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1 Introduction

1.1 Theory

Our aim is to numerically approximate the value of definite integral

I =

∫ b

a
g(x)dx (1)

For this purpose we will use the Monte Carlo method which is grounded in computer statistics. Before
we go further we need to introduce to the integral the probability density function f(x) which is
nonegative and normalized ∧

x∈(a,b)

f(x) ≥ 0 ∧
∫ b

a
f(x)dx = 1 (2)

I =

∫ b

a

g(x)

f(x)
f(x)dx =

∫ b

a
h(x)f(x)dx,

(
h(x) =

g(x)

f(x)

)
(3)

Now recall some information from statistics about how we calculate the expectation value of random
variable. If we think about the variable x to be a random number drown from proability distribution
f(x) our integral is exactly the expectation value of random variable h(X) (value of function h(X)
becomes random due to randomness of its argument X). For the expectation value marked E(h) in
statistics below it is used the most common notion met in physics that is ⟨h⟩

I = E(h) = ⟨h⟩ (4)

The expectation value can be estimated (approximated) in an experiment: (i) by drawing many times
(N) the random numbers from distribution Xi ∼ f(x), (ii) computing the values of h(Xi) and (iii)
averaging values of h(Xi)

⟨h⟩ ≈ h =
1

N

N∑
i=1

h(Xi), Xi ∼ f(x) (5)

and similarly we may calculate any n− th moment

⟨hn⟩ ≈ hn =
1

N

N∑
i=1

hn(Xi), Xi ∼ f(x) (6)

In order to perform this experiment with computer we need the random number generator for
distribution f(x). Above estimation of integral value is done within language of statistics so it is
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computed not precisely but with some uncertainty which must be also determined. The uncertainty
of the expectation value is expressed by means of the second central moment i.e. variance

var(h) =

∫ b

a
(h(x)− ⟨h⟩)2 f(x)dx

=

∫ b

a
h2(x)f(x)dx− 2⟨h⟩

∫ b

a
h(x)f(x)dx+ ⟨h⟩2

∫ b

a
f(x)dx

= ⟨h2⟩ − ⟨h⟩2 (7)

Variance can be thus estimated with equations 5 and 6 (for n = 2). Because variance equals the
squared standard deviation we get the measure of uncertainty of single random variable

σh =
√
var(h) (8)

and more importantly the uncertainty for the mean value h, i.e. the variance

var(h) =
var(h)

N
(9)

and the standard deviation of the mean value

σh =
σh√
N

(10)

The last equation 10 is characteristic for MC integration, although σh would tend to finite non-zero
value, the standard deviation of mean value asymptotically tends to zero as inverse square root of the
total number of trials.

1.2 Numerical aspects of MC integration

Based on a piece of theory given in previous subsection we are ready to construct MC algorithm
for integration, we just need an explicit formula for the integrand g(x) (or more precisely h(x) =
g(x)/f(x)), the probability density function function f(x) and corresponding random number
generator. Then within a single loop we need to compute the first and the second moments (Eqs. 5
and 6), the variance (Eq.7) as well as the standard deviation of single variable (Eq.8) and the standard
deviation of the mean value (Eq.10). Pseudocode for such integration may look as follows

initialize: N, k = 1, s1 = 0, s2 = 0

for n from 1 to N do

X ∼ f(x) - draw random number from pdf

s1+ = h(X) - acumulate data for 1-st moment

s2+ = (h(X))2 - acumulate data for 2-nd moment

if n mod 10k == 0 then

k ++

h1 =
s1
n - mean

h2 =
s2
n - second moment
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var = h2 − (h1)
2 - variance

σ =
√
var - standard deviation

σmean = σ√
n

- standard deviation of mean

write to file: n, h1, var, σmean

end if

end do

In pseudocode there is used the modulo division that is only for n = 10k, k = 1, 2, 3, 4, 5, 6 we
calculate the mean and standard deviation of mean and write both values to file, this limits the
number od data which will be processed next (e.g. plotted).

2 Practical part

1. Implement on a computer the MC integration pseudocode given in Sec.1.2

2. Use your program to estimate the value of the following integral

I1 =

∫ b

a
g(x)dx (11)

Conduct MC integration for the following cases (a) and (b), then make plots of the integral
values in dependence of nmarking the uncertainties σh (errorbars) and the plots of variance,
in plots mark the exact values for comparison.
In (a) and (b) use uniform random number generator U(a, b) (it requires the use of cstdlib
header)

double uniform(double a, double b){

double u=( double)rand ()/ RAND_MAX

double x=a+(b-a)*u

return x

}

(a) simple integration for: total number of trials N = 106, a = 0, b = π/2, g(x) = sin(x),

f(x) = 1
b−a = 2

π , h(x) =
g(x)
f(x) . Calculate: h, var(h) and σh, then compare these values with

exact ones: I1 = 1, var(h) = (π2/8)−1 for the number of trials n = 10k, k = 1, 2, 3, 4, 5, 6.

(b) integration using antithetic variables (we modify the integrand by using variables X and
b − X which are highly correlated): total number of trials N = 106, a = 0, b = π/2,
g(x) = (sin(x) + sin(b − x))/2 [x and (b-x) are antithetic variables], f(x) = 1

b−a = 2
π ,

h(x) = g(x)
f(x) . Calculate: h, var(h) and σh, then compare these values with exact ones:

I1 = 1, var(h) = (π2/16) + (π/8)− 1 (variance will change value) for the number of trials
n = 10k, k = 1, 2, 3, 4, 5, 6.

3. Modify the code to calculate the integral

I2 =

∫ b

a
g(x) f(x)dx (12)
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for: total number of trials N = 106, a = 0, b = ∞, g(x) = log(x) and f(x) = exp(−x). Our
probability density function f(x) is explicitly given and is normalized for x ∈ (0,∞) so we only
need the random number generator for this exponential distribution

double exponential (){

double u=( double)rand ()/ RAND_MAX

double x=-log(U)

return x

}

The exact value of integral equals I2 = −γ = −0.5772156649 (Euler constant) whereas the
variance is var(g) = π2/6. Again make plots of the integral values and the variance for the
number of trials n = 10k, k = 1, 2, 3, 4, 5, 6.

4. Report is not required for this project, the partial grade will be granted based on the student’s
activity during the classes.

3 Example results
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(a)     g(x) = sin(x),   f(x) = 2/π
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(b)     g(x) = sin(x),   f(x) = 2/π
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(c)     g(x) = (sin(x)+sin(b−x))/2,  f(x) = 2/π
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(d)     g(x) = (sin(x)+sin(b−x))/2,  f(x) = 2/π

Figure 1: Estimation of integral I1 with MC method: (a) and (b) obtained with standard approach, in
(c) and (d) antithetic variables were used. Note that the errorbars in (c) are one order of magnitude
smaller than in (a) - small modification of integrand g(x) makes that the errors are partly canceled.
The lengths of errorbars are equal to standard deviation of mean value σh.
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(a)      g(x) = log(x),   f(x) = exp(−x)
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(b)      g(x) = log(x),   f(x) = exp(−x)

Figure 2: MC estimation of integral I2 (a) and variance (b). The lengths of errorbars in (a) are equal
to standard deviation of mean value σg.
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