
1

Fast Fourier Transform

Fast Fourier Transform

outline

● trigonometric series

● complex Fourier series

● Discrete Fourier Transformation (DFT)

● Nyquist frequency

● encoding positive and negative frequencies in DFT/FFT

● Fast Fourier Trasform (FFT)

● Radix-2 (Cooley-Tukey)

● inverse transformation

● multidimensional FFT

● applications

2

Fast Fourier Transform

Trigonometric series

Periodic function

can be replaced by infinite series of sine and cosine basis functions – trigonometric interpolation

To calculate the coefficents ak and bk one must utilize the orthogonality property of basis function

and analogically we get the bk

3

Fast Fourier Transform

Fourier series

Euler formula for complex number of unit amplitude enables connecting two functions of the same argument

substituting the rhs of above expression into series we get the complex Fourier seres

Coefficents ck can be calculated directly in the same way as ak and bk – by projecting f(x) on each exponential function

← coefficents of Fourier series

4

Fast Fourier Transform

Discrete Fourier Transform (DFT)

Now let’s narrow our considerations to the case when the function f(x) values are given only at discrete
set of equidistant nodes. This finite number of nodes limits also the number of complex function
needed to reconstruct the function values at these nodes – this corresponds to interpolation with
complex exponential polynomials

We introduce nodes along x-axis

and replace the integral

by summation over discrete values

definition of DFT coefficients

5

Fast Fourier Transform

Nyquist frequency and aliasing

By performing the DFT (FFT) transforms for equidistantly sampled data we encounter a barrier, namely,
for the sampling interval Δ the number of sampling points for a sine function falls to only two for
the critical Nyquist frequency

It means that periodic function of frequency bandwidth lower than this threshold would be completely
defined by the set of function’s samples.

Unfortunately, when the function’s frequency exceeds this threshold, information from higher γ-s are shifted
into the interval [-γKcrit, γKcrit] disturbing these values. This effect is called aliasing.

To avoid this problem, function should be sampled with frequency larger than the function’s frequency bandwidth,
if it is possible.

6

Fast Fourier Transform

The DFT transform should map set of N complex numbers (samples) into another set of N complex numbers
to be unique. From the equation defining the DFT follows that

hence, we have N+1 data in reciprocal space. However, taking into account the periodicity of the phase factor

Encoding positive and negative frequencies in DFT/FFT

we reduce one excess point. Moreover, to avoid the use of negative indices for negative frequencies these are
shifted by N, so the usual relations between coefficents ck and the frequencies are following

7

Fast Fourier Transform

Example: FFT of f(x) given by expression

8

Fast Fourier Transform

A more common notation of DFT contains twiddle factors defined as complex roots of unit

To accomplish the DFT we need all coefficents, based on the definition
equation these can be calculated as simple matrix-vector multiplication

The problem with such formulated DFT is that
it requires O(N2) operations, while the efficent
FFT algorithm can reduce it to O[N*log2(N)]
utilizing periodicity of twiddle factors

9

Fast Fourier Transform

FFT - algorithm Radix-2 (Cooley-Tukey)

The first publicly presented FFT algorithm (1965) to perform on a computer.
It assumes the number of samples to be processed is a power of 2

We start considering the general formula for DFT

and divide the summation operation into two blocks, each contining only one type of elements, even and odd parity

In the second term we may pull out the phase factor from the series

10

Fast Fourier Transform

Using these abbreviations we get more compact formula

Now let’s check what happens when the index k is shifted by N/2

11

Fast Fourier Transform

● shifting of k by half of number of data gives at once the coefficents forr the second
half without computing DFT, hence the number of computations is reduced by 2

● in next step, each sum is again divided into even and odd parity elements which can
be processed separately, one more time we reduce the number of operations by 2

● this consequtive reduction of number of data taken into partial DFT stops when
there is left only two elements

● How to assemble all these partial DFTs?
The best way is to follow example for small number of data, i.e. N=8

12

Fast Fourier Transform

Example: factorization of 8-element data vector for DFT: top-to-bottom process

1-st step

2-st step

3-st step

botom-up process
to assemble

all coefficients
(next two pages)

top-bottom
process

notice how the data are gathered
in pairs at the lowest level,
we must set elements in this order
to start the next bottom-up process

each division is made with
twiddle factor for the half of data
of the previous upper step

13

Fast Fourier Transform

Bit-reversal ordering

Before we proceed calculations of coefficients ck further we must reorder the elements in the input vector.
It is an easy task if we utilize the bit-arithmetic operation: bit-reversal

out of place bit-reversal
needs two arrays

in-place bit-reversal
we only operate on input data array

Remark: positions are exchanged only once,
between elements of one pair,
it’s enough to scan half of the array

14

Fast Fourier Transform

Computing the DFT coefficients in fast way for 8-element array → FFT

How much operations we do?

● each step requires N multiplications and N addittion

● we make p steps N=2p

15

Fast Fourier Transform

Remarks:
● algorithm Radix-2 works for the number of data equal 2p, if we short of some data

e.g. we have 2p-k then we may add these k empty elements (values=0) and performed FFT

● the poblem occurs when k is comparible with 2p , e.g. we have N=1025
and need empty 1023 array cells, in such case is better to use another
FFT algorithm like e.g. PFA

● PFA – Prime Factor Algorithm, is based on factorization of N into a product of prime numbers,
for each prime number it calculates the DFT which are then assembled into coeffcients

● there are other efficient algorithm which exploit computer architecure like split-Radix:
Radix-4, Radix-8, transformations are then conducted on a bundle of data that can
be simultaneously processed with vectorized instructions

● if it is needed the real-valued function to be transform we may
use Discrete Sine Transfrom or Discrete Cosine Transfrom, these trigonometric
functions have the same periodicity properties as complex twiddle factors,
but we operate on the real values not the complex once so the number
of arithmetic operations is reduced at least twice

16

Fast Fourier Transform

Inverse FFT

● to perform the inverse transformation we need to sum
the coefficents with conjugated twiddle factors

● note that the normalization factor now equals 1

17

Fast Fourier Transform

Multivariate FFT

Another great advantage of Fourier transform directly results from its definition, it is a linear transformation.
Thanks to this property the multidimensional FFT can be processed for each dimension separately from the other.
For the d-dimensional problem the basic DFT equation has the following form

The data for each dimension can have different number of elements, and the FFT can be performed with
different FFT algorithms.

18

Fast Fourier Transform

Applications of FFT

● processing of digital signals – analysis of:

● frequency/power spectra,

● correlation, autocorrelation

● convolution, deconvolution

● digital filtering, noise removal

● data compression: the MP3 format is based on Modified Discrete Cosine Transform

● in Physics:

● solving partial differential equations, e.g. the Poisson equation (Sine/Cosine transform)
e.g. Fast Poisson Solver in Math Kernel Library (Intel)

● calculations of Coulomb integrals for many-body quantum problems

19

Fast Fourier Transform

Example (simple): filtering a noised signal

denoise
+

FFT-1

20

Fast Fourier Transform

Example (advanced): solving Poisson equation in 2D/3D with FFT solver

The Poisson equation

is Fourier transformed to reciprocal space (wave vector k)

after dividing both sides by k2 we only need to perform the inverse transformation to get the solution

To solve partial differential equation we need to specify the boundary conditions, for Poisson equation
we define two types of them

● for Dirichlet boundary conditions we use discrete sine transform

● for Neumann boundary condition we use discrete cosine transform

Math Kernel Library (Intel)
contains a routine named

Fast Poisson Solver

which use FFT for solving Poisson
equation on 2D/3D mesh of nodes
for Dirichlet and Neumann boundary
conditions

21

Fast Fourier Transform

Example (advanced): using convolution theorem to calculate integrals

In some quantum physics problems we need to calculate an electrostatic interaction between two charge densities
(Coulomb integrals – 2 particles x 3 position variables = 6D problem)

We may rewrite this integral to more palatable form, which can be fast
integrated numerically with standard methods (it is reduced 3D problem)

before we make an integration we must calculate V(r1), this is done utilizing convolution theorem

finally we get simple recipe to calculate the needed function V(r1)

