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Diagonalization with iterative methods

Diagonalization of matrix 
with iterative methods

Outline

● power method

● shift and inverse method

● Lanczos/Arnoldi method
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Power method

Let’s consider standard eigenvalue problem defined by hermitian matrix A which we wish to solve iteratively

all eigenvectors are orthogonal and form complete vector space

What happens to the vector v0 if it be multiplied by A many times? 

● each initial contribution ai*xi is scaled by (different?) eigenvalue 

● coefficients in linear combination are changed every time the vector is multiplied by matrix

● after many multilication one may expect the eigenvectors with the largest eigenvalues 
will dominate while other shall be overwhelmed 
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Let’s assume we may set eigenvalues in a sequence of decreasing values

then we get 

we don’t know a1 and λ1 but we need only normalized vector
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Convergence in power method – Rayleigh quotient

To estimate the eigenvalue related with vector vm let’s first calculate scalar product 

and A-scalar product

ratio of both is called Rayleigh quotient –  it estimates the eigenvalue

Power method allows iteratively find one eigenvector of largest eigenvalues.
But we need more vectors, how to find them?
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In order to find another eigenvector we need to restart the algorithm and iterate again,
however if we change nothing  in it we again get the same eigenvector – it dominates the eigenvalue spectrum. 

The remedy for this problem is simple - remove contribution of x1  from the vector vm with Gram-Schmidt method.

This must be done in every iteration because numerical errors will generate small but non-zero 
contributions  along removed directions. 

This strategy shall be applied to any subsequent eigenvector, so we may construct general 
projector that removes contributions from previously found (k-1) vectors

 

Gram-Schmidt orthogonalization is recommended for large sparse matrix problems.
If we operate on small matrices  we may utilize the spectral form of matrix and remove 
information about these vectors i.e. reduce the rank of matrix one by one  (Hotelling method)
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Algorithm of power method with Gram-Schmidt orthogonalization
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Shift and inverse method 

Power method as well as other iterative schemes find the eigenvectors pinned to eigenvalues from top part 
of matrix spectrum but  e.g. in physcis problems we often need eigenvalues from the bottom part.
The use of basic algorithm of iterative method would then prohibit this task.
In order to find the solution let’s consider general EVP

First, assume the point of interest in eigenvalue spectrum – we will seek eigenvalues nearest to this point

then shift both sides by σBx 

and transform GEVP to EVP form 

we change the matrix and its eigenvalues
but eigenvectors remain the same 

for standard EVP:
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Example: transformation of eigenspectrum 

original eigenspectrum
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With shift-inverse modification we may use power method (and any other one) to find 
eigenvectors in interesting part of eigenvalue spectrum.

In each iteration we need to solve system of linear equations (SLE), this can be done
by means of one of decomposition methods (LU, LLT, LDLT) or iteratively (SOR, CG, etc.) 

 

Once we find the eigenvector vm → xm  and eigenvalue  μm the latter must be transformed back

basic method shift & inverse

Remark:   power method is simple but very inefficient, many iterations are needed to refine 
single eigenvector from unwanted contributions, moreover, calculations of subsequent 
eigenvalues requires conducting Gram-Schmidt orthogonalization in every iteration 
what may significantly elongate the time of computations
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Lanczos method

● this method is used get the partial diagonalization of large sparse hermitian matrix

● firstly,  the sparse matrix is iteratively aproximated by two other matrices:  
orthogonal Q and tridiagonal T

● secondly, tridiagonal matrix is diagonalized with direct methods (e.g. QR decomposition) 
and eigenvectors for sparse matrix are reconstructed

The method utilizes the properties of Krylov subspace generated with vector q and matrix A

we demand that the Krylov subspace basis vectors 

are orthogonal and normalized
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Algorithm of Lanczos method

● method starts by chosing any non-zero vector q1, 
→ must include contributions from the eigenvectors we are looking for, 

it is recommended to fill its elements with random numbers of Gauss distribution

● next we use the three-term recurrence formula for finding subsequent vectors

at start we assume

at start have knowledge about  q1 and q0=0  hence we may calculate third vector q2  and so on in next iterations

● iterative process would stop if we encounter 

in such case algorithm stops and must be restarted with new random vector q1
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Generated vectors q are used to form orthogonal matrix Qm  

while factors δ and γ are elements of tridiagonal matrix 

Actually, matrix Q transforms the matrix A to „compact tridiagonal”

Eigenvalues of T approximates the largest eigenvalues of matrix A.
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After diagonalization of T we get approximate eigenvalues of A but we must transform back the eigenvectors

Remarks:
● only a fraction of m eigenvalues will satisfactorily approximate these of A,

so when we are looking for N eigenvalues we must assume m>N  

● if we are interested in an inner part of eigenvalues spectra, we may 
easily employ an shift and inverse modification, only the routine 
for solving SLE is needed  

● and the worst information: because we operate on floating-point numbers
the vectors q are quickly becomes perturbed due to numerical errors 
and becomes non-orthogonal, therefore expensive Gram-Schmidt 
orthogonalization is essential for Lanczos method to work
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Arnoldi method

Lanczos method is  intended for diagonalization of Hermitian matrices, for diagonalization of sparse 
general matrix we may use Arnoldi method. It is also iterative method that generates set of orthogonal vectors q
which form matrix Q but the second matrix containing transformation factors  is Hessenberg matrix, which
is then diagonalized.
  

Remarks:
● Arnoldi method can be used also for hermitian matrices

● it requires Gram-Schmidt orthogonalization

● it is more stable than Lanczos method, and has the same efficency 

● the numerical package ARPACK containing Arnoldi method 
seems to be a standard in diagonalization of large sparse matrices
(written in Fortran, available in C/C++)

http://www.ime.unicamp.br/~chico/arpack++/


