
Solving the system of linear equations - shaping the polynomial

Tomasz Chwiej

March 12, 2025

1 Introduction

−1

−0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3

f(
x
)

x

Figure 1: Polynomial of 5-th degree (black curve) which at the nodes (red dots) has defined properties:
value and/or first derivative.

In many numerical applications we use basis of functions such that each of them must fullfill set of
conditions cast on the function values and/or values of its derivative at some distinct points. These
points are called collocation nodes. The simplest basis functions are polynomials defined as linear
combination of monomials

f(x) =
N∑
i=0

ai x
i (1)

because we may easily manipulate their shapes and integrate or compute their derivatives. Let’s define
set of conditions, four function values and two first derivative values, for a polynomial displayed in

1

Fig.1

f(x0) = 0 (2)

df(x)

dx

∣∣∣∣
x=x0

= 1 (3)

f(x1) = 1 (4)

f(x2) = 0 (5)

f(x3) = −1 (6)

df(x)

dx

∣∣∣∣
x=x3

= 0 (7)

Because there are six conditions, the polynomial we are looking for must have exactly six linear
coefficients so as to be uniquely determined. This implies 5-th degree polynomial:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 (8)

Now, by implementing explicitly six conditions i.e. substituting definition of polynomial to each of
equations (2)-(7) we get SLE

1 · a0+ x0 · a1+ x20 · a2+ x30 · a3+ x40 · a4+ x50 · a5 = 0 (9)

0 · a0+ 1 · a1+ 2x10 · a2+ 3x20 · a3+ 4x30 · a4+ 5x40 · a5 = 1 (10)

1 · a0+ x1 · a1+ x21 · a2+ x31 · a3+ x41 · a4+ x51 · a5 = 1 (11)

1 · a0+ x2 · a1+ x22 · a2+ x32 · a3+ x42 · a4+ x52 · a5 = 0 (12)

1 · a0+ x3 · a1+ x23 · a2+ x33 · a3+ x43 · a4+ x53 · a5 = −1 (13)

0 · a0+ 1 · a1+ 2x13 · a2+ 3x23 · a3+ 4x33 · a4+ 5x43 · a5 = 0 (14)

By rewriting SLE as single matrix equation we separate matrix elements ai,j from the solution vector
elements a⃗ which we want to find

Aa⃗ = b⃗ (15)

1 x10 x20 x30 x40 x50
0 x0 2x10 3x20 4x30 5x40
1 x11 x21 x31 x41 x51
1 x12 x22 x32 x42 x52
1 x13 x23 x33 x43 x53
0 1 2x13 3x23 4x33 5x43

a0
a1
a2
a3
a4
a5

 =

0
1
1
0
−1
0

 (16)

After finding the coefficients ai we get the polynomial with embedded properties at collocation nodes.
Remarks:

• we consider a standard SLE problem, the number of columns is the same as for the rows, hence
SLE has single (unique) solution

• we might decrease the degree of polynomial but then the number of rows will be larger than the
number of columns, SLE would be overdetermined and we wouldn’t expect exact reconstruction
of the initial conditions in polynomial but only approximately

2

2 Practical part

Tasks to do

1. Write the computer program solving the SLE with matrix A defined in Eqs. 15 and 16. To
solve the problem numerically use the routine lapacke dgetrf() to find the LU decomposition
of matrix A and then the routine lapacke dgetrs() to solve SLE using this LU.

2. In calculations use following positions of collocation nodes: x0 = 0, x1 = 1, x2 = 2 and x3 = 3.

3. Print the matrix elements on screen and check their correctness.

4. After computing LU decomposition calculate determinant of matrix A as the product of diagonal
elements of matrix U (remeber: A is overwritten by routine lapacke dgetrf() with the elements
of L - below the diagonal, and, with the elements of U - an upper triangle + the diagonal)

det(A) = det(LU) = det(L)det(U) = 1 · det(U) =
n−1∏
i=0

uii (17)

5. Find coefficients ai solving SLE and write them to file.

6. Use these coefficients to plot the polynomial (Eq.8).

7. At home prepare a report. Make a short analysis of stability of solving SLE for a case when
x2 node is shifted towards the x1 node, namely, for x2 = 1.1, 1.01, 1.001, 1.0001 calculate the
determinant and solve SLE for each case. Based on definition of nonsingular matrix predict
what would happen if two nodes coincide at one point, check this prediction with your program.

3 Hints

In this and some of the following projects we use LAPACKE package so we need to include appro-
priate header files

#include <lapacke.h>

and compile the source code with liblapacke.a and other needed libraries

g++ -I/path_to_header_files_directory -I/path_to_library *.cpp -llapacke

-llapack -lblas -lm

In order to find the LU decomposition of matrix A we use lapacke dgetrf() routine

lapack_int LAPACKE_dgetrf (int matrix_layout , lapack_int m, lapack_int n,

double * a, lapack_int lda , lapack_int * ipiv);

One-dimensional array a on input stores the elements of matrix A (on output is overwritten by LU),
m and n is the number of rows and columns of A, respectively, lda is the leading dimension of
A (a) in direction indicated by matrix layout while ipiv is an array storing indices of permuted
rows/columns performed during factorization.

If the array a is declared as 1d vector object in C++ then pass the pointer to its first element as an
argument &a[0].

In calculations use the following parametrization

3

• for matrix layout assume const value LAPACK ROW MAJOR - elements of A are then
written in array a in a row-wise order (rows are written one by another)

• declare array a as one-dimensional array of length n2, then m=n (square matrix A) and lda=n,
for row-wise order the relation between elements of matrix A and array a is following (k-row
index, i-column index)

a[k ∗ n+ i] ≡ Ak,i, k, i = 0, 1, 2 . . . , n− 1 (18)

• declare ipiv as one-dimensional array of length n

Calculated LU decomposition is next used for solving SLE by the routine lapacke dgetrs(). It is
important to not change any elements in arrays a and ipiv between calling first and second routine.

lapack_int LAPACKE_dgetrs (int matrix_layout , char trans , lapack_int n,

lapack_int nrhs , const double * a, lapack_int lda ,

const lapack_int * ipiv , double * b, lapack_int ldb);

}

Arguments: matrix layout, n, a, lda, ipiv are the same as on output from dgetrf, do not change
them. Meaning of other arguments

• trans=’N’ - do not transpose the matrix

• nrhs=1 - only one right-hand-side vector b⃗

• declare b as array of length n it stores the right-hand-side vector b⃗ of SLE

• set ldb=1 (row-major ordering)

4

