
Project: Nonlinear equation - finding the roots of polynomial

Tomasz Chwiej

16th April 2025

1 Introduction

Figure 1: Polynomial f(x) = (x− 1)(x− 3)6.

Figure 1 show nonlinear function which, in fact, is polynomial

f(x) = (x− 1)(x− 3)6 (1)

It has two roots x = 1 and x = 3, the first has odd parity and can be determined iteratively by any
method designated to finding roots of nonlinear function while the second has even parity and only
Secant and Newton-Raphson methods are appropriate. Our aim is to use the polynomial given in
Eq.1 in a synthetic test of above-mentioned three iterative methods.

2 Practical part

1. Write computer program implementing algorthms for Bissection, Secant and Newton-Raphson
methods (pseudocodes are given in Sec.3).

2. Find iteratively the odd parity root x = 1 using these three methods. In caclulations assume
parameters: itmax = 30 - maximal number of iteration, ε = 10−12 - stopping criterion and
starting points for:

• bissection method: xa = 0.1 and xb = 1.5

• secant method: xa = 0.1 and xb = 0.5

1

• Newton-Raphson method: x = 0.1

In each iteration write to file: index of iteration k+1, approximated solution xk+1 and difference
between two last approximations ∆ = xk+1 − xk

3. Repeat calculations for second root of even parity x = 3 using only secant and Newton-Raphson
methods. Increase the the total number of iterations to itmax = 300. Starting points for:

• secant method: xa = 4.0 and xb = 6.0

• Newton-Raphson method: x = 6.0

4. At home prepare the report including your results. Try to answear to the following questions:

• Based on results of calculations, can you assess which method is most efficient and which
is the worst?

• Explain why for the second root x = 3 there are needed much more iterations than for the
first one?

• What will hapen, i.e. how change the number of iteration needed to get convergence, if you
use following modified Newton-Raphson iterative equation?

xk+1 = xk − r
f(xk)

f ′(xk)
, r = n (2)

where n is the degree of the root (n = 6 in second case).

3 Computational hints

• algorithm of bissection method

input: xa, xb, itmax , ε
k=0

do

k ← k + 1

xc ← xa+xb
2

if f(xa) · f(xc) < 0 then

xb ← xc
else

xa ← xc
end if

!save approximated solution

x← xc

∆← |xa − xb|

while k < itmax & ∆ > ε

• algorithm of Secant method

input: x0, x1, itmax , ε
k=0

2

do

k ← k + 1

x2 ← x1 − f(x1)
x1−x0

f(x1)−f(x0)

!save data for next iteration

x0 ← x1
x1 ← x2

∆← |x1 − x0|

!save approximated solution

x← x1

while k < itmax & ∆ > ε

• algorithm of Newton-Raphson method

input: x, itmax , ε
k=0

do

k ← k + 1

x1 ← x− f(x)
f ′(x)

∆← |x− x1|

!save approximate solution

x← x1

while k < itmax & ∆ > ε

4 Example results

3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3 4 5 6 7 8 9 10

Bissection

Secant

Newton

x
k

iteration

root x = 1

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 0 5 10 15 20 25 30

Bissection

Secant

Newton

∆=
x

k
+

1
−

x
k

iteration

root x = 1

Figure 2: Bissection, Secant and Newton methods used for finding first x = 1 root. Approximated
position of root (left) and distance between two consecutive approximation (right).

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 5 10 15 20 25 30

Secant

Newton

x
k

iteration

root x = 3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 0 40 80 120 160 200

Secant

Newton

∆=
x

k
+

1
−

x
k

iteration

root x = 3

Figure 3: Secant and Newton methods used for finding second x = 3 root. Approximated position of
root (left) and distance between two consecutive approximation (right).

4

