Corrections in *Measure*, *Integral and Probability* by M. Capiński and P.E. Kopp 1st printing, 1999

page 6, line 17,

Replace

For example, if $f:[a,b] \to \mathbb{R}$,

by

For example, if $f:[a,b]\to\mathbb{R}$ is continuous,

page 16, line 8, Definition 2.1

Replace

$$A \subseteq \bigcup_{k=1}^{\infty} I_n$$

by

$$A \subseteq \bigcup_{n=1}^{\infty} I_n$$

page 17, line 1

Replace

$$I_3 = \left(x_3 - \frac{\varepsilon}{16}, x_3 - \frac{\varepsilon}{16}\right)$$

by

$$I_3 = \left(x_3 - \frac{\varepsilon}{32}, x_3 - \frac{\varepsilon}{32}\right)$$

page 18, line 10, Step 2

Replace

$$N = \bigcup_{n=1}^{\infty} N_n \subseteq \bigcup_{j=1}^{\infty} J_k^n.$$

by

$$N = \bigcup_{n=1}^{\infty} N_n \subseteq \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} I_k^n \subseteq \bigcup_{j=1}^{\infty} J_j.$$

page 21, lines 3-4

Replace

This shows that Z_A is the interval $(x, +\infty]$ or $[x, +\infty]$ for some real number x. by

This shows that Z_A is either $\{+\infty\}$ or the interval $(x, +\infty]$ or $[x, +\infty]$ for some real number x. (2.1)

page 23, line -11, after (2.5)

Replace (2.2) by (2.1)

page 23, line -8

Replace (2.2) by (2.1)

page 30, line -6

Replace

$$m^*(A \cap E_1^{\mathbf{c}}) = m^*((A \cap E_1^{\mathbf{c}}) \cap E_2) + m^*((A \cap E_1)^{\mathbf{c}} \cap E_2^{\mathbf{c}}).$$

= $m^*(A \cap (E_1^{\mathbf{c}} \cap E_2)) + m^*(A \cap (E_1^{\mathbf{c}} \cap E_2^{\mathbf{c}}))$

by

$$m^*(A \cap E_1^c) = m^*((A \cap E_1^c) \cap E_2) + m^*((A \cap E_1^c) \cap E_2^c).$$

= $m^*(A \cap (E_1^c \cap E_2)) + m^*(A \cap (E_1^c \cap E_2^c))$

page 37, line 7

Replace

$$\sum_{n=1}^{\infty} I_n - \frac{\varepsilon}{2} \le m^*(A)$$

by

$$\sum_{n=1}^{\infty} l(I_n) - \frac{\varepsilon}{2} \le m^*(A)$$

page 37, line 11

Replace

$$m(O) \leq \sum_{n=1}^{\infty} J_n \leq \sum_{n=1}^{\infty} I_n + \frac{\varepsilon}{2} \leq m^*(A) + \varepsilon.$$

by

$$m(O) \leq \sum_{n=1}^{\infty} l(J_n) \leq \sum_{n=1}^{\infty} l(I_n) + \frac{\varepsilon}{2} \leq m^*(A) + \varepsilon.$$

page 39, line -9

Replace

$$m(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{\infty} m(A_i)$$

by

$$m(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} m(A_i)$$

page 63, line -6

Replace

$$\mathbf{1}_A f_n$$

$$\mathbf{1}_{A^c} f_n$$

page 63, line -5

Replace

$$g = \mathbf{1}_A f$$

by

$$g = \mathbf{1}_{A^c} f$$

page 94, line -9,

Replace

To prove (ii), note simply that if Riemann-integrable,

by

To prove (ii), note simply that if f is Riemann-integrable,

page 103, line 3,

Replace x = m

by
$$x = \mu$$

page 106, line -5,

Replace

$${x : F(x) < \omega} \subset {x : F(x) < F(y)} \subset {x : \leq y}$$

by

$${x : F(x) < \omega} \subset {x : F(x) < F(y)} \subset {x : x \le y}$$

page 107, line 16, Theorem 4.19,

Replace

 $g:\mathbb{R}^n\to\mathbb{R}$ is integrable with respect to P

by

 $g: \mathbb{R}^n \to \mathbb{R}$ is integrable with respect to P_X

page 108, line -5,

 ${\tt Replace}\ mu=0$

by
$$\mu=0$$

page 109, line -13, Example 4.10

Replace

$$E(X) = \frac{1}{2} \cdot 0 + \frac{1}{2} \frac{1}{25} \int_0^{25} x \, dx = 12.5.$$

by

$$E(X) = \frac{1}{2} \cdot 0 + \frac{1}{2} \frac{1}{25} \int_0^{25} x \, dx = 6.25.$$

page 113, line -2,

Replace $h_n \leq |F|$

by
$$h_n \leq |f|$$

page 114, line 9, Proof of Proposition 4.10

Replace

Continuous functions are measurable, hence $f \in \mathcal{L}^1[a,b]$.

by

Continuous functions are measurable, and f is bounded on [a,b], hence $f \in \mathcal{L}^1[a,b]$.

page 122, line 8,

Replace

If $f, g \in L^2(E)$ then $fg \in L^1(E)$

bν

If $f, g \in L^2(E, \mathbb{C})$ then $fg \in L^1(E, \mathbb{C})$

page 122, lines -5,-6,-7,

Replace

$$(2\int_{E_k} f_n g_n \, dm)^2 \le 4(\int_{E_k} f_n^2 \, dm) (\int_{E_k} g_n^2 \, dm)^2$$

$$\le 4(\int_E^2 |f|^2 \, dm) (\int_E^2 |g|^2 \, dm)$$

$$= ||f||_2^2 ||g||_2^2.$$

by

$$(2\int_{E_k} f_n g_n \, dm)^2 \le 4(\int_{E_k} f_n^2 \, dm)(\int_{E_k} g_n^2 \, dm)$$
$$= 4\|f\|_2^2 \|g\|_2^2.$$

page 123, line 4,

Replace

$$||f+g||_2^2 = \int_E (f+g)^2 dm = \int_E (f+g)\overline{(f+g)} dm = \int_E (f+g)\overline{(f+g)} dm.$$

by

$$||f+g||_2^2 = \int_E |f+g|^2 dm = \int_E (f+g)\overline{(f+g)} dm = \int_E (f+g)(\overline{f}+\overline{g}) dm.$$

page 131, line -8, Corollary 5.1

Replace

$$|(f,g)|^2 \le ||f||_p ||g||_p$$

$$|(f,g)| \le ||f||_p ||g||_p$$

page 133, line 3

Replace

$$||f_n - f_{n_k}||_p < \frac{1}{2^n}$$

by

$$||f_n - f_{n_k}||_p < \frac{1}{2^k}$$

page 149, line -11

Replace

$$\mathcal{G} = \{ A \in \mathcal{F} : \text{ for all } \omega_2, A_{\omega_2} \in \mathcal{F}_2 \}.$$

by

$$\mathcal{G} = \{ A \in \mathcal{F} : \text{ for all } \omega_2, A_{\omega_2} \in \mathcal{F}_1 \}.$$

page 149, line -5

Replace \mathcal{F}_2

by \mathcal{F}_1

page 150, line 8

Replace

$$P(A) = P_1(A_1)P_2(A_2) = \int_{\Omega_1} P(A_{\omega_2}) dP_2(\omega_2).$$

by

$$P(A) = P_1(A_1)P_2(A_2) = \int_{\Omega_2} P(A_{\omega_2}) dP_2(\omega_2).$$

page 150, line 10

Replace

$$P(A) = \int_{\Omega_1} P_1(A_{\omega_2}) \, \mathrm{d}P_2(\omega_2)$$

by

$$P(A) = \int_{\Omega_2} P_1(A_{\omega_2}) \, \mathrm{d}P_2(\omega_2)$$

page 150, line -7

Replace

$$\int_{\Omega_1} P_1(A_{\omega_2}) \, dP_2(\omega_2) = \int_{\Omega_2} P_2(A_{\omega_1}) \, dP_1(\omega_1)$$

$$\int_{\Omega_2} P_1(A_{\omega_2}) \, \mathrm{d}P_2(\omega_2) = \int_{\Omega_1} P_2(A_{\omega_1}) \, \mathrm{d}P_1(\omega_1).$$

page 150, line -5

Replace

This family contains \mathcal{A} (if $B \in \mathcal{A}$, then $A \cup B \in \mathcal{A} \subset \mathcal{G}_{\mathcal{A}}$) and is a monotone class. For, let $A_1 \subset A_2 \subset ...$ be such that $A_i \cup B \in \mathcal{G}_A$. Then $A_1 \cup B \subset$ $A_2 \cup B \subset \dots$ hence $\bigcup (A_i \cup B) \in \mathcal{G}_A$, thus $B \cup \bigcup A_i \in \mathcal{G}_A$. Similar arguments work for the intersection of a decreasing chain of sets so for this fixed A

This family contains \mathcal{A} (if $B \in \mathcal{A}$, then $A \cup B \in \mathcal{A} \subset \mathcal{G}_{\mathcal{A}}$) and is a monotone class. For, let $B_1 \subset B_2 \subset ...$ be such that $A \cup B_i \in \mathcal{G}_A$. Then $A \cup B_1 \subset$ $A \cup B_2 \subset \dots$ hence $\bigcup (A \cup B_i) \in \mathcal{G}_A$, thus $A \cup \bigcup B_i \in \mathcal{G}_A$. Similar arguments work for the intersection of a decreasing chain of sets so for this fixed A

page 152, line -14

$$\mathcal{G} = \Big\{ A : \omega_2 \mapsto P_1(A_{\omega_2}), \quad \omega_1 \mapsto P_2(A_{\omega_1}) \text{ are measurable and}$$
$$\int_{\Omega_1} P_1(A_{\omega_2}) \, \mathrm{d}P_2(\omega_2) = \int_{\Omega_2} P_2(A_{\omega_1}) \, \mathrm{d}P_1(\omega_1) \Big\}.$$

by

$$\mathcal{G} = \Big\{ A : \omega_2 \mapsto P_1(A_{\omega_2}), \quad \omega_1 \mapsto P_2(A_{\omega_1}) \text{ are measurable and}$$
$$\int_{\Omega_2} P_1(A_{\omega_2}) \, \mathrm{d}P_2(\omega_2) = \int_{\Omega_1} P_2(A_{\omega_1}) \, \mathrm{d}P_1(\omega_1) \Big\}.$$

page 155, line 9 Replace

$$P(A) = \int_{\Omega_2} P_2(A_{\omega_1}) \, \mathrm{d}P_1(\omega_1).$$

by

$$P(A) = \int_{\Omega_1} P_2(A_{\omega_1}) \, \mathrm{d}P_1(\omega_1).$$

page 156, line -1

Replace

Replace
$$\int_{\Omega_1} f_n(\omega_1,\omega_2) \,\mathrm{d}\omega_1$$
 by $\int_{\Omega_1} f_n(\omega_1,\omega_2) \,\mathrm{d}P_1(\omega_1)$

page 157, line 1

Replace

$$\int_{\Omega_2} f_n(\omega_1, \omega_2) \, \mathrm{d}\omega_2$$
 by
$$\int_{\Omega_2} f_n(\omega_1, \omega_2) \, \mathrm{d}P_2(\omega_2)$$

page 171, line -1

Replace

$$||f_n - f||_{\infty} = \sup_{x \in E} (||f_n(x) - f(x)||) < \varepsilon.$$

by

$$||f_n - f||_{\infty} = \sup_{x \in E} (|f_n(x) - f(x)|) < \varepsilon.$$

page 172, line 2

Replace $||f_n(x) - f(x)|| < \varepsilon$ by $|f_n(x) - f(x)| < \varepsilon$

page 173, line 9

Replace

$$\int_0^1 |h_n(x) - h(x)|^p dx = \int_0^1 x^{pn} dx = \frac{1}{pn} x^{pn-1} \Big|_0^1 \to 0.$$

by

$$\int_0^1 |h_n(x) - h(x)|^p dx = \int_0^1 x^{pn} dx = \frac{1}{pn+1} x^{pn+1} \Big|_0^1 \to 0.$$

page 179, Exercise 7.4

Replace 1000

by 100

page 183, line 11

Replace $\leq \frac{E(X_1(n))}{n\varepsilon^2}$ by $\leq \frac{E(X_1^2(n))}{n\varepsilon^2}$

page 191, line 12

Replace

$$E(S_n) \ge E(\sum_{k=1}^n \varphi_k \cdot S_n)$$

by

$$E(S_n^2) \ge E(\sum_{k=1}^n \varphi_k \cdot S_n^2)$$

page 204, line 4

Replace

$$= \prod_{k=1}^{n} E(e^{i\frac{u}{c_n X_k}})$$

$$= \prod_{k=1}^{n} E(e^{i\frac{u}{c_n}X_k})$$

page 205, line 5 Replace

$$\sum_{k=1}^{n} \frac{1}{c_n} \alpha_{nk} \to 0$$

by

$$\sum_{k=1}^{n} \frac{1}{c_n^2} \alpha_{nk} \to 0$$

page 205, line 9 Replace

$$\sum_{k=1}^{n} \frac{1}{c_n} \beta_{nk} \to 1$$

by

$$\sum_{k=1}^{n} \frac{1}{c_n^2} \beta_{nk} \to 1$$

page 206, line -9

Replace

$$\leq \Big| \sum_{k=1}^{n} \gamma_{nk} + \frac{1}{2} u^2 - \frac{1}{6} |u| \theta_3' \varepsilon \Big| + \sum_{k=1}^{n} |\gamma_{nk}|^2 + |u|^3 \varepsilon |\theta_3'|.$$

by

$$\leq \Big| \sum_{k=1}^{n} \gamma_{nk} + \frac{1}{2} u^2 - \frac{1}{6} |u|^3 \theta_3' \varepsilon \Big| + \sum_{k=1}^{n} |\gamma_{nk}|^2 + |u|^3 \varepsilon |\theta_3'|.$$

page 208, line 13

Replace

Conversely, assume that $d(X_n, X) \to 0$. This implies convergence to zero of $\frac{|X_n-X|}{1+|X_n-X|}$ almost surely. For fixed ω , for the fractions to converge to zero, their numerators must converge to zero, which means that $X_n \to X$ almost surely and this implies convergence in probability by Theorem 7.2.

by

Conversely, let $E_{\varepsilon,n}=\{\omega:|X_n(\omega)-X(\omega)|>\varepsilon\}$ and assume $0<\varepsilon<1$. Additionally let $A_n=\{\omega:|X_n(\omega-X(\omega)|<1\}$ and write $d(X_nX)=\int_{A_n}\frac{|X_n-X|}{1+|X_n-X|}dP+\int_{A_n^c}\frac{|X_n-X|}{1+|X_n-X|}dP$. We estimate from below each of the two terms. First,

$$\int_{A_n} \frac{|X_n - X|}{1 + |X_n - X|} dP \ge \int_{A_n \cap E_{\varepsilon,n}} \frac{|X_n - X|}{1 + |X_n - X|} dP \ge \frac{1}{2} \int_{A_n \cap E_{\varepsilon}} \varepsilon dP = \frac{\varepsilon}{2} P(A_n \cap E_{\varepsilon,n})$$

since $\frac{a}{1+a} > \frac{a}{2}$ if a < 1. Second,

$$\int_{A_n^c} \frac{|X_n - X|}{1 + |X_n - X|} dP \ge \int_{A_n^c} \frac{1}{2} dP \ge \int_{A_n^c \cap E_{\varepsilon, n}} \frac{1}{2} dP \ge \frac{\varepsilon}{2} P(A_n \cap E_{\varepsilon, n})$$

since $\varepsilon < 1$. Hence, $d(X_n, X) \ge \frac{\varepsilon}{2} P(E_{\varepsilon,n}) \to 0$, so (X_n) converges to X in probability.

page 210, line 5

Replace

$$m^*(\bigcup O_n \setminus E) = 0, m^*(E \setminus \bigcap F_n) = 0$$

by

$$m^*(\bigcap O_n \setminus E) = 0, m^*(E \setminus \bigcup F_n) = 0$$

page 210, line 9

Replace

$$P(A) = \sum_{i=1}^{\infty} P(A \cap H_i) = \sum_{i=1}^{\infty} P(A|H_i) \cdot P(\cap H_i)$$

by

$$P(A) = \sum_{i=1}^{\infty} P(A \cap H_i) = \sum_{i=1}^{\infty} P(A|H_i) \cdot P(H_i)$$

page 212, line 9

Replace

$$\lim \int_0^\infty f_n \, \mathrm{d}m = \int_0^\infty \lim f_n \, \mathrm{d}m = \int_0^\infty u \mathrm{e}^{u^2} \, \mathrm{d}u = \frac{1}{2}.$$

by

$$\lim \int_0^\infty f_n \, \mathrm{d}m = \int_0^\infty \lim f_n \, \mathrm{d}m = \int_0^\infty u \mathrm{e}^{-u^2} \, \mathrm{d}u = \frac{1}{2}.$$

page 214, line 16, 5.4

Replace

(a)
$$||f_n - f_m||_1 = 2$$
 if $n \neq m$

by

(a)
$$||f_n - f_m||_1 = m - n$$
 if $m > n$

page 215, line 12, 5.13

Replace

$$Cov(Y, 2Y + 1) = E(Y)E(2Y + 1) - E(Y)E(2Y + 1) =$$

$$Cov(Y, 2Y + 1) = E((Y)(2Y + 1)) - E(Y)E(2Y + 1) =$$