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Numerical integration

Numerical integration of functions

outline

● general formulation of integral quadrature

● closed Newton-Cotes formulas

● open Gauss-type quadratures

● multidimensional integrals
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Numerical integration

Numerical integration

Numerical integration is one of the common tasks in scientific computation. 
We know of only several types of integrals that can be computed analytically,
in all the others cases the value of integral must be estimated numerically 
with required accuracy.

Thus we may pose a problem, how to estimate the value of definite integral

The straightforward solution is to replace the integrand function f(x)
with interpolation polynomial, we just need a sequence of nodes 
and corresponding functions values

Integration of polynomials is straightforward

← this formula defines the quadrature
     Ak are the weights to be defined
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Numerical integration

Closed Newton-Cotes quadratures

We consider the proper intergals, i.e. the boundaries are finite and the integrand has no singularities within 
integration interval

We define a sequence of equidistant nodes. In Newton-Cotes quadratures the first and the last nodes coincide 
with integration boundary points a and b
 

To accomplish numerical integration the coefficients of quadrature need to be known, these we get from
the direct integration of nodal polynomials

To make further integration easier let’s transform the the integration variable into unitless one 
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Numerical integration

Now let’s rewrite explicitly the nodal polynomial for the new variable

fill this empty site 
multiplying by factor

We get more compact expression, ready to put into integral, which is directly used in calculations of weights Ak
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Numerical integration

Trapezoidal formula

The simplest quadrature is defined for two nodes (N=1) 
it is called trapeziodal formula

● interplation for two nodes is exact for linear function, and this class of functions can be integrated exactly

● to obtain the estimation of the integration error we shall integrate an interpolation error
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Numerical integration

Simpson formula 

The next formula we get for three nodes (N=2), it is called 
Simpson formula, it excatly integrates the quadratic function

● calculating the error in standard way we encounter Simpson paradox, due to symmetry of integral interval
the integration error vanishes (odd parity function integrated over symmetric interval gives zero) 
what can not be the truth 

● therefore we add one more fictious point which is shifted towards the central node, hence 
the Simpson quadrature is one more order higher than it results from its constructon
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Numerical integration

N w A0/w A1/w A2/w A3/w A4/w A5/w A6/w error name

1 (1/2)h 1 1 h3  (1/12) f(2)(x) trapezoidal

2 (1/3)h 1 4 1 h5  (1/90) f(4)(x) SImpson

3 (3/8)h 1 3 3 1 h5  (3/80) f(4)(x) 3/8

4 (4/90)h 7 32 12 32 7 h7  (8/945) f(6)(x) Milne

5 (5/288)h 19 75 50 50 75 19 h7  (275/12096) f(6)(x) -------

6 (6/840)h 41 216 27 272 27 216 41 h9  (9/1400) f(8)(x) Weddle

Coefficients of commonly used integration quadratures
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Numerical integration

Compsite integration formulas

● since the lecture concerning the polynomial interpolation we know that the use of high degree polynomials 
for homogeneously distributed nodes has no any sense due to the Runge effect

● instead, integration interval is divided into segments and integration is performed within each segment 
with low order quadrature, partial results are summed giving hence the composite formulas 
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Numerical integration

Trapezoidal composite formula

● integration interval is divided into n subintervals of equal length, each segment contains two nodes

● subinterval integration errors are summed giving estimation of total error 

● to make the estimation of integral more 
accurate we need to increase the number 
of integration nodes
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Numerical integration

Composite Simpson formula

● integration interval is divided into m/2 subintervals, m - must be even, integration is made for three nodes 
in each subinterval and the partial results are summed up
 

● error of integration

● error decreases much faster for 
larger m than for trapezoidal formula
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Numerical integration

Example:  numerical integration by means of few low-order quadratures
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Numerical integration

Richardson extrapolation

Let’s consider the composite trapezoidal formula for n and 2n nodes

we recognize simple relation between both errors

this suggests both integral estimations might help in decreasing the integration error by at least one order

● coefficients in numerator are chosen so
as to cancel leading term in error formula

● coefficients in denumerator are just 
copies of these from numerator and 
are used to normalize the result
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Numerical integration

Romberg integration method

● it uses the conclusions from Richardson extrapolation, by iteratively doubling the number of nodes 
in composite trapezoidal formale we get the better results, but these are further improved 
by cancellation of leading error terms

● by first we define the positions of equdistant nodes with the length of single segment depending on 
the number p which enumerates consecutive  doubling of nodes

● at start, the method uses only two nodes p=0

● next we calculate the more accurate results doubling the number 
of nodes, but calculating the new estimation the previous one is 
reused and only the new added nodes need to be iterated

● having two first integral estimations we may start to improve the results
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Numerical integration

Example: numerical integration with composite trapezoidal formula and Romberg method

         n          Rp,0                    Rp,p
         2       -0.6117694       -0.6117694 
         3       -0.2257981       -0.0971410 
         5        0.2498394        0.4420869 
         9       -0.1032663       -0.2741157 
       17       -0.1668214       -0.1842338 
       33       -0.1816364       -0.1864996 
       65       -0.1852783       -0.1864869 
     129       -0.1861850       -0.1864869 
     257       -0.1864114       -0.1864869 
     513       -0.1864680       -0.1864869 
   1025       -0.1864822       -0.1864869 
   2049       -0.1864857       -0.1864869 
   4097       -0.1864866       -0.1864869 
   8193       -0.1864868       -0.1864869 
 16385       -0.1864869       -0.1864869 
 32769       -0.1864869       -0.1864869 

convergence 
for 27 nodes

convergence 
for 215 nodes
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Numerical integration

Gauss quadrature

Many integrals are not well behaved as we yet considered, much problems extends over infinite length region,
and singularities might occur in the integrands especially at the ends of the integral interval, 
despite this fact the intergral may have finite value.

To cope with such problems we change the beggining assumption concerning the nodes’ position: 
now we assume these might be distributed unevenly over the interval, this gives us additional  N+1
free parameters besides the N+1 quadrature coefficients Ak. The order of Gauss quadrature is about 
twice the order of Newton-Cotes ones – 2N instead of N.

Since we want also to cope with integrand’s singularities we put in the integral a weighting function w(x)
while the integrand function f(x) will be interpolated by orthogonal polynomials
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Numerical integration

The general formula for weights Ak ,i.e. irrespectie of the type of polynomials, 
was derived from Christoffel-Darboux identity

Currently the weights Ak and the nodes xk (dk)  are commonly calculated by Golub-Welsch 
diagonalization method. 

The recurrence formula for generating the sequence of  orthogonal polynomials is rewritten 
as standard eigenvalue problem, the eigenvalues are the nodes while the first entries in the 
eigenvectors are integration weights Ak.
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Numerical integration

Finding nodes and weights with Golub-Welsch method

We form the tridiagonal symmetric matrix 

and solve this eigenvalue problem

eigenvalues are the nodes

while the weights we get from the first entries of eigenvectors

● Gauss-Legendre

● Gauss-Laguerre

● Gauss-Hermite
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Numerical integration

Gauss-Legendre quadrature 1
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● scaling the interval of integration

Remark: usually the routine we use for calculations of Ak and xk, automatically scales both factors
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Numerical integration

Gaus-Laguerre quadrature
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Numerical integration

Example: calculation of improper integral with Gauss quadrature

● Gauss-Legendre

● Gauss-Laguerre

● Gauss-Hermite
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Numerical integration

Multidimensional integrals

● in one dimensional probelms we can easily interpolate the integrand with polynomial, 
but it couldn’t be an easy task for even two-dimensional problem with irregular boundaries

● the boundaries’ shapes are crucial since the curvature may change locally quite fast   
making an automatic integration difficult

● generally, the numerical integration of multidimensional function utilizes the linearity of integration 
and relies on composition of sequence of M one-dimensional quadratures

Remark: composition of one-dimensional quadratures may work properly for up to 4-6 dimensions, 
the higher-dimensional integrals can be estimated only with Monte Carlo method.


