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Numerical methods in physics

Lecture 1

Numerical Errors

outline

● numerical methods/algorithms 
● basics of computer arithmetics
● numerical errors 
● examples: 

● evaluation of function value
● approximation of derivatives with finite differences
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Numerical methods are part of applied mathematics and were intensively developed in the second part 
of XX century along with fast development of computers. However, some numerical algoritms were known 
long time before, e.g.  numerical solutions of ODE & PDE in XIX century by John Couch Adams (discovery of Neptune)
or the Runge-Kutta methods for ODE at the turn of 19th and 20th centuries. 

Purposes of numerical methods are finding solutions of mathematically defined problems which are 

● hardly solved by other analytical means 

● can not be solved analytically 

● can not be solved analytically in reasonable time 

At present numerical methods are utilized everywhere there is a need of processing large number of data 
and is driven by growing computational power of digital processors, to name some

● processing sounds (music, voices) and images (photos, video)
→ see for FFT or LAPACK packages installed on your computers

● analysis od statistical data for insurance companies, government, banks, CERN
● optimization of industrial processes: transportation, metallurgy, fabrication of devices 
● simulations/modelling of complex physical/chemical/biological systems
● generally as vital tools in science and engineering (both use similar methods but for different purposes)

 
remark 1:  computer simulations/modelling are different class of numerical tasks 
           like e.g. weather prediction, simulations of classic or quantum dynamics etc., 

       namely, they are built as more complex models heavily utilizing 
       the basic numerical methods at intermediate steps 

remark 2: during the course we will talk about the basic numerical methods only 
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Basically each numerical method (M) transforms an input data vector into output data vector, 
which mathematically can be written as follows

immediately we can pose some questions:

● what do we want to do?  → we need a defintion of the task, described by more or less complex 
mathematical definition/model

● how to do it? → which numerical method can solve the task?

● how do we wish to solve this problem?  → which numerical algorithm implementing the chosen method will be optimal? 
    (the most accurate?  the most efficient?  or something between? )
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These general considerations let us to make a distinction between:  

● numerical task (how to pose a problem),
● numerical method, 
● numerical algorithm (computer implementation of the method)

Numerical task – it is a unique general description of our plans concerning 
 the transformation the input data into the output ones

Numerical method – dedicated to given numerical task is the mathematical model usually built up
of a sequence of some mathematical operations (intermediate steps) 
that must be done in order to find the solution 

Numerical algorithm – it is a unique computer implementation of given numerical method, 
which translates the mathematical model into set of instruction performed 
by computer usually taking into account some optimization factors 
and/or specification of computer architecture
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Example

● define numerical task:     find all zeros of a polynomial

● chose iterative numerical method: bissection, Newton method, secant method 
                                                       (from the class of methods dedicated to solving nonlinear equations)

● prepare numerical algorithm (in form of a pseudocode)
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Computer arithmetic

Neglecting more complex data structures, we may limit our considerations to three number types:

● logical (bool)
● integer 
● real

Logical and integer have exact representation in computer memory, so any logical or basic arithmetic
operations (excluding division) gives the result of the same type.

The real numbers are represented as floating points in finite-length bit registers. 
So only some numbers have exact representations while other are approximated by nearby floating point. 
 

Floating point in scientific notation

s - sign
F – fraction
r - radix (base of system, r = 2,8,10,16)
E - exponent

radix – is fixed for given base of the system 
Fraction – influence on accuracy of floating-point number, 
Exponent – influence on the range of fl number 
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For each component we must reserve some bits, in computers we use IEEE-754 standard

● the use of single precision may easily lead to loss of accuracy and make an algorithm unstable
● double precision gives much better accuracy and enhace stability
● quadruple precison would give the best results, however, because it is used very rarely there are 

no numerical libraries, moreover on 64-bit computer quadruple precision is ensured by 
connecting two registers into one what decrease efficency 

(similar problem is accounted for double precision computations conducted on desktop GPU Nvidia/AMD
500-600 $, the loss in efficency is 64/16 times with respect to single precision, 
while the price of professional GPU with native double precision is about 5,000-6,000 $) 

(+1) – hidden bit reconstructed
          when arithmetic operation

 is conducted
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Analysis of rounding errors can be make for simple algorithm, such analysis is based on Wilkinson lemma

The rounding errors occuring due to arithmetic operations performed on the floating-point numbers
can be equivalently obtain by making these operations in exact arithmetic on slightly perturbed real numbers.

● lets consider 4 basic arithmetic operations:

floating-point arithmetic

how large is the rounding error?

Wilkinson lemma

● it is better to calculate the relative errors – the dependence of error on magnitude of operands disappears

multiplication:

division:

addition/subtraction:

rounding errors would be largely amplified for:

Conclusion: subtracting large numbers of similar values may generate large rounding errors
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● during the course of sequence of arithmetic operations carried over floating-point numbers we get new numbers
which have no floating-point representation before saving them in memory these must be prescribed to one of two 
neighbours (smaller or greater) 

● such projection is done by simple truncating (always shift to smaller value – deficient numbers) 
or by rounding (both are considered)

● each result is perturbed on the scale of present ulp value, this loss of information is called the rounding errors

● rounding of „real number” is conducted automatically by the compiler directives, these can be made more 
or less strict increasing computational efficiency in the latter case by the price of less accurate rounding (danger) 

e.g. option:  -ffast-math    for GNU compilers

● it is better to assume the rounding erros are always present in computations and these are the cause 
which really hinders us from finding the solution

● rounding errors do not cancel mutually but rather accumulate during the course of computation

ulp – unit in the last place,
is the maximum error for stored number
(10-7 for single & 10-15 for double)

Rounding errors
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Truncation errors  (due to evaluation of function values)

● Very often in scientific computations we must compute the values of elementary and special functions like e.g.

● many of them are provided by the compiler natively, other we must compute oureselves

● all of these functions are connected by common factor, they are usually expressed in form of 
infinite series e.g. based on Talyor series and usually summation is performed for up to several terms 
giving approximated value, neglecting the rest terms introduce the truncation errors

elementary:

special:
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Example:  compute value of  exp(w) 

here we get fast convergence,
but it is not a rule
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Example:  value of Bessel function J0(x)

● Bessel functions (Jn(x) & Yn(x)) are solutions of differential Bessel equation

these functions are used as basis functions to solve more complex 
differential problems or we need values of Jn(x) since it can be result of 
some analytical results

● Jn(x) can be expressed as power series

but …. direct use of this series for large x»1 is impractical as summation 
must include hundreds or so terms

● There are many approches which modify this series into more 
compact expression, one of them is the following (x»1)

for larger x truncation 
error decreases
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Finite differences and truncation errors

● In computational physics we are often faced the problem defined in language of differential equations ODE/PDE
 

● Our aim is then by first translate differential equations into other form (usually algebraic), 
and  secondly, solve the transformed problem numerically.

● the simplest method rely on replacing the derivatives with their approximations:  finite differences
which are get after some manipulations of Taylor series 

Newton’s equations of motion:

Schrodinger equation:

Poisson equation:
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In the following we use an abbrieviation fo k-th order derivative  

and write down the Taylor series for f(x±h)

We see that by combining (1) and (2) expressions we may express first or second derivative 
by the sum of other terms.

calculating [(1)-(2)]/2h gives 1-st derivative calculating [(1)+(2)]/h2 gives 2-nd derivative

1-st order 
finite difference

truncation
error

2-nd order 
finite difference

truncation
error
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● The lowest 1-st and 2-nd order symmetric finite diffreneces approximate derivatives with maximal 
truncation error of order 2  because the term h2 has the largest contribution to truncation. 

● Do we get more accurate approximations? 

Yes, but we must involve more information about the behaviour of a function around the central point x,
we need Taylor series for f(x ± 2h)

8(1-2)-(3-4)/12h   gives 4-th order finite difference for f(1)

16(1+2)-(3+4)/12h2   gives 4-th order finite difference for f(2)
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Stability of numerical method/algorithm

We say the numerical method/algorithm is stable if the norm of the output data vector is finite, otherwise it is unstable 

Stability is an inherent feature of the method, it depends on:

● the type of transformation, 
● input data, 
● numerical errors 

For simple methods their stability can be assessed theoretically by means of numerical analysis.  
Stability is the basic prerequiste feature we require from the numerical method. 

Accuracy 

From numerical method/algorithm we anticipate to provide „numerically accurate” results 
i.e. the numerical outcomes (in floating point arithmetic) should differ from the exact ones „only slightly” 

simetimes it happens, but not very often,
therefore we shall carefully check 
correctness of numerical results
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● both, accuracy and stability may strongly depend on numerical errors due to large sensitivity 
of the intermediate results on unavoidable perturbations, such behaviour becomes typical 
for increasing number of processed data

● general recommendation is to use the stronger arithmetic (if possible):  32 bit → 64 bit → 128 bit (?) ….

● don’t forget:  in scientific and engineering computations the double precision is preferred

● if the given method can not guarantee required accuracy/stability in double precision then

      1) try to change the method/algorithm (if possible, it is the fastest way)

      2) change the mathematical model (the major change), it is time-consuming but may help

stability & accuracy – final remarks


