
Project: Cubic spline interpolation

Tomasz Chwiej

27th January 2025

1 Introduction

For a given set of nodes (xi) and tabulated functions values (yi)

{(x0, y0), (x1, y1), . . . , (xn, yn)} (1)

we want to make the polynomial interpolation with cubic splines assuming vanishing second order
derivative of unknown function y(x) at both ends of interpolation interval

α2 = β2 =
d2y(x)

dx2

∣∣∣∣
x=x0,xn

= 0 (2)

From the lecture we know this problem can be defined as tridiagonal system of linear equation

1 0 0 · · · · · · 0
µ1 2 λ1 · · · · · · 0
0 µ2 2 · · · · · · 0
...

...
0 · · · µn−1 2 λn−1

0 · · · 0 0 1

M0

M1
...
...

Mn−1

Mn

=

α2

d1
...
...

dn−1

β2

(3)

where Mi stand for the values of 2-nd order derivative at nodes and need to be found while the other
terms are calculated as follows

hi = xi − xi−1 (4)

hi+1 = xi+1 − xi (5)

λi =
hi+1

hi+1 + hi
(6)

µi = 1− λi (7)

di =
6

hi + hi+1

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)
(8)

When above SLE will be solved, elements Mi shall be used to form the cubic spline in i-th interval
([xi, xi+1])

si(x) = Mi
(xi+1 − x)3

6hi+1
+Mi+1

(x− xi)
3

6hi+1
+Ai+1(x− xi) +Bi+1, i = 0, 1, 2, . . . , n− 1 (9)

Ai+1 =
yi+1 − yi
hi+1

− hi+1

6
(Mi+1 −Mi) (10)

Bi+1 = yi −Mi
h2i+1

6
(11)

1

The aim of this project is to perform the numerical calculations for this kind of interpolation for the
test function.

2 Practical part

1. Write the computer program which calculates the cubic spline interpolation for test function

y(x) =
1

1 + x2
, x ∈ [−5, 5] (12)

according to procedure sketched in Sec.1. First, define set of positions of equidistant nodes and
function values, in calculations use n = 10. Second, declare tridiagonal matrix as three arrays and
fill their elements, then solve the system of linear equations with routine LAPACKE dgtsv().
Compare obtained numerically second derivative values at nodes with calculated separately exact
values of y(x). Both sets of data may differ partly for central nodes, the results for the outermost
nodes shall agree quite well. Write both second derivatives to file and save it. Finally make a
figure which show the test function y(x) and the cubic spline within interplation interval. Repeat
calculations for larger number of interpolation nodes n = 5, 50 and make additional figures with
new data.

2. At home prepare report. Besides the figures with function values, for each n plot also an
interpolation error defined as difference between exact value y(x) and cubic spline s(x)

∆x = y(x)− s(x) (13)

Make a comment on quality of cubic spline interpolation refering to the number of used nodes.
Does the Runge effect occur or not?

3 Computational hints

1. In this project we work with tridiagonal matrix so to slove SLE efficently we shall use appropriate
routine, in Lapack package recommended is LAPACKE dgtsv()

lapack_int LAPACKE_dgtsv (int matrix_layout , lapack_int N, lapack_int nrhs ,

double * dl , double * d , double * du , double * b , lapack_int ldb);

where: matrix layout indicates on row-major or column-major storage of elements in matrix
(here: array b), N is the number of equations in SLE, nrhs - is a number of right hand side vec-
tors, dl and du - are the N−1 element arrays filled with subdiagonal and superdiagonal matrix
elements, respectively, d is an N element array representing the diagonal of matrix, b is an
array of size ldb∗nrhs for column-major storage or ldb∗n for row-major storage, and, ldb is the
leading dimension which takes the value: ldb ≥ n for column-major or ldb ≥ nrhs for row-major.
In project we operate on single SLE, so we may simply use: N = n+1, nrhs = 1, LAPACK COL MAJOR
as matrix layout, ldb = N . On output the routine nrhs returns the solution in array b.

2. When filling the dl, d and du in e.g. for-loop remember that:

• diagonal elements d: are filled from 1-st to (n-1) with value 2 while the 0-th and n-th
elements have value 1

• superdiagonal elements du: are filled from 1-st to (n-1) element with λi and 0-th element
has value 0

2

• (IMPORTANT) subdiagonal elements du: elements from 0-th to (n− 2) index are filled
with values from µ1 to µn−1, indices in matrix elements are shifted by 1 with respect to
the indices of array dl, the last (n-1) element of array has value 0

3. In order to draw the figure of cubic spline we must move from the leftmost to the rightmost node
with M small steps δ = xmax−xmin

M and at each position x identify the index p of a segment we
are in and cubic spline sp(x). Both can be done with following code

define the number of steps: M=199

δ = (xmax − xmin)/M

for m=1 to M-1 by 1 do

x← xmin + δ ∗m
p← −1 !indicates if any segment was not found

!find segment

for i=0 to n-1 by 1 do

if(x ≥ xi and x ≤ xi+1)then

p=i

break

end if

end do

!calculate value of spline sp(x)
if(p > 0) then

!calculate

i← p
hi+1 = (Eq.5)
Ai+1 = (Eq.10)
Bi+1 = (Eq.11)
si(x) = (Eq.9)

end if

end do

4 Example results

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

−5 −4 −3 −2 −1 0 1 2 3 4 5

y(x)
spline

y
(x

),
 s

(x
)

x

n = 10

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

−5−4−3−2−1 0 1 2 3 4 5

y(x)−s(x)

y
(x

)−
s
(x

)

x

n = 10

−2

−1.5

−1

−0.5

 0

 0.5

 1

−6 −4 −2 0 2 4 6

Mi

d
2
y/dx

2

s
e

c
o

n
d

 o
rd

e
r

d
e

ri
v
a

ti
v
e

x

n=10

Figure 1: Cubic spline and test function (left), interpolation error (center) and second order derivative
at nodes (right) calculated for n = 10.

4

