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1 Introduction

In quantum mechanics the energy operator (Hamiltonian) in differential form (V (r⃗) is interaction
potential) is commonly used

Ĥ(r⃗) = −1

2
∇2

r⃗ + V (r⃗) (1)

This operator may act on any function but some of them are special because fullfill the eigenequation
of operator

Ĥψk = εkψk (2)

ψk is k-th wave function with eigenenergy εk. Our aim is to solve the eigenproblem given in Eq.2
numerically (in most cases it is the only way to find any solution) with finite difference method in one
dimension with parabolic confining potential V (x) (quantum harmonic oscillator)

Ĥ(x) = −1

2

d2

dx2
+
x2

2
, x ∈ (−∞,∞) (3)

First, let’s limit the range of the computational box x ∈ [−xmax, xmax], xmax < ∞, second, define
the number (n) and positions of nodes (xi, i = 0, 1, 2, . . . , n− 1) at which the wave function’s values
will be determined as well as the distance between neighbouring nodes (∆)

∆ =
2xmax

n− 1
(4)

x→ xi = −xmax +∆ · i, i = 0, 1, 2, . . . , n− 1 (5)

ψ(k)(x)→ ψ(k)(xi)→ ψ
(k)
i , (upper index enumerates the states) (6)

third, replace the second derivative with symmetric three-point finite difference formula

d2ψ
(k)
i

dx2
≈
ψ
(k)
i+1 − 2ψ

(k)
i + ψ

(k)
i−1

∆2

(
+O(∆2)

)
(7)

in consequence we get the discretized (algebraic) version of the Hamiltonian (3)

Ĥψ(k) → Hdψ
(k)
i = −1

2

ψ
(k)
i+1 − 2ψ

(k)
i + ψ

(k)
i−1

∆2
+
x2i
2
ψ
(k)
i (8)

In above equation we see that only three neighbouring nodes are explicitly connected, but rewriting
it for every i-th node we simply define this eigenproblem in matrix form

Hdψ⃗
(k) = εkψ⃗

(k) (9)
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for tridiagonal matrixHd = [hi,j ] with non-zero entries defined only for diagonal and sub-(super)diagonal
as follows

hi,i =
1

∆2
+
x2i
2

(10)

hi,±1 = −
1

2∆2
(11)

1.1 Analitycal solution

Eigenproblem of harmonic oscillator Hamiltonian has an exact solution, the wave functions are Hermite
polynomials (Hk) scaled with Gauss function while the eigenvalues are equally spaced rational numbers

ψ(k)(x) = Hk(x)e
−x2

2 , x ∈ (−∞,∞) (12)

{εk} =
{
1

2
,
3

2
,
5

2
,
7

2
, . . .

}
(13)

H0 = 1 (14)

H1 = 2x (15)

H2 = 4x2 − 2 (16)

H3 = 8x3 − 12x (17)

... (18)

Three subsequent Hermite polynomials are linked with reccurence formula

Hk(x) = 2xHk−1(x)− 2(k − 1)Hk−2(x), k = 1, 2, 3, . . . (19)

H−1(x) = 0 & H0(x) = 1 ← starting values (20)

which enables one to recursively calculate value of any polynomial for given point x without the
knowledge of its explicit form. We utilize equations (12),(13), (19) and (20) to get the exact solutions
with which the numerical solutions would be compared.

2 Practical part

Tasks to do

1. Assume calculation parameters: n = 100, xmax = 10 and determine ∆ according to equation (4)

2. Compute diagonal (Eq.10) and subdiagonal (Eq.11) Hamiltonian matrix elements and write them
to 1d arrays. Pass these arrays (and other required arguments) to LapackE routine designated
for diagonalization of symmetric tridiagonal matrix LAPACKE dstev(. . .). Save the computed
eigenvalues to file. Normalize the eigenvectors (ψ⃗(k)) as follows

Ck =

∞∫
−∞

|ψ(k)(x)|2dx =⇒ Ck =
n−1∑
i=0

∣∣∣ψ(k)
i

∣∣∣2∆ =
(
ψ⃗(k)

)T
ψ⃗(k)∆ (21)

ψ⃗(k) ← ψ⃗(k)

√
Ck

(22)

and save them to the file.
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3. Calculate the exact eigenvectors using recurrence formulae (19) and (20) at nodes xi. Normalize
these vectors according to (21) and (22), then save them to file.

4. Make a figure showing the energy spectra of eigenvalues obtained from diagonalization and the
exact ones (13).

5. At home prepare the report. Besides the energy spectra make separate figures for the following
eigenvectors (compare exact and numerical solutions): ψ(1),ψ(2),ψ(3), ψ(15), ψ(20), ψ(30). Repeat
calculations for n = 1000, make new figures of energy spectra and wave functions. Try to answear
to questions:

• Are the numerical eigenvalues the same as exact ones or not? Which ones are well repro-
duced? What could be a reason/reasons of observed discrepances. Hint: remind (i) how we
approximate the second derivate, and, (ii) how we limit the spatial space (computational
box) for numerical solutions.

• Which eigenvectors obtained from diagonalization are well reconstructed and which are
not?

• Compare generally the results of diagonalization for n = 100 and n = 1000, which are
better and why?

3 Computational hints

In project the diagonalization process of symmetric tridiagonal matrix is conductced by LapackE
routine

lapack_int LAPACKE_dstev (int matrix_layout , char jobz , lapack_int n,

double* d, double* e, double* z, lapack_int LDZ);

Arrays d and e keep the diagonal and sub-(super)diagonal elements of Hamiltonian matrix. In array z
the routine returns the eigenvectors which are kept in columns (of hypothetical 2D array), depending
on the value of matrix layout elements can be encoded in two ways

• matrix layout=LAPACK COL MAJOR - whole eigenvectors are placed one after another

in z. We get the elements of ψ⃗
(k)
i (i-node index, k-index of eigenvector) as follows

ψ⃗
(k)
i ← z[i+ k · LDZ], i = 0, 1, 2, . . . , n− 1 (23)

• matrix layout=LAPACK ROW MAJOR - subsequent elements of array z keep the entries
of different eigenvectors, hence n-element-long jumps in array z are required. We get the elements

of ψ⃗
(k)
i as follows

ψ⃗
(k)
i ← z[i · LDZ + k], i = 0, 1, 2, . . . , n− 1 (24)

Evaluation of k-th Hermite plynomial’s value at point x can be conducted with following pseudocode
encapsulated within the body of separate function

initialization: x,k, a=0, b=1, c=1, h=0 (returned value)

for i=1 to k by 1 do

!reccurence formula

c = 2xb− 2(i− 1)a

3



!save last two values for next iteration

a=b

b=c

enddo

!construct solution multiplying c by the Gauss function

h = c · e−
x2

2

This pseudocode is valid for all k = 0, 1, 2, . . . indices (for k = 0 only Gauss function value is returned).

4 Example results

Practical remark: to compare the wave funcations obtained from diagonalization with the exact ones
sometimes multiplication of the wave function by a global phase factor eiπ = −1 is needed. It doesn’t
change the dynamics as well as the solution

Hψ⃗k = εkψ⃗k =⇒ H
(
−ψ⃗k

)
= εk

(
−ψ⃗k

)
(25)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

numeric

exact

E
k

k

 number of nodes:  n = 100

Figure 1: Comparison of exact eigenenergies (red dots) with eigenenergies obtained from diagonaliza-
tion (black dots) for parameters xmax = 10 and n = 100.
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Figure 2: Example wave functions obtained from diagonalization (red points) and analytical solutions
(black curve) of harmonic oscillator Hamiltonian for parameters xmax = 10 and n = 10. Indices of
states are marked in legends.
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