
Project: Solving (sparse) system of linear equations (SLE) with

successive overrelaxation method (SOR)

Tomasz Chwiej

25th March 2025

1 Introduction

1.1 Discretization of Poisson equation

Sparse systems of linear equations can be efficently solved with iterative methods, because factorization
of matrix is skipped while the computational cost of single iteration directly depends on matrix-vector
multiplication which is minimized by taking into account only non-zero matrix elements. Successive
over-relaxation method is one of such iterative method, in most cases it is used to solve the Poisson
equation

∇2V (r⃗) = −ρ(r⃗) (1)

where V (r⃗) is potential and ρ(r⃗) is the source of the field. We solve this problem in one dimension

d2V (x)

dx2
= −ρ(x) (2)

but first we must transform the differential problem onto the algebraic one. By first we define the size
of computational box in which we wish to determine the solution x ∈ [xmin, xmax], then define the
number of nodes n, the distance between neighbouring nodes

∆ =
xmax − xmin

n− 1
(3)

the position of nodes
x→ xi = xmin + i ·∆, i = 0, 1, 2, . . . , n− 1 (4)

We are looking for the solution at these nodes so we define discretized vectors, for the density and
potential

ρ(x)→ ρ(xi) = ρi, i = 0, 1, 2, . . . , n− 1 (5)

V (x)→ V (xi) = Vi, i = 0, 1, 2, . . . , n− 1 (6)

(7)

Finally we replace the second derivative with symmetric three-term second-order finite difference
formula

d2V

dx2
≈ Vi+1 − 2Vi + Vi−1

∆2

(
O(∆2)

)
(8)

The discretized (algebraic) version of Poisson equation reads

Vi+1 − 2Vi + Vi−1

∆2
= −ρi (9)

1

By writing this equation for subsequent nodes we get the system of linear equation which, conveniently
for further purposes, is expressed in matrix form

Av⃗ = ρ⃗ (10)

A is symmetric tridiagonal matrix of the system with following non-zero entries ai,j

ai,i = −
2

∆2
(11)

ai,i±1 =
1

∆2
(12)

To solve Poisson equation we need to specify the boundary conditions at both, left and right ends.
If we assume homogeneous boundary conditions V−1 = Vn = 0 then our SLE fullfills automatically
these conditions, because these two elements do not enter to our SLE so the method assume zero-value
solution at these points (see the lecture on solving SLE with direct method).

1.2 SOR method for sparse SLE

1.3 Single iteration

Single SOR iteration for SLE defined in matrix form reads

(D + ωL)v⃗(k+1) = [(1− ω)D − ωU] v⃗(k) + ωρ⃗ (13)

where: L, D and U are the lower triangle, diagonal and upper triangle parts of matrix A = L+D+U ,
respectively, v⃗(k) and v⃗(k+1) are approximated solutions in two subsequent iterations. By shifting the
term ω Lx⃗(k+1) from the left to the right side and keeping in mind that in SOR an old (k-th) and a
new [(k+1)-th] elements are kept in the same vector

v⃗ = [v0, v1, . . . , vi−1︸ ︷︷ ︸
elements v⃗(k+1)

, vi, vi+1, . . . , vn−1︸ ︷︷ ︸
elements v⃗(k)

] (14)

we may rewrite equation (13) for i-th element element of v⃗ which shall be updated next

vi ← vi +
ω

di,i
(ρi −A(i,∗)v⃗) (15)

where A(i,∗) means the i-th row of matrix A. To update the whole vector v⃗ we must sequentially iterate
over its all elements. For matrix A written in CSR format: a[] - non-zero elements of A, col[] -indices
of non-zero elements, row[] - indices of the first elements occuring in rows and additional array d[] -
the diagonal elements of A, an update of the vector v⃗ can be performed as follows

input: d[], ρ[], v[], ω, a[],col[],row[]

for i=0 to n-1 by 1 do

!compute scalar product c = A(i,∗)v⃗

c=0

for l=row[i] to l<row[i+1] by 1 do

!read column index

j=col[l]

!add contribution to scalar product

c+=a[l]*v[j]

end do

2

!update v[i]

v[i]=v[i]+ ω
di
(ρ[i]-c)

end do

end do

1.4 Iterative algorithm

For SOR method we may use for example the following do-while loop. There are two stop conditions:
(i) maximal number of iterations (itmax) prevents infinite loop iterations in case of lack of convergence
and (ii) check if the norm of residual vector falls below some threshold e.g. ε = 10−15

input: b⃗, v⃗ (initial), A, ε, itmax , k=0

do

k++

!update v⃗ with single -iteration SOR

v⃗ ← SOR(v⃗)
!compute residual vector

r⃗ ← b⃗−Av⃗
!compute 2-norm of r⃗
norm = ∥r⃗∥2

!check stopping conditions: repeat or stop

while k<itmax & norm >ε

2 Practical part

Tasks to do

1. Write the program solving SLE with SOR method for sparse matrix of the system encoded in
CSR format. Besides the pseudocodes presented in Secs.1.3 and 1.4 you need two other routines:
(i) for calculating the scalar product of two vectors and (ii) for matrix-vector multiplication with
matrix stored in CSR format. The code for the latter is given in Sec. 3.

2. In calculations use parameters: n = 500, ∆ = 1, itmax = 104, ε = 10−15. Elements of right-
hand-side vector ρ⃗ fill with values

ρi =
1

10

[
sin

(
2π · i
n− 1

)]10
, i = 0, 1, 2, . . . , n− 1 (16)

3. Perform calculations, i.e. solve SLE, for ω = 1 and initial approximated solution filled with
constant value

vi = 1, i = 0, 1, . . . , n− 1 (17)

In each iteration write to file: index of iteration, the norm of approximated solution ∥v⃗∥2 and
the norm of residual vector ∥r⃗∥2. Make separate plots showing the dependence of ∥v⃗∥2 and ∥r⃗∥2
on iteration index. Make plots of vector ρ⃗ and final solution v⃗ depending on spatial position
xi = i ·∆.

4. At home prepare a report including additional results, namely:

• repeat calculations for different convergence factor values: ω = 1.5, 1.9, 1.99

• make single plot showing the changes of the residual vector norm depending on iteration
index for all ω values

3

Try to answear the questions

• Is SOR effective in solving SLE? Comment on efficency of SOR in context of ω value.

• Perform additional tests. Set ω = 1.99 and ε = 10−8 and solve SLE for two initial approx-
imated solutions

vi = 0, i = 0, 1, . . . , n− 1 (18)

and randomly filled vector

vi = 100 ∗ (double)rand()/RAND MAX, i = 0, 1, . . . , n− 1 (19)

Does SOR method find the solution in both cases? How the intial solution influence on
efficency (number of iterations)?

3 Computational hints

3.1 Matrix in CSR format

In project we use the tridiagonal matrix that we wish to store in CSR format. This needs previous
declaration of three one-dimensional arrays: a, col, row

• matrix elements: a , number of elements nnz max

• column indices: col , number of elements nnz max

• global indices of first entries in rows: row , number of elements n+ 1

Value of nnz max must be equal or greater than the number of real non-zero elements in matrix. It
can be simply estimated, for tridiagonal matrix A we may assume nnz max = 3 · n. Next we may fill
arrays with values remembering it must be done in row-wise order (sequentially from left to right) as
follows

initialize: n, nnz_max , a[0: nnz_max -1], col [0: nnz_max -1], row[0:n]

!initialize number of non -zero values

nnz=0

for i=0 to n-1 by 1 do

!indicate first entry in row is empty

row[i]=-1

!subdiagonal (left), column index: j=i-1

if i > 0 then

a[nnz]=1/∆2

col[nnz]=i-1

row[i]=nnz

nnz++

end if

!diagonal (middle of row), column index: j=i

a[nnz]=−2/∆2

col[nnz]=i

if row[i] < 0 then

row[i]=nnz

end if

4

nnz++

!superdiagonal (right), column index: j=i+1

if i < n-1 then

a[nnz]=1/∆2

col[nnz]=i+1

nnz++

end if

end do

!add info about the number of non -zero elements

row[n]=nnz

3.2 Matrix-vector multiplication with matrix stored in CSR format

Pseudocode for (CSR)matrix-vector multiplication y⃗ = Ax⃗

input: x[],y[],a[],col[],row[]

for i=0 to n-1 by 1 do

!empty the cell before summation operation

y[i]=0

!calculate scalar product

for l=row[i] to row[i+1]-1 by 1 do

!determine the column index

j=col[l]

!add contributions: yi = yi +Ai,j xj
y[i]=y[i]+a[l]*x[j]

end do

end do

4 Example results

5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

10
0

10
1

10
2

10
3

10
4

ω=1.0
ω=1.5
ω=1.9

ω=1.99

||
x
||

2

iteration

SOR

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

ω=1.0
ω=1.5
ω=1.9

ω=1.99

||
r|

| 2

iteration

SOR

Figure 1: Convergence of solution norm (left) and norm of residual vector (right) in SOR method.

6

