles may be measured
with acceptable accuracy despite the non-uniformity of
the deformation.

The approach described here does not directly address
the issue of strain localization, given that strain
measurements in the information gathered from tests
and the associated calculations assume uniform or
average behaviour in the samples.

In the next section, a range of tests published in the
literature will be reanalysed in the light of the definitions
given above—in particular, the set of tests performed on
coal samples by Medhurst [40] and some of the tests
performed by Farmer [15]. It should be pointed out that
the data corresponding to these tests were published in
the form of graphs, so the accuracy of the figures
recovered from these graphs and used for this reinter-
pretation may not be very high. However, we consider
such inaccuracies to be of little significance, given that
the final results will not be used dogmatically to fit exact

curves but to identify behavioural trends that can be
adapted to more general observations.

4.1. Reinterpretation of Medhurst’s tests on coal samples

Medhurst [40] performed an exhaustive and highly
reliable series of triaxial compression tests on 61, 101,
146 and 300 mm coal samples using a servo-controlled
press. For some samples—including most of the larger
ones—loading—unloading cycles were included as part of
the testing procedure and recoverability curves were
created. Monitoring oil displacement in the triaxial cell
during these tests, Medhurst devised an alternative
method for recording volumetric strain behaviour in
deformed coal, which ultimately proved more accurate
than the strain-gauged methods. Although this method
was better at obtaining averages, it tended to conceal
non-homogeneous deformation modes. The reason why
these tests were chosen for this study is that they are
unique in providing information on scale effects in the
complete stress—strain curve for coal. The irrecoverable
strain loci for many of the tests were extrapolated to our
case (see Fig. 2) and, applying Eqgs. (15) and (9), were
used to calculate both the dilatancy and plasticity
experienced by the sample (the plastic parameter) at
different stages of the deformational process. An
additional advantage of these tests is related to the fact
that coal presents small-scale jointing or ‘cleating’,
associated with its brightness. Test-scale coal behaves
very much like a rock mass structure, and so compres-
sive tests on relatively large (300 mm diameter) samples
can be considered to reflect small-scale rock masses.

For each test, Medhurst [40] obtained a total for
strain relationships (&, vs. &). For most of the tests on
larger samples (146 and 300mm in diameter)—per-
formed with loading—unloading cycles—the & vs. &}
curves (or irrecoverable strain loci) were also estimated.
To carry out our study, & and & values were first
obtained for particular intervals—typically 1 to 2
mstrain—from the corresponding graphs in Medhurst’s
thesis. From these values the plastic transversal strain
for each point in each test was calculated as

£ = (e — )2 (24)

Next, the average values of ¢} and &} for each interval
were computed, together with the corresponding incre-
ments in the plastic axial and volumetric strains
—Ae) = &land —Aed = &, The corresponding plasticity
parameters were then calculated from average values
using Eq. (9). Finally, Eq. (15) was used to calculate the
dilatancy angle. Obtained for each test were pairs of
values for the dilatancy angle  and the plasticity
parameter yP that could be represented in graph format.

For very low initial values for the plasticity para-
meter, the dilatancy angle was negative or highly
negative in all the reinterpreted tests, as can be deduced
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from the &P — ¢lcurve in Fig. 2, or from comments on
complete stress—strain curve behaviour between the
onset of stable and unstable fracture propagations, in
the compressive test stage traditionally known as
dilatancy onset. Paradoxically, this test phase (A} =0
and Asg <0) is disregarded in our model, but we feel this
to be necessary in view of our aim for simplicity, and
also due to the fact that initial volumetric strain
behaviour is usually negligible anyway, when compared
to final plastic volumetric strain. From these initial
negative values, thus, the dilatancy angle increases
rapidly to a peak value and then decreases monotoni-
cally. In our graphs, the relationship between the
dilatancy angle ¥ and the plasticity parameter P is only
plotted starting from a relatively high value for
dilatancy, i.e. we have ignored the initial zone, which
tends to include very few intervals.
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Two series of Medhurst tests [40] were analysed and
represented. The first series was used to study the role of
confining stress on dilatancy; therefore, triaxial com-
pression tests were performed on large samples (146 and
300mm diameter), which were subjected in turn to
confining stresses of 0.2, 0.2, 0.4, 0.8, 1, 3, 4 and 4 MPa.
The second series, which was used for investigating scale
effects, included triaxial compression tests performed
with a confining stress of 0.2 MPa applied to 61, 101,
101, 146, 146 and 300mm diameter samples. These
results are illustrated in Figs. 5 and 6, respectively. Note
that the results for the latter should be considered less
reliable, given that the irrecoverable strain loci for the
smaller specimen tests were estimated from the ¢, — ¢
curve.

The reinterpreted results in Figs. 5 and 6 should be
used with caution, given possible inaccuracies in the

Dilatant behavior of samples tested by Medhurst (study on confining stress)
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Fig. 5. Dilatancy angle—plastic parameter relationships obtained by reinterpreting a series of triaxial compressive tests by Medhurst [40] on large
samples (146 and 300 mm) submitted to confining stresses of 0.2, 0.2, 0.4, 0.8, 1, 3, 4 and 4 MPa.

Dilatant behavior of samples tested by Medhurst (scale analysis)
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Fig. 6. Dilatancy angle—plastic parameter relationships obtained by reinterpreting a series of triaxial compressive tests by Medhurst [40] on 61, 101,
101, 146, 146 and 300 mm diameter samples submitted to confining stress of 0.2 MPa.
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estimation process resulting from having obtained the
values from graphs. The dilatancy angles recovered from
the graphs give the lowest value for the plastic
parameter as a point close to the point of maximum
compressive strength; from this point onwards the
dilatancy angle tends to decrease exponentially as the
plastic parameter increases. This maximum value for the
dilatancy angle shall henceforth be denominated ‘peak
dilatancy’ in this article.

In relation to Figs. 5 and 6, some further comments are
in order. First of all, dilatancy tends to decrease as the
plasticity experienced by the sample increases; moreover,
peak dilatancy seems to diminish as confining stress and
scale increase. It seems clear, then, that a proper
formulation of dilatancy should include plastic para-
meter, confining stress and scale dependencies, in order to
adequately represent observed macro-trends, an observa-
tion that is reinforced in the literature (see Section 3).

4.2. Reinterpretation of Farmer’s tests on different rock
types

With the aim of obtaining further information on
dilatancy and in line with the definitions described in
Section 2, we reinterpreted the results of Farmer’s
standard triaxial servo-controlled tests on standard
samples of predominantly weak rock [3,15]. These tests

Dilatant behavior of sandstone samples
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Dilatant behavior of silty sandstone samples
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included different confining stresses, as well as graphs of
total axial strain—total volumetric strain curves. The
estimated values for the elastic constants, Young’s
modulus £, and Poisson’s ratio v were given. The series
of tests reinterpreted here include only those referring to
sandstone, silty sandstone, mudstone and Portland
stone. The other tests are excluded because of the
time-dependent behaviour of the material (rock salt)
and/or the paucity of recoverable data.

In this case, given that the irrecoverable strain locus
or &f — &} curve for each test was missing, it had to be
estimated. Thus, the elastic axial and volumetric strains
for each point recovered from the graph were first
calculated in accordance with elasticity theory:

o1 — 2vo;

(1 =2v)o; — 2(1 — v)o3
& = — 5 and ¢ = T .

(25)

The corresponding plastic values were next obtained
by subtracting the elastic part from the total strain
corresponding to each point selected, in accordance with

(26)

In this way, we obtained more or less reliable
irrecoverable strain loci. Applying the same technique
used for Medhurst’s tests, the corresponding y — P
curve was obtained for each graphed test of the series.
The results are represented in Figs. 7a—d. These results

P _ - p €
e, =¢ —¢ and & =g —¢.

Dilatant behavior of mudstone samples
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Fig. 7. Dilatancy angle—plastic parameter relationships obtained by reinterpreting four sets of triaxial compressive tests by Farmer [15] performed on
standard rock core samples—(a) sandstone, (b) mudstone, (c) silty sandstone, and (d) Portland stone—submitted to different confining stresses.
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Observed peak dilatancy and friction angles vs.
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Fig. 8. Peak dilatancy and friction angles, estimated by reinterpreting tests from [15,40] and including data directly estimated by Ribacchi [39].

are less reliable than those for Medhurst’s tests, due to
the testing procedure, the quality of the graphs from
which the values were recovered and the procedure for
obtaining plastic strain values. Nonetheless, they do
permit us to broaden the framework in which dilatancy
is to be analysed.

Fig. 8—in which the estimated peak dilatancy angles
and corresponding friction angles are compared to
confinement stress—is based on reinterpretation of all
the tests and also includes Ribacchi’s [39] data. This
relatively small database constructed from two sets of
tests, combined with the observations of different
authors reproduced in Section 3, form the basis for
our proposed model for estimating rock dilatancy
angles.

5. A dilatancy angle model

The behaviour frame of our model needs the
introduction of the elastic parameters. It also needs a
softening parameter-dependent failure criterion (i.e.
Hoek—Brown or Mohr—-Coulmb) as in Eq. (1), in such
a way that this failure criterion or their parameters
varied from their peak values (for a null value of the
softening parameter) to their residual values (for a
sufficiently large value of the softening parameter, and
where for instance a null cohesion can be included). An
example of this failure criterion model was presented by
Duncan Fama et al. [32], who introduce an evolving
Hoek—Brown failure criterion depending on the plastic
shear strain. Another example of this failure criterion
model was presented by Alonso et al. [35], who use a
Mohr—Coulomb evolving failure criterion, with soft-
ening parameter-dependent cohesion and friction (two-
segment piece-wise linear functions). The more simple

model of this type would be a perfectly plastic model,
where the peak, evolving and residual failure criteria
coincide. Finally, it is assumed a plastic potential as in
Eq. (7), able to accommodate the dilatancy model to be
presented.

From a conceptual mechanistic scope, there is
justification of the model to be presented in the studies
by Archambault et al. [13]. The confining stress
dependency has been implemented following a compar-
ison with trend of the phenomena observed by Barton
[18,19] and his co-workers for joints. The plasticity
dependence reflects the proposal of Detournay [12].
Finally, the model has been adjusted to the results
presented by Medhurst [40] and Farmer [15].

In most of the tests analysed above, the dilatancy
angle values recovered for very low values of the
plasticity parameter were negative or very low. The
reason for this is the shape of the complete stress—strain
curve, consisting of the initial concave area (due to
microfracture and pore closure), the inelastic transversal
strain between the onset of stable and unstable fracture
propagation, and finally, the hardening stage between
this last point and the point of maximum strength (also
called short-term compressive strength—see Figs. 2 and
9). These topics are beyond the scope of our proposed
formulation, although they could be tracked by the use
of more complex models capable of handling hetero-
geneity [44,45]. Starting from an initial realistic model,
the fact that all these inelastic and non-plastic effects are
ignored results in an elastic—plastic model capable of
including variable dilatancy and strain softening, as
depicted in Fig. 9, where a comparison is made with
actual observations, and in which the values for peak
dilatancy were recovered values and in which the
corresponding friction angles were computed from
estimated or given Hoek and Brown failure criteria.



L.R. Alejano, E. Alonso | International Journal of Rock Mechanics & Mining Sciences 42 (2005) 481-507 493

ACTUAL

9

A /

..

% N Peak dilatancy angle estimate imf‘erval

T

&'=0

MODEL

p Ll | B > -
8’ 81 6‘[ 61
P contraction (+) . —

“H.f[:=:=q1!fil'!!!l.l.-.-------.--.. .'> --.----".-1

o) y - " y >

& . & “’A’ rrecov :uux
' é v &t & | e, strain locus. &
e, v :h U /]
) v dilation (-) L, x \ 4 v 2

0
o,

. &— Peak dilatancy
.., angle

.
.
----
.......
......
............
..................

P
&

Fig. 9. Actual stress—strain relationships for a compressive test on a strain-softening coal sample with some unloading-loading cycles and ideal
stress—strain relations as proposed in our dilatancy model. Reading top to bottom: axial stress vs. axial strain, total and plastic volumetric strain vs.

total and plastic axial strain, and the resulting dilatancy angle function.

5.1. The peak dilatancy angle estimate

Since the tests on Moura coal were considered to be
more relevant, the peak dilatancy and friction angle
values were compared to confinement stress in the first
series of tests (Fig. 10a) and to sample diameter in the
second series of tests (Fig. 10b). This demonstrates that
peak dilatancy is highly dependent on confinement stress
but has a limited influence on scale.

In Fig. 8, the estimated peak dilatancy and friction
angles for each test are compared to confinement. These
were estimated from the slope of the corresponding
Hoek and Brown failure criterion for the corresponding
stress level and sample size (Fig. 11). Fig. 8 shows how
peak dilatancy and friction angles appear to correlate
well for low stress levels, whereas for higher stresses the
values tend to diverge, with the difference becoming
greater as confinement stress increases. It turns out,
then, that the assumption ,,.,x = ¢ is not an erroneous
one for peak dilatancy at very low stress levels, and this
would explain the commonplace assumption in regard
to associated flow rules in early rock mechanics studies.

Nonetheless, this assumption is clearly imprecise for
higher stress levels, as rock failure usually occurs in
shear bands or in new discontinuities, and particularly in
soft-to-medium rock [15,39,40]. Having recovered the

shape of the joint peak dilatancy as per Eq. (22), the
following expression is proposed:

G
l//peak = ct. 1OgIO 0_(;[ +0.1, (27)

where ct. is a constant corresponding to the JRC in rock
joints, o.; (MPa) is the intact unconfined compressive
strength for rock joint JCS, and a3 (MPa) is assumed to
be equivalent to o,,. The value 0.1 (MPa) has been added
to a3 to avoid mathematical problems associated with a
null denominator in the logarithm argument for the
common case of unconfined stress (a decision that has
no effect on the spirit of our approach).

In order to estimate the value of c¢z. we assume—as a
consequence of the peak dilatancy value obtained for
very low stresses—that it is not inaccurate to consider
that W, =¢ for null confinement pressures
(03 = 0 MPa). The value of ct. is thus readily obtainable
and can be reintroduced in Eq. (27) to obtain

o log Oci
1 =+ logloo'c[ 10 g3 + 0] ’

l//peak = (28)
where ¢ (°) refers to the peak friction angle which can,
moreover, be calculated as the slope of the Hoek and
Brown failure criterion (Fig. 11). It also includes
confinement stress and scale dependencies.
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Peak dilatancy and friction angles vs. confinement stress for
Moura coal tests
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Peak dilatancy and friction angles vs. sample diameter for Moura
coal tests with confinement stress = 0.2 MPa.
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Fig. 10. Peak dilatancy and friction angles obtained from reinterpret-
ing Medhurst’s test results [40]: (a) peak dilatancy angle vs. confining
stress for a series of triaxial compressive tests on large samples—146
and 300 mm—submitted to different confining stresses between 0.2 and
4 MPa, (b) peak dilatancy angle vs. sample diameter for a series of
triaxial compressive tests on different-diameter cylindrical samples
submitted to a confinement stress of 0.2 MPa.

The results of applying this formula to the reinter-
preted dilatancy angle values for 30 tests are represented
in Fig. 12. For 20 tests, error was less than 10% and
below 5°; for five tests it was over 50%. The cases
corresponding to the higher errors (over 50%) refer to
low values of the dilatancy angle (between 0° and 15°).
To illustrate the case for instance we have estimated
values of 8.3° and 0.7° face to actual values of 15.7° and
9° for mudstone subjected to confinements of 7 and
40 MPa and estimated values of 5.2° and 2° face to
actual values of 13.7° and 5.8° for silty sandstone
subjected to confinements of 21 and 36 MPa. It is also
important to note that these higher errors appear in the
less reliable Farmer’s data [15]. The authors consider
that the fit presented is quite a good one for the case of
rock mechanics, where a certain deal of variability can
always be expected.

Eq. (28) and the reinterpreted results on which it is
partially based are probably not highly accurate, but
further fine-tuning would only be possible with a larger
and more reliable database. Increased accuracy, more-
over, would require a much more complex formula.
Nonetheless, as indicated previously, our modelling

philosophy is to obtain a suitable trade-off between
simplicity and accuracy.

Fig. 10b would also indicate that a further minimal
level of scale correction could be introduced in Eq. (28)
(some degree of scale correction has already been
included via ¢).

Undoubtedly, the main advantage of Eq. (28) resides
in the fact that it permits peak dilatancy angles to be
obtained from the most widely available parameters for
rocks and rock masses. Even if not highly accurate, it is
undoubtedly an improvement over existing techniques.

5.2. Dilatancy angle decay in line with plasticity

In order to study how a dilatancy angle decays as
plasticity increases, the first option considered was to
assign an exponential decay function for K, or the
dilatancy relationship, in such a way that the value of
this parameter gradually drops from its initial value,
which corresponds to the previously calculated peak
value, to a value of one, which corresponds to a zero
plastic volume increase. This null value is proposed in
the light of the fact that a rock cannot dilate infinitely
[7,12]. Although negative values (representing contrac-
tions) have been reported for highly porous rocks
submitted to very high confinement stress, this is
obviously not a very common occurrence [41]. We thus
propose:

Ky =14 (Kypeax — e, (29)

where the parameter yP*, or plasticity parameter
constant, should be calculated for each type of rock;
moreover, whether this depends on confinement stress,
scale, or the plasticity parameter needs to be investi-
gated. This formulation was chosen for its simplicity; it
is based on Detournay [12] and Eq. (19), but also on a
study of dilatancy decay in line with plastic parameter
growth in the reinterpreted cases (Figs. 5-7).

For our analysis, the values of the plastic parameter
were first rescaled, on this occasion for yP = 0; a peak
dilatancy angle as defined above and as depicted in the
graph in Fig. 9 can be observed. Next, for each
reinterpreted test and for each available value for the
plastic parameter P, the value of yP* was calculated
according to

P _ P

T TRy — 1/~ DI (0
where Ky peac Was taken as observed from the test
reinterpretation. Fig. 13, which represents the first series
of reinterpreted Moura coal tests, reveals an average
value of around 20 mstrain for yP* and moderate
variability. It can also be observed that there is no clear
correlation between the value of this parameter and the
plasticity parameter or confinement stress.
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Peak dilatancy angles observed and calculated vs. confinement stress for different rocks [15,39,40]
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Fig. 12. Reinterpreted peak dilatancy angles as observed in tests from Refs. [15,39,40], and the same values calculated using our dilatancy model.

Once the values for yP* for all the points recovered
from Farmer’s tests [15] were compared to the values for
yP, it could be observed that Eq. (29) was not highly
accurate, as yP* seemed to increase slightly for higher
levels of plasticity. However, given the lesser significance
of these tests, for the sake of simplicity we have chosen
to ignore this fact in our model. To investigate
confinement stress dependence further, the values of
the relationship (Ky — 1/Ky peak — 1) for each Medhurst

[40] reinterpreted test and for each plasticity parameter
were plotted against confinement stress dependence
(Fig. 14). Exponential functions were fitted and show
that no clear trends in the relationship yP*—g3 are
evident, an observation which is largely consistent with
Farmer’s [15] reinterpreted tests.

To study the decay dependency on dilatancy with
scale, the relationship yP*—sample diameter was plotted
from an analysis of the second series of Moura
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reinterpreted coal tests; these consisted of six tests
submitted to confining stresses of 0.2 MPa on 61, 101,
101, 146, 146 and 300 mm diameter samples. Fig. 15
illustrates a possible tendency for the plasticity para-
meter constant to decrease in line with scale. Here again,
however, the paucity and limited significance of the
results would indicate no scale correction.

It should be pointed out that the shape of both
relationships, yP*—sample diameter (Fig. 15) and
Ypeax—sample diameter (Fig. 10b), resembles a priori
the shape commonly found (in the rock engineering
field) when scale effects on parameters such as field
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Fig. 13. Estimated values for yP* for each reinterpreted first Moura
coal series tests (compressive tests on large samples—146 and
300 mm—submitted to different confining stresses between 0.2 and
4 MPa) and for every available value of the plastic parameter yP in the
tests.

stress magnitude, breakdown pressure, elastic modulus
and compressive strength are analysed [46], and where
the concept of ‘Representative Elementary Volume’ is
introduced.

As for obtaining a representative value of y*, Fig. 14
was redrawn as Fig. 16, this time ignoring confining
stress in order to estimate a final fit value of yP* = 19.7
mstrain for Moura coal. Similar graphs (Figs. 17a—d)
were created for the less reliable Farmer tests in order to
obtain the value of this parameter for the different rocks
analysed—Moura coal, sandstone, mudstone, silty
sandstone and Portland stone. For these five rocks, the

Plastic parameter constant variation with scale on Moura coal
samples submitted to a confinement stress of 0.2 MPa
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Fig. 15. Estimated relationship between yP* and sample diameter,
resulting from a reinterpretation of the second Moura coal series of
tests (six tests on different size samples submitted to confining stresses
of 0.2 MPa). This figure illustrates a tendency for the plastic parameter
constant to decrease with scale.
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for each test. No obvious dependence between yP* and o3 was found.
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mean value/standard deviation ratio for the values
obtained for yP* was found to fall between 3 and 4, a
value which can be considered eminently useful from a
practical rock engineering perspective.
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Fig. 16. Representation of Medhurst [40] data in terms of K, —
1/Ky peak — 1 vs. yP. General exponential fit showing an average value
of yP* equal to roughly 20 mstrains for Moura coal.

P, I -
sandstone 7" * (fit) =61 mstr.
1.00 ~—; T T T
. y= £700164x
- o N N 2_ -
N SN R?=0.8311
] .|
8 o060 B .
= 040 e P A
5? 0.20 . ._-;“‘_‘“ .
0.00
0 10 20 30 40 50 60 70 80 90 100
P
(a) Y
silty sandstone P * (fit) =54.35 mstr.
1.00 = T 1
. 0.0184
S - . X
0.80 1< —— ¥>¢
v e R*=0.758
3 - T
o 060 .
Q
s .
X o040 —
S 020 . et |
X . .
0.00
0 10 20 30 40 50 60 70 80 90 100
p
(© Y

5.3. Some observations on the dilatancy model

A formula for estimating the dilatancy angle for rock
and rock masses is proposed here in accordance with
Egs. (28) and (29). The model incorporates marked
dependencies on confining stress and the plasticity
parameter, in accordance with observations by other
authors. The model also includes an indirect scale effect
by means of the inclusion of ¢ in the model. Further
scale dependencies were uncovered but were not
included in the model, given their lesser significance
and the fact that the database was possibly too small
and therefore not entirely reliable.

Our approach—like Detournay’s [12]—has the ad-
vantage that dilatancy is estimated by just a single
parameter yP*, yet takes into account scale effects and
confinement stress dependency. Modellers, therefore,
need to include in their inputs, a reasonable approxima-
tion of this parameter rather than a more or less
unrealistic constant value for the dilatancy angle.

Fig. 18, which illustrates the application of the model
to the reinterpreted first series of Moura coal tests,
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Fig. 17. Representation of Farmer data [15] for the tests on different rocks—(a) sandstone, (b) mudstone, (c) silty sandstone, and (d) Portland
stone)—reinterpreted in terms of Ky, — 1/Ky peak — 1 vs. yP. Corresponding exponential fits, showing the estimated values for the constant yP* for

each type of rock.
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Dilatant behavior of samples tested by Medhurst (study on confining stress)
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Fig. 18. Observed (reinterpreted from tests) and estimated (according to our dilatancy model) relationship between the dilatancy angle and the
plastic parameter for the first Medhurst [40] series of triaxial compressive tests on large samples—146 and 300 mm—submitted to confining stresses of

0.2,0.2,04, 0.8, 1, 3, 4 and 4 MPa.
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Fig. 19. For some of the Medhurst [40] reanalysed tests, relationship
between the FLAC [26] plastic parameter ¢ and the more standard
plastic parameter represented by the plastic shear strain yP = 3‘]’—82 for
the simple case of null dilatancy.

includes the original results together with the fit of the
model. Starting from yP = 5 mstrain—to cope with the
non-elastic and non-plastic effects—the result is a
satisfactory level of agreement.

One of the aims of this study was to present a model
that could be easily implemented in numerical codes. To
facilitate the application of this dilatancy model in a
code as widely used as FLAC, a relationship needs to be
established between the plastic parameters yP and eP®.
For null dilatancy it has been shown that P is twice P,
a ratio that can be maintained for the general case
without inducing significant error. Fig. 19 shows how
this relationship evolves over different deformation
stages for some of the reinterpreted tests. Eq. (29) can

thus be easily converted into
Ky =1+ (Kypear — 1)e™"/"" (31)

In Eq. (31) the new plasticity parameter constant is
related to the previous value in accordance with
e o

57

Once this relationship is known, it is a simple matter
to create a subroutine in which to implement the
formulation for use in a commercial code like FLAC.

Although the proposed dilatancy model does not
require the inclusion of strain softening, such a model
would be useful from the perspective of including all
possible post-failure strength modes, from elastic—per-
fectly plastic to purely brittle.

6. Sample applications

In this section, the proposed dilatancy model is applied
to two problems where dilatancy is known to play a
significant role. Results are compared to actual test
results and to relevant observations on the behaviour of
rock masses. Note that these can only be considered
preliminary results, as more research would be required
to better calibrate the range of the model; nonetheless,
they will serve to demonstrate the model’s potential.

6.1. Application to servo-controlled tests modelled using
FLAC-2D

FLAC-2D [26] was used to model the servo-con-
trolled triaxial compression tests of a Mohr—Coulomb
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strain-softening material representing Moura coal. The
peak and residual Mohr—Coulomb failure criteria were
estimated for 300 mm diameter samples from proposed
[40] peak and residual Hoek and Brown failure criteria.
For each confining level the evolving values of the
failure criteria estimated from test results were obtained.
Used for the sake of simplicity were simple cohesion and
friction bilinear decay functions (as proposed in [35]),
adjusted to the test results. The elastic parameters,
Young’s modulus and Poisson’s ratio used initially were
those recovered from the tests. A standard servo-control
function was used to minimize the influence of inertial

effects on model response. Created for this application
was a subroutine to implement our dilatancy angle
model in the FLAC code, written in FLAC’s internal
language FISH.

First modelled were three servo-controlled tests on
300mm cylindrical coal samples (the axisymmetric
option) submitted to confinement stresses of 0.2, 0.8
and 4 MPa. A square 15 mm grid size has been used. The
total volumetric strain—total axial strain results pre-
sented in Fig. 20a together with analogous results from
actual tests reveal moderately good agreement. The
observable offset between model and actual data (the
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Fig. 20. (a) Volumetric—axial strain curves for compressive triaxial tests on cylindrical coal samples submitted to low, medium and high confining
stress. Actual results as recovered from Medhurst [40] and results computed using code FLAC [26] using our dilatancy model and the actual values of
the tangent Young’s modulus back-calculated from tests. (b) Corrected post-failure volumetric—-axial strain curves for the tests presented in (a).
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model data is moved to the left-hand side) is due to the
fact that the model is incapable of representing the
damage or behaviour of the rock between long- and
short-term strengths in the pre-failure deformation
stages; this increases the level of plastic axial strain
and, in turn, total axial strain, an effect which could be
overcome by implementing degradation models in the
code [45]. Fig. 200 illustrates post-failure deformational
behaviour for the same tests; strain values were
corrected to represent the values starting from the point
corresponding to maximum strength. In this figure, a
better fit can be observed. Note that there is a moderate
degree of variability in the actual tests, so it would, in
fact, be difficult to define a good fit.

In order to avoid any inaccuracies arising from the
use of the tangent Young’s modulus, secant Young’s
modulus was estimated from the tests and subsequently
adjusted. In order to reflect the deformational behaviour
shown in Fig. 21—where a reasonable agreement is
observed—the initial models corresponding to 0.2, 0.8
and 4 MPa were recreated. In order to assess the effects
of mesh size, three different grid sizes were modelled for
each confining stress.

Mesh size was observed to be of little significance (a
peak strength variation of less than 5%), except when
very small, when bifurcation and localization phenom-
ena were likely to occur. However, it is a topic for
further research together with scale effects. Note also
that any numerical problems related to grid size would
be attenuated in rock mass models.

These examples serve to show that the outputs given
by our approach are able to reasonably represent the
behaviour observed on coal specimens. Further

examples under different conditions and for different
rocks are needed in order to fully validate the
dilatancy model.

6.2. Application to ground reaction curves for tunnel
design

The dilatancy model described above was used to
obtain ground reaction curves. These curves, which
form the basis for the convergence-confinement method,
are widely used in tunnel design. This analysis permits
an association between convergence in the wall and the
formation of a plastic aureole around a tunnel of radius
R under a hydrostatic field stress of magnitude ¢°, to the
value of an internal pressure initially equal to the field
stress, which is diminished to a null value and which can
be related to the distance from the face [47,48]. This
simple analysis is often used as a point of departure for
studying the mechanics of deformation in underground
excavations [49].

Analytical solutions exist for simple cases of ground
reaction curves for circular tunnels excavated in elastic,
perfectly plastic [47], brittle [SO] Mohr—Coulomb media,
as also in elastic, perfectly plastic, standard and
modified Hoek and Brown rock masses [51,52]. A
numerical self-similar solution also exists for the case
of strain-softening continua [35], based on the suitable
definition of a fictitious ‘time’ variable and the rescaling
of certain variables. This converts the problem into an
initial-value problem that can be solved numerically
using the Runge—Kutta—Fehlberg method [53] as im-
plemented in a MATLAB environment. We chose this
solution for implementing our dilatancy formula, as it
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Fig. 21. Volumetric—axial strain curves for compressive triaxial tests on cylindrical coal samples submitted to low, medium and high confining stress.
Actual results as recovered from Medhurst [40] and results computed using code FLAC [26] using our dilatancy model and the actual values of the

secant Young’s modulus back-calculated from test results.
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permits variable dilatancy to be included. Using this
approach, we were able to compute ground reaction
curves for tunnels excavated in strain-softening continua
with confinement stress and plasticity-dependent dila-
tancy. Other numerical techniques based on FDM or
FEM codes can be also used to apply the model. With a
view to assessing average dilatancy values and studying
how these evolve in excavation processes, the next
section describes a simulation of two rock masses.

6.2.1. Case 1. A perfectly plastic rock mass

From a standard poor-quality and perfectly plastic
rock mass, a set of suitable parameters were estimated
using RocLab [54] (for GSI =18, ¢, =20MPa and
m; = 9). Elastic parameters were G = 700 MPa (shear
modulus) and v = 0.3 (Poisson’s ratio), and strength
parameters were cohesion = 0.5 MPa and ¢ = 20°. The
required value for yP* for the dilatancy model was fixed
at 100 mstrain, similar to that obtained for mudstone.
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Fig. 22. Normalized ground reaction curves for perfectly elasto-plastic rock mass, obtained using our dilatancy model and using a constant dilatancy
value. The two curves correspond to isotropic field stresses of (a) 10, and (b) 20 MPa (p;” is the internal pressure that indicates the elastic—plastic

transition).
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A tunnel of radius R was excavated in this rock mass for
field stresses equal to 10 MPa (roughly 400 m deep) and
20 MPa (roughly 800 m deep).

The normalized ground reaction curves obtained for
the tunnels in the variable dilatancy rock mass are
depicted in Figs. 22a and b for the above-mentioned
field stresses, together with the curves for significant

constant dilatancy cases. It can be observed how the
ground reaction curves are very close to those for null
dilatancy, most particularly the curves for the higher
field stresses. The dilatancy angle values in a radial
direction—from the elastic—plastic boundary to the
tunnel wall—for the end of the unloading process are
represented in Figs. 23a and b in terms of the plasticity

Angle of Dilatancy [°]

0 0.05 0.1

(a)

0.15 0.2 0.25

Angle of Dilatancy(°]

0.1
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Fig. 23. Evolution of the dilatancy angle value at the boundary of the excavations along the tunnel unloading process (solid line) according to our
dilatancy model, for elasto-plastic rock mass and including isotropic field stresses of (a) 10, and (b) 20 MPa (corresponding to the ground reaction
curves in Fig. 22). The decaying dilatancy curves for different values of confinement stress are shown by dotted lines.
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parameter, together with the corresponding general
dilatancy models for confinement stress (to the point
at which the plasticity parameter stops increasing). Self-
similarity in the problem means that this graph also
represents the evolution of the dilatancy angle at a point
located very close to the tunnel wall. Both figures show
average dilatancy angle values within a range of 3-6° for
¢’ = 10MPa, and within a range of 0-3° for oy =
20MPa. From these results and from the proposed
general model, it is clear that actual dilatancy angle
values are not only dependent on the quality of the rock
mass, but also on the stress to which the excavation is
initially submitted. The constant dilatancy angle values
needed to obtain ground reaction curves such as those
produced by our model are quite close to the y = 0°
indicated by Hoek and Brown [20] for this kind of rock
mass.

6.2.2. Case 2. A strain-softening rock mass

A rock mass representing the standard Moura coal
rock mass, as described by Medhurst [40], was
considered together with a set of suitable parameters,
which were estimated according to Medhurst’s method
and using the reinterpreted tests described in Section 4.
Elastic parameters were chosen as G = 2000 MPa and
v=0.26. Peak strength parameters were cohe-
sion =1.2MPa and ¢ =37°, and residual strength
parameters (approximate estimates by the authors) were
cohesion = 0.6 MPa and ¢ = 20.6°. The strength decay
parameter required to model the evolving failure criteria
was assumed to be bilinear decaying from peak at 0
mstrain to residual at approximately 15 mstrain [35],
with o.; = 32.7 MPa and yP* = 20 mstrain. A tunnel of
radius R was excavated in the coal rock mass for field
stresses equal to 10 and 20 MPa.

The normalized ground reaction curves obtained are
depicted in Fig. 24, together with the curves for selected
constant dilatancy cases. These curves, which take
variable dilatancy into account, closely approximate
the curves for a dilatancy value equal to ¢/8, as
indicated by Hoek and Brown [20] for average-quality
strain-softening rock masses. The curves for a field stress
of 10 MPa (Fig. 24a) and for a field stress of 20 MPa
(Fig. 24a) lie, respectively, just above and below the
curve corresponding to a dilatancy value of ¢/8.

The final dilatancy values for both cases—represented
in Fig. 25—show an average (somewhat surprising)
value of around 15° for 10 MPa (Fig. 25a) and a more
predictable range of values between 0° and 10° for
20 MPa (Fig. 25b). The  value of around 15° for the
former is due to the low plasticity values obtained; the
dilatancy angle does not have sufficient space to
attenuate because the plasticity parameter is still low
when the unloading process finishes, so a kind of
“brittle” behaviour appears in the annulus of plastic or

yielding rock. This fact might contribute to explain the
use of early support in tunnels.

6.3. Final comments

The applications described above were chosen for
their usefulness in highlighting some interesting rock
mechanics issues and showing how the dilatancy
problem can be handled and understood using a
confinement stress and plasticity-dependent model.
Other possible applications of this model include studies
of mine pillars, coal drifts near long-walls, and tunnel
faces in soft rocks.

The axisymmetric model of compressive tests de-
scribed above has demonstrated how our dilatancy
model could be useful for simulating the actual
behaviour of rock samples. However, degradation
should be incorporated in the model in some way in
order to fine-tune results [44,45].

We have shown how, for poor-quality rock mass
tunnels, ground reaction curves coincide almost exactly
with null dilatancy curves. We have also shown how the
average dilatancy values for average-quality coal masses
approach the values proposed by Hoek and Brown [20].
In both cases analysed above, therefore, the Hoek and
Brown [20] proposal concerning dilatancy (as discussed
in Section 3.3 above) makes complete sense, and is,
moreover, entirely compatible with Detournay’s [12]
statements on the nature of dilatancy.

An adequate treatment of dilatancy is crucial to the
correct modelling of underground excavation beha-
viour, irrespective of whether use is made of analytical
or pseudo-analytical techniques (e.g. ground reaction
curves) or numerical models. Dilatancy stress depen-
dence may also play a significant role in assessing the
effectiveness of early support or in shedding some light
on the effects of reinforcement on already yielding rock
masses.

Ground reaction curves are sometimes linked to the
New Austrian Tunnelling Method (NATM) which,
although very useful in general, has revealed itself to
have certain drawbacks in some excavations carried out
using the method [55]. Gaining a solid reputation, on the
other hand, as a full-fledged, almost infallible but
somewhat expensive tunnelling technique, is the New
Italian Tunnelling Method, or ADECO/SR (analysis of
controlled deformation in rocks and soils) [56]. If the
NATM partially relies on ground reaction curves, when
using the ADECO/SR method it is highly appropriate to
make models that will predict deformations in the tunnel
front (and yielding in the core), for which purpose,
Lombardi’s method [57] or similar numerical techniques
can be used. In order to reliably apply these methods, a
better knowledge of actual dilatancy angle values—
obtained, e.g. using the model described here—would be
highly valuable.
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Fig. 24. Normalized ground reaction curves for the coal strain-softening rock mass, for different levels of dilatancy and including two cases for
isotropic field stresses of (a) 10, and (b) 20 MPa, obtained using our dilatancy model.

The dilatancy model presented has no universal
validity, so it should be used carefully. Hence, it is not
appropriate to model stratified rock masses—specially
with narrow strata and low-strength bedding planes. In
this case the bedding strata behaviour should be
included in the model explicitly or by means of the so-
called ubiquitous joint model. It is recommended to use
this dilatancy model within the frame of wider modelling
strategy as proposed by Starfield and Cundall [9].

7. Conclusions

This paper has described a new model to estimate the
dilatancy angle in rocks and rock masses. Our starting
point was a review of classic definitions of dilatancy
angle, a review of early and recent studies dealing with
dilatant behaviour in rock, rock joints and rock masses
and, finally, a reinterpretation of previously published
compressive test results for a range of rocks. Our model
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Fig. 25. Evolution of the dilatancy angle value at the boundary of the excavations along the tunnel unloading process (solid line) according to our
dilatancy model, for elasto-plastic rock mass and including isotropic field stresses of (a) 10, and (b) 20 MPa (corresponding to the ground reaction
curves in Fig. 24). The decaying dilatancy curves for different values of confinement stress are shown by dotted lines.

reflects dependencies on confining stress, on the
plasticity suffered by the material and indirectly on
scale. Further scale dependencies are speculated on,
although not included in the model due to both the lack
of sufficient and reliable data and the need to balance
simplicity and accuracy. Comparison of model results
with actual test data shows moderately good agreement.

The two main advantages of the model are that, first
of all, it does not increase the number of parameters
needed to model either a rock or rock mass, and
secondly, that it can be easily implemented in standard
numerical models.

Our dilatancy model was applied to some typical rock
mechanics post-failure problems. It was used, first of all,
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to axisymmetrically model compressive triaxial tests on
cylindrical rock samples. The model produced good
agreement with actual test results (the main deforma-
tional behavioural trends were successfully captured),
which can be considered to numerically validate the
method. Secondly, the dilatancy model was used to
obtain ground reaction curves for tunnels in poor- and
average-quality rock masses, resulting in dilatancy
values that correlated well with observations based on
wide experience in practical rock engineering.

Our model is potentially useful for understanding the
valuable role played by early support in the form of
shotcrete, as also for studying the stabilizing effects of
reinforcement in yielding rock masses. The model can
also make reasonable predictions of deformations in a
tunnel face, which is particularly useful in view of more
recent approaches to tunnelling design and construction.
These are all topics that will be addressed in future
research by the authors.

Finally, of undoubted significance is the fact that this
approach to obtaining the dilatancy angle is consistent
with most of the previously published observations on
the subject. Moreover, as our examples demonstrate, the
model appears to be capable of tracking actual
behaviour and confirming certain rules-of-thumb ap-
plied in engineering practice. Above all, it is a relatively
simple model to apply, and can be used in conjunction
with modelling tools that are widely used in the rock
mechanics discipline.
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