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Interpolation of function value

Interpolation of function value

outline

● definition of interpolation

● polynomial interpolation - Lagrange formula

● estimation of interpolation error

● cubic spline interpolation
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Interpolation of function value

Definition of interpolation in 1D

For a given set of (interpolation) the nodes xk and the values of unknown function yk=f(xk) 

we need to find such interpolation function F(x) which at each node has the same value as the unknown function F(x).
Moreover the difference between f(x) and F(x) (error) between neighbouring nodes shall be minimal.

This definition can be extended for more than one dimension but we limit our consideration to the basic 1D problems.

Aims of interpolation

● for a given tabulated sparse data we need to estimate the intermediate values

● polynomial interpolation is directly exploited in numerical intergration

● to model the shape of functions in 1D or surfaces in 2D/3D 

● replacing  complicated mathematical expressions with more simple ones

Remarks:

● interpolation is defined in an interval established by 
the left and right outermost nodes

● we don’t know what happens outside this region,
such issue is classified as extrapolation



3

Interpolation of function value

Polynomial Interpolation (Lagrange interpolation)

For any set of (n+1) interpolation data 

we can determine only one unique polynomial of n-degree in interpolation region

In order to convince ourselves it’s a truth let’s calculate value of polynomial at each node

this operation provieds us with a square system of linear equations, it can be solved 
provided that the determinat of the matrix of this SLE does not vanish (matrix is nonsingular).
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Interpolation of function value

Matrix of SLE has special form – it’s Vandermode matrix

Its determinant can be written with a concise formula

and we may conclude – the SLE defined for polynomial interpolation has a solution and it is given as 

Dij – minor obtained after removing i-th row 
and j-th column form matrix A

This expression proves the uniqe polynomial exists, but we must find a simpler way to 
determine the polynomial coeffiecients ai.
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Interpolation of function value

Let’s substitute sum of minors for coefficients ai in the polynomial 

and sort terms with yi  → notice here that every such terms contains contributions from all monomials

the functions Φk(x) are different polynomials of at most n-degree, because each one stands at different 
yk value  they are the nodal polynomials and need to be found.

To determine the form of nodal polynomial we again exploit the interpolation condition. 
After substituting position of nodes for an argument of polynomial we get   

and imediately deduce essential condition for the nodal polynomials
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Interpolation of function value

In other words, we shall define such polynomial which has value 1 
at the node it is ascribed to and vanishes at every other node.

This is quite easy – just express polynomial in factor form

to find the normalization constant λ use the interpolation condition

Finally, after dividing both expression we get the explicit form of nodal polynomial

Now, interpolation polynomial can be constructed, to make the final formula more compact 
we use the full degree (n+1) factor polynomial containing all nodes as its roots
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Interpolation of function value

Lagrange interpolation formula

If one needs to calculate the value of Lagrange polynomial, there is no need to compute its coefficients explicilty
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Interpolation of function value

Interpolation error

In polynomial interpolation, the interpolation function exactly reconstruct the values of unknown function 
at nodes, however,  no one should expect that finite degree polynomial would reconstruct all functions,
especially these  which have infinite Taylor expansion.

To assess the difference between an exact value of function F(x) and the interpolation polynomial Wn(x) 
we use the following interpolation error

Remarks:
● for fixed outermost points of interpolation interval the supremum of (n+1) derivative of f is also fixed 

● one may naively think that the factorial in denominator should dump the error 
for increasing number on node, we will see it’s not the truth due to Runge effect

● the only effective way to improve the Lagrange polynomial interplation is 
to optimally select the positions of nodes → the optimal choice are the Chebyshev nodes
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Interpolation of function value

Optimal selection of nodes in Lagrange interpolation

The optimal nodes are defined by the roots of Chebyshev polynomials

Chebyshev polynomial are defined for an interval [-1,1] if the roots/nodes are needed 
for different interval e.g. [a,b] their position must be then rescaled  

nodes condense at the end 
of interpolation interval
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Interpolation of function value

Example:   interpolation of Lorentzian function 
with equidistant and Chebyshev nodes

equidistant nodes

Chebyshev nodes
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Interpolation of function value

Remarks:
● high degree Lagrange interpolation is rarely used in practise due to Runge effect,

it interpolates well the middle part of interpolation interval but strongly oscillates
at its ends

● even shifting more nodes close to the ends largely dumps the oscilations, these 
are still  significant making the data not reliable

● Lagrange interpolation formula is still used but for small number of nodes 
in numerical integration formulae (Newton-Cotes, Gauss quadrature)

● we need much better interpolation method like cubic spline
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Interpolation of function value

Cubic spline interpolation

Lagrange polynomial interpolation suffers from enormously enlarged  errors for increasing number of nodes,
hence we have to go in the opposite direction. 

● let’s try to interpolate function with low m-degree polynomial, because it works for small number of nodes

● interpolation interval nodes shall be divided into small packets of nodes, interpolation is made for 
each segment with different polynomial, e.g. in i-th segment 

● at the border between two segments two polynomials must  have the same: values of function and set of derivatives 

m=0

m=1

m=3

reject
interpolation function is not 

continuous, breaks interpolation
condition

reject
interpolation is continuous 

but the 1-st order derivative is not 

accept
cubic polynomial guarantees
continuity up to 2-nd order 

derivative
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Interpolation of function value

From simple analysis of some possible choices of polynomial degree we deduce the minimal degree is m=3,
it ensures continuity not only 1-st derivative (smoothness) but also 2-nd order one allowing for larger bending 
of polynomial within single segment. Now we may define the basics of cubic spline interpolation.

For given set of interpolation nodes (xk) and function values (yk)

we introduce set of elements with ends defined by a pair of consequtive nodes 

and within each element we use polynomial of m=3 degree (cubic splines) to interpolate the tabulated function

The total interpolation function is linear combination of cubic splines

Expressions for cubic splines  can be determined in two ways

● we set ci=1 and calculate the coefficients cim of all cubic splines

● we chose cim (cubic splines are predefined) and calulate c i

Although, both method will give similar results we consider the former as it is more flexible. 
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Interpolation of function value

Cubic splines defined by 2-nd order derivatives

For n cubic splines we need to determine

coefficients ci,m, by fitting 0-th, 1-st and 2-nd derivaties at inner nodes we get

conditions, and by utilizing the basic interpolation condition (values at nodes) we have 
additional conditions

We lack two conditions which are the free parameters of the method, these can be linked with function
behaviour at two ends of interpolation interval



15

Interpolation of function value

Boundary conditions in cubic spline interpolation

● 1-st derivative

● 2-nd derivative

● periodic boundary condition



16

Interpolation of function value

In the following derivation we will use abbreviation for second order derivative

We have previously assumed continuity of second order derivative at the joint of two elements.
This condition can be written as follows

After integrating this expression over x we get 

and integrate again to get general formula describing the spline employing M j

here we lack of:
  Ai, Bi, Mi-1, Mi
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Interpolation of function value

● constants Ai and Bi we determine utilizing fundamental interpolation condition at both ends of element

Constants depend on second derivatives.

● at any node xi the 1-st derivate is continuous 

by equaling both expression we get the linear equation, connecting three unknown 2-nd derivatives, 
valid for the inner nodes
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Interpolation of function value

We get the linear equation with unknown second derivatives

In order to form complete system of linear equations which has unique 
solution we must adjoint the boundary conditions

● conditions for 1-st order derivatives

● condition for 2-nd order derivatives

here we modify only rhs

here we must modify both, 
the lhs and the rhs
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Interpolation of function value

Writing linear equation for all nodes + accounting for boundary condition we get SLE in matrix form which must be solved   

● 1-st order derivative

● 2-nd order derivative

The solution vector provides the values of Mi which allows to determine all splines
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Interpolation of function value

Remarks:
● cubic spline interpolation is very effective, SLE is solved with 

LU designed for tridiagonal matrices, it is fast and stable

● the number of interpolation nodes is not limited, could be hundreds or more 

● Runge effect do not occur due to low degree splines, 
an interpolation error could be made as small as needed 
but obviously  this requires more and more nodes

● a small drawback is that we interpolate the function piecewise 
and we don’t have a concise expression for the unknown function f(x)
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Interpolation of function value

Example: interpolation of Lorentzian function with cubic splines 
● number of nodes  (n+1) 
● boundary conditions: vanishing 2-nd derivative at both ends


