
Project: application of FFT to filtering the noised signal

Tomasz Chwiej

5th February 2025

1 Introduction

Among many applications of FFT the filtering of noised data is one of the simplest to conduct. Suppose
we have gathered N samples of signal which contains contributions from the pure periodic function
fpure(x) and from the noise

f(x) = fpure(x) + r, r-noise (1)

fpure(x) = fpure(x+ L), L-period in position space (2)

In order to get rid of the noise form the collected data we first calculate the FFT

f(k) = FFT{f(x)} (3)

and then, assuming the periodic part dominates over the noise contribution in a transformed signal,
find the maximum of power spectra in a reciprocal space

pmax = max |f(k)|2, k = 0, 1, . . . N − 1 (4)

and remove all data which contributions are less than a fraction (α < 1) of this maximum

f(k) =

{
f(k) ⇐⇒ |f(k)|2 ≥ α · pmax

0 ⇐⇒ |f(k)|2 < α · pmax
(5)

In the last step the data must be transformed back to real space which is done by calculating the
inverse FFT. The output data shall be denoised. The aim of this project is to follow this route and
to denoise the sampled data.

2 Practical part

Write the computer program which takes the following steps:

1. Generate the noised data.
In calculations use following parameters: N = 210, L = 4 (period in position space), ∆x = L

N -
interval for real space nodes. The pure periodic signal is given by following expression

fpure(x) = sin(5ω x) + sin(15ω x) + sin(25ω x) (6)

At each real space node
xi = ∆x · i, i = 0, 1, 2, . . . , N − 1 (7)

generate the noise using random number generator

r = 10 · (double)rand()

(double)RAND MAX
(8)

1

function rand() and constant RAND MAX are defined in standard library(stdlib.h in C and
cstdlib in C++). Generate the sequence of noised data

f(xi) = fpure(xi) + r, i = 0, 1, 2, . . . , N − 1 (9)

Write the noised data to a file and prepare the figure showing them.

2. Save the input data in 1D array and calculate the FFT using the routines fftw plan dft 1d()
and fftw execute() from FFTW numerical package (see Hints). Write the transformed data to
file, draw the real and the imaginary parts of f(k) in separate figures.

3. Denoise the data.
Find the maximum of power spectra for the transformed data accordingly with Eq.4, remove
the noise contribution (Eq. 5) and calculate the inverse FFT (see Hints). Write the output data
to a file and draw the figure (only the real part) showig the denoised data.

At home prepare the raport. Repeat the noise filtering for N = 212 samples (other parameters leave
unchanged). Compare both results, for N = 210 and N = 212, and try to assess which are the better,
justify your answear.

3 Computational hints

In project we use two routines contained in FFTW3 numerical library (Fastest Fourier Transform in
the West, version 3). The library must be linked during compilation, e.g. for C code

gcc *.c -lfftw3 -lm

or C++

g++ *.c -lfftw3 -lm

Although, FFTW defines its own complex number data types, we still may use these defined in C or
C++, the compiler must only read the C/C++ header for the complex numbers first and after that
read the header fftw3.h, for C code

#include <complex.h>

#include <fftw3.h>

and for C++ code

#include <complex >

#include <fftw3.h>

To calculate the FFT for our data three steps must be taken

• prepare the plan, in this phase the routine fftw plan dft 1d(. . .) is informed what type
of transformation (forward or backward/inverse) must be conducted, it also decides which al-
gorithm should be used

• perform FFT calculations with fftw execute(. . .)

• deallocate internal memory with fftw destroy(. . .)

Following piece of code show how to use it in C

2

#include <complex.h>

#include <fftw3.h>

int N;

double complex *in, *out;

in=(double complex *) malloc(N*sizeof(double complex));

out=(double complex *) malloc(N*sizeof(double complex));

fftw_plan plan = fftw_plan_dft_1d(N,in ,out , FFTW_FORWARD , FFTW_ESTIMATE);

fftw_execute(plan);

fftw_destroy_plan(plan)

free(in);

free(out);

In C++ code one may use C arrays allocated with malloc, or use more flexible vector type arrays
(automatically deallocated) but then the pointer to the first element in vector must be passed

#include <complex >

#include <fftw3.h>

#include <vector >

int N;

vector <complex <double >> in(N);

vector <complex <double >> out(N);

fftw_plan plan = fftw_plan_dft_1d(N, (fftw_complex *)&in[0],

(fftw_complex *)& out[0],

FFTW_FORWARD , FFTW_ESTIMATE);

fftw_execute(plan);

fftw_destroy_plan(plan)

in both examples the routine takes the data from input array in and write the transformed output to
an array out. If these arrays are different, then FFT is made out-of-place (input array is untouched),
otherwise, for the same input and output array, the data in array are overwritten by FFT. Finally,
after denoising the signal we want to calculate the inverse FFT, this is done by calling the routine
fftw plan dft 1d with parameter FFT BACKWARD.
And the final remark: the calculated FFT is not normalized, the user must multiply the forward FFT
by 1/N itself.

4 Example results

3

−8

−6

−4

−2

 0

 2

 4

 6

 8

 0 0.5 1 1.5 2 2.5 3 3.5 4

f(
x
)

x

fnoised, N=1024

−200

−150

−100

−50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200

R
e

(
c

k
)

k

Re(ck), N=1024

−2.5

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

fdenoised

fpure

f(
x
)

x

fpure, fdenoised, N=1024

−600

−400

−200

 0

 200

 400

 600

 0 200 400 600 800 1000 1200

Im
(

c
k
)

k

Im(ck), N=1024

Figure 1: The noised signal (top-left) and signal after denoising (bottom-left). In the right column
there are shown the real part (top-right) and the imaginary part (right-botom) of the Discrete Fourier
Transform of noised signal (FFT).

4

